説明

吸着させたトキソイドおよび多糖類含有抗原を含む微粒子に基づく免疫原性組成物

【課題】吸着されたトキソイド抗原および/または多糖類含有抗原を含む微粒子を有する免疫原性組成物を提供すること。
【解決手段】(a)生分解性ポリマーを含むポリマー微粒子と、(b)(i)破傷風トキソイドおよびジフテリアトキソイド、およびそれらの組み合わせなどのトキソイド抗原、および/または(ii)Hib多糖類抗原、多糖類およびポリペプチド領域を含むHib接合体抗原、髄膜炎菌多糖類抗原、多糖類およびポリペプチドの領域を含む髄膜炎菌接合抗原、肺炎球菌多糖抗原、多糖およびポリペプチドの領域を含む肺炎球菌接合体抗原、あるいはこれらの組み合わせなどの多糖類含有抗原から選択されるこの微粒子に吸着された抗原と、(c)薬剤的に許容可能な賦形剤とを含む免疫原性微粒子組成物。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の申立て
本出願は、その内容全体を参照によって本明細書に引用される2003年6月2日に出願の米国仮特許出願第60/475,010号明細書の優先権の利益を主張するものである。本出願は、その内容全体を参照によって本明細書に引用される2003年10月21日に出願の米国仮特許出願第60/513,074号明細書の優先権の利益をさらに主張するものである。
【0002】
本発明の技術分野
本発明は免疫原性医薬品組成物に関し、ワクチン組成物に特に関する。
【背景技術】
【0003】
本発明の背景
ポリペプチド、多糖類、接合体、およびDNAワクチンを含むサブユニットワクチンの出現により、安全で効果的なアジュバントを含んでいる組成物の必要性が増した。
【0004】
現在、米国内で最も一般に使用されるアジュバントは、ミョウバンアジュバント(すなわち水酸化アルミニウムおよびリン酸アルミニウムなどのアルミニウム塩)である。米国保健社会福祉省、食品医薬品局(FDA)によって、ミョウバンのみがヒトへの使用に現在認められている。例えば、ジフテリアトキソイドおよび破傷風トキソイドをアルミニウム塩に吸着させた多様なジフテリアテタヌスワクチンが入手可能である。アルミニウムアジュバントは長年の実証された安全性プロファイルを有するが、それにもかかわらずこれらのアジュバントは時に局所反応に関わることがある。例えば、ワクチン接種後肉芽腫はアルミニウム−吸着ワクチンに関連するよく知られた反応である。
【0005】
適切な免疫応答を誘発するように、吸着された抗原あるいは取り込まれた抗原と共に微粒子担体が使用されている。このような担体は、免疫系に対する選択された組換えタンパク質抗原の複数の複製を一般に提示し、局所リンパ節内の抗原の捕捉および保持を促進する。この粒子はマクロファージにより貪食され、サイトカイン遊離を介した抗原提示を増強させることができる。
【0006】
例えば、自己の1998年1月29日に出願された国際特許出願国際公開第98/33487号パンフレットおよび同時出願の米国特許第09/015,652号明細書では、細胞性免疫応答を含む免疫応答を刺激するための抗原−吸着および抗原−カプセル化微粒子の使用、ならびにこの微粒子を作製する方法が記載されている。本明細書では「PLG」とさらに呼ばれるポリ(ラクチド)およびポリ(ラクチド−コ−グリコリド)などのポリマーを使用して微粒子を形成させる。
【0007】
自己の国際特許出願国際公開第00/06123号パンフレット、および同時出願の米国特許第09/715,902号明細書では、DNA、ポリペプチド、抗原、およびアジュバントを含む巨大分子を吸着した微粒子を作製する方法が開示されている。この微粒子は、例えば、ポリ(アルファヒドロキシ酸)(例えばPLG)、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリオルソエステル、ポリ無水物、およびその類似物などのポリマーを含み、例えば、陽イオン、アニオン、または非イオン系洗浄剤を使用して形成される。ドデシル硫酸ナトリウム(SDS)を含むPLG微粒子などのアニオン洗浄剤を含む微粒子がポリペプチドなどの正電荷を帯びた巨大分子の使用のために提案されている。CTAB(臭化セチルトリメチルアンモニウム)を有するPLG微粒子などの陽イオン洗浄剤を含む微粒子が、DNAなどのマイナス電荷の巨大分子の使用のために提案されている。細胞性免疫応答を含む免疫応答を刺激するこのような微粒子の使用も開示されている。
【発明の概要】
【課題を解決するための手段】
【0008】
本発明の概要
本発明は、生分解性ポリマー微粒子を含み、この微粒子に吸着させたトキソイドおよび多糖類含有抗原を有する免疫原性組成物に関する。
【0009】
本発明の最初の態様によれば、(a)例えば、ポリ(α−ヒドロキシ酸)、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリオルソエステル、ポリ無水物、およびポリシアノアクリレートから選択されるポリマーなどの生分解性ポリマーを有するポリマー微粒子、(b)(i)破傷風トキソイド、ジフテリアトキソイド、あるいはこれらの組み合わせなどのトキソイド抗原、および/または(ii)Hib多糖類抗原、多糖類およびポリペプチド領域を有するHib接合体抗原、髄膜炎菌多糖類抗原、多糖類およびポリペプチド領域を有する髄膜炎菌接合体抗原、肺炎球菌多糖抗原、多糖類およびポリペプチド領域を有する肺炎球菌接合体抗原あるいはこれらの組み合わせなどの抗原を含む多糖類から選択される微粒子に吸着させた抗原、および(c)薬剤的に許容可能な賦形剤を有する免疫原性組成物が提供される。一般に、抗原を微粒子に吸着させた後、微粒子を種々の技術のうちの任意により調製される。
【0010】
多くの実施態様において、微粒子はポリ(ラクチド)(「PLA」)などのポリ(α−ヒドロキシ酸)、ポリ(D、L−ラクチド−コ−グリコリド)(「PLO」)などのラクチドおよびグリコリドのコポリマー、あるいはD、L−ラクチドおよびカプロラクトンのコポリマーから形成される。ポリ(D、L−ラクチド−コ−グリコリド)ポリマーは、例えば、20:80から80:20まで、25:75から75:25まで、40:60から60:40まで、あるいは55:45から45:55までの範囲のラクチド:グリコリドモル比を有するもの、および例えば、5,000から200,00ダルトンまで、10,000から100,000ダルトンまで、20,000から70,000ダルトンまで、あるいは40,000から50,000ダルトンまでの範囲の分子量を有するものが含まれる。
【0011】
多くの実施態様において、免疫原性組成物はトキソイドおよび/または多糖類含有抗原に加えて抗原を有するであろう。これらの追加抗原は個別に、例えば、(a)微粒子の表面に吸着され、(b)微粒子内に取り込まれ、(c)溶液または懸濁液内に、(d)別個の微粒子集団に吸着され、および/または(e)別個の微粒子集団内に取り込まれてもよい。
【0012】
抗原は、例えば、殺されたあるいは減弱された病原体(例、細菌、ウイルス、真菌、あるいは寄生虫)または細胞(例、腫瘍細胞)、ポリペプチド含有抗原、多糖類含有抗原、トキソイド、ポリヌクレオチド含有抗原などが可能である。
【0013】
ポリヌクレオチド含有抗原の例としては、例えば(a)ポリペプチド含有抗原を直接符号化する(例えばmRNA分子)核酸配列、および(b)例えば異種性核酸配列を発現し、その結果ポリペプチド含有抗原を符号化するベクター構成物(例、DNAベクター構成物およびRNAベクター構成物)などのポリペプチド含有抗原を間接的に符号化するベクター構成物、などがある。この符号化されたポリペプチド含有抗原は、例えば腫瘍抗原および/または病原体に由来した抗原となりうる。
【0014】
同様に、ポリペプチド含有抗原および多糖類含有抗原は、例えば、腫瘍抗原および/または病原体抗原が可能である。したがって、いくつかの実施態様では、これらの抗原は腫瘍に由来する。他の実施態様では、この抗原は例えば、肝炎ウイルス、単純疱疹、ヒト免疫不全ウイルス、水痘ウィルス、ポリオ、はしか、おたふく風邪、風疹、サイトメガロウイルス、およびインフルエンザウィルスなどのウイルスに由来する。他の実施態様では、抗原は例えばジフテリア、テタヌス、百日咳、髄膜炎菌(Neisseria meningitidis)、ヘモフィルス属インフルエンザ(Haemophilus influenza)(例えばb型ヘモフィルス属インフルエンザ(Haemophilus influenza))、連鎖球菌、淋菌(Neisseria gonorrhoeae)、ピロリ菌(Helicobacter pylori)およびコレラなどの細菌に由来する。さらに別の実施態様では、抗原は、真菌、あるいは例えばマラリア原虫などの寄生虫に由来する。
【0015】
抗原の特定の例としては、以下の多様な組み合わせを含む。(a)百日咳抗原(例、全細胞および無細胞の百日咳抗原)、(b)ヘモフィルスインフルエンザb型(Haemophilus influenza)(Hib)抗原(例、Hib多糖類およびHib接合体抗原)、(c)肝炎抗原(例、A型肝炎ウイルス抗原、C型肝炎ウィルス抗原、D型肝炎ウイルス抗原、B型肝炎ウィルス抗原、G型肝炎ウイルス抗原、およびこれらの組み合わせ(例えば肝炎A−B型))、(d)ポリオ抗原(例、不活化および生弱毒化ウイルス抗原、一般に、三価不活化ポリオ抗原)、(e)多糖類および接合体抗原を含む髄膜炎菌(Neisseria meningitidis)抗原(例、髄膜炎A、髄膜炎B、髄膜炎C、髄膜炎W、髄膜炎Y、および髄膜炎A−C、髄膜炎A−B−C、髄膜炎A−C−W−Y、および髄膜炎A−B−C−W−Yなどの組み合わせ)、(f)肺炎球菌(Streptococcus pneumoniae)抗原、(例、多糖類および接合体抗原)、(g)水痘帯状疱疹ウイルス(水痘)抗原(例、凍結乾燥、生弱毒化ウイルス抗原)、(h)麻疹ウイルス抗原(例、生弱毒化ウイルス抗原)、(i)流行性耳下腺炎ウイルス抗原(例、生および弱毒化ウイルス抗原)、(j)風疹ウイルス抗原(例、生および弱毒化ウイルス抗原)。
【0016】
本発明の免疫原性組成物はさらに多様な補助免疫アジュバントを含むことができる。上述の追加抗原のように、これらの補助免疫アジュバントは独立に、例えば、(a)、微粒子の表面に吸着され、(b)微粒子内に取り込まれ、(c)溶液/懸濁液中に、(d)別個の微粒子集団に吸着され、および/または(e)別個の微粒子集団内に取り込まれてもよい。
【0017】
補助免疫アジュバントの例としては、(a)CpGオリゴヌクレオチドなどの免疫賦活性オリゴヌクレオチド、(b)二本鎖RNA(c)大腸菌熱不安定性毒素、(d)リポ多糖リン酸塩化合物(例、モノホスホリリピドAおよび誘導体)およびリポ多糖リン酸塩模倣体、および(e)スクアレンなどの新陳代謝性オイル、および1つ以上のソルビタン誘導体(例、MF59)などの乳化剤を含むサブミクロン乳剤などがある。
【0018】
さらに、医薬品、ホルモン、酵素、転写あるいは翻訳媒介物質、代謝経路中間体、免疫調節物質、およびこれらの組み合わせなどの他の補充成分を本発明の多様な組成物中に含むことができる。
【0019】
本発明のさらなる実施態様では、本明細書に記載された任意の免疫原性組成物を宿主動物へ投与する工程を含む宿主動物に抗原を送達する方法も宿主動物は脊椎動物が好ましく、哺乳類がさらに好ましく、ヒトがさらにいっそう好ましい。
【0020】
本発明は、免疫応答を誘発するための有効量で本明細書に記載された任意の免疫原性組成物を宿主動物へ投与する工程を含む宿主動物における免疫応答を刺激する方法をさらに規定する。
【0021】
本発明は、防御反応を誘発するための有効量で本明細書に記載された任意の免疫原性組成物を宿主動物へ投与する工程を含む腫瘍または病原体に対して宿主動物を免疫化する方法をさらに規定する。
【0022】
本発明の免疫原性組成物の送達は、直接注入(例、皮下、腹腔内、静脈内、あるいは筋肉内)などの 任意の既知の方法によって行なわれる。
【0023】
したがって、本発明のいくつかの実施態様によれば、ウイルス、細菌、菌類、マイコプラズマ、あるいは原虫症に対して、ならびに腫瘍に対して、予防的におよび/または治療的に免疫化する工程を含み宿主動物を処置する組成物および方法が提供される。本発明の方法は、宿主動物好ましくはヒトに予防的および/または治療的免疫を与えるのに有用である。
【0024】
本発明の他の実施態様では、上記の組成物を製造する方法を規定する。例えば、上記ポリマー微粒子は、(a)水、有機溶媒、生分解性ポリマーを含む水中油中水型乳剤を形成する工程と、(b)有機溶媒をこの乳剤から取り除き、ポリマー微粒子を形成する工程と、(c)テタヌスまたはジフテリアトキソイド、Hib、髄膜炎菌性あるいは肺炎球菌多糖類または接合体抗原などの多糖類含有抗原、あるいはこれらの組み合わせなどのトキソイド抗原をこの微粒子へ吸着させる工程とを含む方法により製造することができる。多くの実施態様では、乳剤はさらに界面活性剤、例えばアニオン界面活性剤を含む。
【0025】
本発明の免疫原性組成物の1つの利点は、従来の抗体反応を含む脊椎動物対象に免疫応答を生成させる能力である。
本発明のこれらおよびその他の多様な実施態様、態様および利点は、本明細書の開示および特許請求の範囲を考慮すると、当業者に対して容易に明示されるであろう。
例えば、本発明は以下の項目を提供する。
(項目1)
(a)生分解性ポリマーを含むポリマー微粒子と、(b)前記微粒子に吸着された抗原であって、(i)破傷風トキソイドおよびジフテリアトキソイドから選択されるトキソイド抗原、および(ii)Hib多糖類抗原、多糖類およびポリペプチド領域を備えるHib接合抗原、髄膜炎菌多糖類抗原、多糖類およびポリペプチド領域を備える髄膜炎菌接合抗原、肺炎球菌多糖抗原、および多糖類およびポリペプチド領域を備える肺炎球菌接合抗原から選択される多糖類含有抗原の1つ以上から選択される前記抗原、および(c)薬剤的に許容可能な賦形剤とを含む免疫原性組成物。
(項目2)
前記組成物が破傷風トキソイドおよびジフテリアトキソイドを含む項目1に記載の免疫原性組成物。
(項目3)
追加抗原をさらに備える項目1〜2のいずれかに記載の免疫原性組成物。
(項目4)
前記追加抗原は微粒子の表面に吸着される項目3に記載の免疫原性組成物。
(項目5)
前記追加抗原が微粒子内に取り込まれる項目3に記載の免疫原性組成物。
(項目6)
前記追加抗原がポリペプチド含有抗原である項目3〜5のいずれか1項に記載の免疫原性組成物。
(項目7)
前記追加抗原は追加の多糖類含有抗原である項目3〜5のいずれか1項に記載の免疫原性組成物。
(項目8)
前記追加抗原が追加の接合抗原である項目3〜5のいずれか1項に記載の免疫原性組成物。
(項目9)
前記追加抗原がポリヌクレオチド含有抗原である項目3〜5のいずれか1項に記載の免疫原性組成物。
(項目10)
前記追加抗原が腫瘍細胞に由来する項目3〜5のいずれか1項に記載の免疫原性組成物。
(項目11)
前記組成物が破傷風トキソイドおよびジフテリアトキソイドを含み、前記追加抗原が病原体に由来する項目3〜5のいずれか1項に記載の免疫原性組成物。
(項目12)
前記病原体がウイルス、細菌、真菌および寄生虫から選択される項目11に記載の免疫原性組成物。
(項目13)
前記病原体が、肝炎ウイルス、水痘、ポリオウイルス、はしか、おたふく風邪、風疹、インフルエンザウィルス、髄膜炎菌(Neisseria meningitidis)、百日咳、ヘモフィルスインフルエンザb型(Haemophilus influenzae)、HIV、および肺炎連鎖球菌(Streptococcus pneumoniae)から選択される項目11に記載の免疫原性組成物。
(項目14)
前記病原体が百日咳である項目11に記載の免疫原性組成物。
(項目15)
前記組成物が肝炎ウイルス抗原を含む項目14に記載の免疫原性組成物。
(項目16)
前記組成物がヘモフィルスインフルエンザb型抗原、ポリオウイルス抗原、髄膜炎菌抗原、および肺炎連鎖球菌抗原から選択される抗原を含む項目15に記載の免疫原性組成物。
(項目17)
前記組成物がヘモフィルスインフルエンザb型抗原を含む項目14に記載の免疫原性組成物。
(項目18)
前記組成物が肝炎ウイルス抗原、ポリオウイルス抗原、髄膜炎菌抗原、および肺炎連鎖球菌抗原から選択される抗原を含む項目17に記載の免疫原性組成物。
(項目19)
前記組成物がポリオウイルス抗原を含む項目14に記載の免疫原性組成物。
(項目20)
前記組成物が、肝炎ウイルス抗原、ヘモフィルスインフルエンザb型抗原、髄膜炎菌抗原、および肺炎連鎖球菌抗原から選択される抗原を含む項目19に記載の免疫原性組成物。
(項目21)
前記組成物が髄膜炎菌抗原を含む項目14に記載の免疫原性組成物。
(項目22)
前記組成物は、肝炎ウイルス抗原、ヘモフィルスインフルエンザb型抗原、ポリオウイルス抗原、および肺炎連鎖球菌抗原から選択される抗原含む項目21に記載の免疫原性組成物。
(項目23)
前記組成物が肺炎連鎖球菌抗原を含む項目14に記載の免疫原性組成物。
(項目24)
前記組成物は、肝炎ウイルス抗原、ヘモフィルスインフルエンザb型抗原、ポリオウイルス抗原、および髄膜炎菌抗原から選択される抗原を含む項目23に記載の免疫原性組成物。
(項目25)
前記追加抗原が殺傷または減弱化された病原体である項目11に記載の免疫原性組成物。
(項目26)
前記免疫原性組成物が界面活性剤をさらに含む項目1〜25のいずれか1項に記載の免疫原性組成物。
(項目27)
前記微粒子が500ナノメーターから20ミクロンの間の直径を有する項目1〜26のいずれか1項に記載の免疫原性組成物。
(項目28)
前記生分解性ポリマーがポリ(α−ヒドロキシ酸)、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリオルトエステル、ポリ無水物、およびポリシアノアクリレートから選択される項目1〜27のいずれか1項に記載の免疫原性組成物。
(項目29)
前記生分解性ポリマーがポリ(α−ヒドロキシ酸)である項目1〜27のいずれか1項に記載の免疫原性組成物。
(項目30)
前記生分解性ポリマーが40:60から60:40の範囲のラクチド:グリコリドモル比を有するポリ(ラクチド−コ−グリコリド)である項目29に記載の免疫原性組成物。
(項目31)
補助免疫アジュバントをさらに含む項目1〜30のいずれか1項に記載の免疫原性組成物。
(項目32)
前記補助免疫アジュバントは微粒子の表面に吸着されている項目31に記載の免疫原性組成物。
(項目33)
前記補助免疫アジュバントは微粒子内に取り込まれている項目31の免疫原性組成物。
(項目34)
前記補助免疫アジュバントがCpGオリゴヌクレオチド、二本鎖RNA、大腸菌易熱性毒素、リポサッカリドフォスフェート化合物、リポサッカリドフォスフェート模倣体、およびスクアレンと、ソルビタンエステルと、ポリオキシエチレンソルビタンエステルとを含むサブミクロン乳剤から選択される項目31〜33のいずれか1項に記載の免疫原性組成物。
(項目35)
前記免疫原性組成物は注入可能な組成物である項目1〜34のいずれか1項に記載の免疫原性組成物。
(項目36)
脊椎宿主動物に項目1〜35のいずれか1項に記載の免疫原性組成物を投与する工程を含む病原体による感染に対して前記宿主動物を免疫化する方法。
(項目37)
脊椎宿主動物に項目1〜35のいずれか1項に記載の免疫原性組成物を投与する工程を含む前記宿主動物の免疫応答を刺激する方法。
(項目38)
前記脊椎宿主動物がヒトである項目36から37のいずれか1項に記載の方法。
(項目39)
(a)水、有機溶媒、および生分解性ポリマーを含む水中油中水型乳剤を形成する工程と、(b)前記乳剤から有機溶媒を除去し、前記ポリマー微粒子を形成する工程と、(c)トキソイド抗原および多糖類含有抗原から選択された1つ以上の抗原を前記微粒子に吸着させる工程とを含む項目1〜35のいずれか1項に記載の微粒子組成物を製造する方法。
(項目40)
前記乳剤はアニオン界面活性剤をさらに含む項目39に記載の方法。
【図面の簡単な説明】
【0026】
【図1】図1は、米国保健社会福祉省、疾病対策予防センターの全国予防接種プログラムの Recommended Childhood and Adolescent Immunization Schedule−United States 2003である。
【図2】図2は、ヒスチジン緩衝液中のPLG粒子からの破傷風トキソイドおよびジフテリアトキソイドにおける%吸着および%遊離を示す棒グラフである。
【図3】図3は、PLG粒子からのMen−XCrm接合体における%吸着および%遊離を示す棒グラフである。
【発明を実施するための形態】
【0027】
本発明の詳細な説明
本発明の実施では、他に指示のない限り、当業者において公知の範囲内にある化学、高分子化学、生化学、分子生物学、免疫学および薬理学の従来法を使用するものとする。このような技術は、文献中で十分に説明されている。例えば、Remington’s Pharmaceutical Sciences, 18th Edition (Easton, Pennsylvania: Mack Publishing Company, 1990); Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.); Handbook of Experimental Immunology,Vols. I−IV (D.M. Weir and C.C. Blackwell, eds.,1986, Blackwell Scientific
Publications); Sambrook,et al, Molecular Cloning: A Laboratory Manual(2nd Edition, 1989); Handbook of Surface and Colloidal Chemistry (Birdi, K.S., ed, CRC Press, 1997)and Seymour/Carraher=s Polymer Chemistry (4th edition, Marcel Dekker Inc.,1996)参照。
【0028】
従前または以下に、本明細書に引用された全ての出版物、特許、および特許出願は、本明細書によりその内容全体を参照によって引用される。
【0029】
本明細書および任意の添付されている特許請求の範囲で使用されるように、内容がそれに該当しないことが明記されている以外は、単数形「1つの」および「その」は複数の参照を含んでいる。したがって、例えば、用語「微粒子」は1つ以上の微粒子、およびその類似物を指す。
【0030】
文中に特に指示がない場合は、本明細書における全ての割合および比率は、重量ベースで与えられる。
【0031】
A. 定義
本発明について述べる際に、次に示す用語を使用し、また以下に示すように定義するものとする。
【0032】
本明細書に使用される用語「微粒子」は、直径約10nmから約150μmまでの粒子、より一般的には直径約200nmから約30μmまで、さらに一般的には直径約500nmから約10〜20μmまでの粒子を指す。本発明の微粒子はいくつかの環境の下でより大きな塊に凝集する場合がある。この微粒子は、一般に針およびキャピラリーを閉塞させずに、非経口的または粘膜投与を可能にする直径であるものとする。微粒子サイズは、光子相関分光法、レーザ回折法、および/または走査型電子顕微鏡などの当業者において公知の技術によって容易に測定される。用語「粒子」も本明細書に定義されるような微粒子を表すために使用される。
【0033】
本明細書に使用されるポリマー微粒子は、滅菌され、本質的に無毒性の、生分解性の材料から一般に形成される。このような材料は、ポリ(α−ヒドロキシ酸)、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリオルトエステル、ポリ無水物、およびポリシアノアクリレート(例えばポリアルキルシアノアクリレートあるいは「PACA」)などがある。より一般的には、本発明に使用するための微粒子は、ポリ(α−ヒドロキシ酸)より、例えば、ポリ(ラクチド)(「PLA」)あるいはポリ(D,L−ラクチド−コ−グリコリド)(「PLG」)などのラクチドおよびグリコリドのコポリマー、あるいはD,L−ラクチドおよびカプロラクトンのコポリマーから得られる。このポリマー微粒子は、多様な分子量を有する種々の高分子の出発原料の任意のもの、およびPLOなどのコポリマーの場合には様々なモノマー(例えばラクチド:グリコリド)比率から得てもよく、同時投与される種に一部依存して、その選択は重要な問題となると予想される。これらのパラメータについてはさらに以下に述べる。
【0034】
本明細書に使用される用語「界面活性剤」は、洗浄剤、分散剤、懸濁剤、および乳化安定剤などが含まれる。陽イオン界面活性剤は、臭化トリメチルアンモニウムあるいは「CTAB」(例えばセトリマイド)、塩化ベンザルコニウム、DDA(ジメチルジオクチルデシル臭化アンモニウム)、DOTAP(ジオレオイル−3−トリメチルアンモニウム−プロパン)、およびその類似物などがあるがこれに限定されない。アニオン界面活性剤は、SDS(ドデシル硫酸ナトリウム)、SLS(ラウリル硫酸ナトリウム)、DSS(ジスルホサクシネート)、硫酸化脂肪族アルコール、およびその類似物などがあるがこれに限定されない。非イオン性界面活性剤は、PVA、ポビドン(ポリビニルピロリドンまたはPVPとしても知られる)、ソルビタンエステル、ポリソルベート、ポリオキシエチル化グリコールモノエーテル、ポリオキシエチル化アルキルフェノール、ポロキサマー、およびその類似物などがあるがこれに限定されない。
【0035】
本明細書に使用される用語「サブミクロン乳剤」は、油滴を含む水中油型乳剤を指し、油滴はほぼすべてが1000nmまでの範囲、例えば10nmから1000nmまでの範囲にある油滴を含む水中油型乳剤を指す。
【0036】
用語「薬剤」は、抗生物質、抗ウイルス薬、成長因子、ホルモン、抗原、およびその類似物などの生物活性化合物を指す。
【0037】
用語「アジュバント」は、この物質は薬剤の作用を補助または修飾する任意の物質を指す。抗原に対する免疫応答を増加または多様化させる免疫アジュバントを含むが、これに限定されない。以下、免疫アジュバントは抗原に対する免疫応答を増強することができる化合物を指すものとする。
【0038】
「ポリヌクレオチド」は核酸ポリマーである。ポリヌクレオチドは、5個、6個、7個あるいは8個ほどのヌクレオチドを含むことができる。更に、「ポリヌクレオチド」は二重鎖および単鎖配列の両方が含まれ、これに限定されないがウイルス性、原核性、または真核性mRNA由来のcDNA、ウイルス性(例えばRNAおよびDNAウィルスおよびレトロウイルス)、または原核DNA由来のゲノムRNAおよびDNA配列、および合成DNA配列を指す。この用語は、DNAおよびRNAの既知の任意の塩基類似体を含む配列をさらに表す。この用語は、未変性の配列、例えば、核酸分子が抗原性タンパク質をコードする場所に、欠失、付加、および置換(一般に自然界に保存されている)などの修飾をさらに含む。これらの修飾は、部位特異的変異誘発を介するなどの作為的な場合、または抗原を産生する宿主の変異を介するなどの偶発的な場合がある。
【0039】
本明細書で使用される語句「核酸」は、DNA、RNA、あるいはこれらより形成されたキメラを指す。
【0040】
「ポリヌクレオチドを含む種」は、少なくとも一部がポリヌクレオチドである分子である。実例としては、RNAベクター構成物、DNAベクター構成物などがある。
【0041】
「オリゴ糖」は比較的短い単糖ポリマー、すなわち2〜30の単糖単位を含んでいるものを指す。「多糖類」は、オリゴ糖長さ(すなわち30を越える単糖単位を含んでいるもの)を越える単糖ポリマーである。さらに本明細書に使用されるように、用語「多糖類」は2つ以上結合した単糖を含む単糖ポリマーをさらに表す。あらゆる不明瞭を避けるために、特に明確な指示のないかぎり、第2の定義はいつでも適用されるものとする。単糖類はグリコシド結合によって一般に結合される。完全長の未変性の多糖類およびそれらのフラグメントの両者はこの定義に含まれる。この用語には、例えば多糖類が投与される対象において多糖類が免疫応答を誘発する能力を保持するように、未変性の多糖類配列に欠失、付加、および置換などの修飾が起きたものがさらに含まれる。
【0042】
「単糖」は多価アルコール(すなわち、アルデヒド基(この場合、この単糖はアルドースである)またはケト基(この場合、この単糖はケトースである)のいずれかをさらに含むアルコール)である。単糖類は一般に3〜10個の炭素を含んでいる。さらに、単糖はnが3以上の整数、一般に3〜10である実験式(CHO)を一般に有する。3〜6個の炭素アルドースの実例としては、グリセルアルデヒド、エリトロース、トレオース、リボース、2−デオキシリボース、アラビノース、キシロース、リキソース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、およびタロースなどがある。3〜6個の炭素ケトースの例としては、ジヒドロキシアセトン、エリトルロース、リブロース、キシルロース、プシコース、果糖、ソルボース、およびタガトースをなどがある。天然の単糖は、通常L型ではなくD型異性体である。
【0043】
本明細書で使用される用語「糖類」は、単糖、オリゴ糖、および多糖類を含む。「糖類を含む種」は、少なくともその一部が糖類である分子である。実例としては、糖抗原、担体ペプチドに接合した糖類を含む抗原などがある。
【0044】
用語「ポリペプチド」および「タンパク質」は、アミノ酸残基のポリマーを指し、この最小長の生成物に制限されるものではない。したがって、ペプチド、オリゴペプチド、二量体、多量体、およびその類似体がこの定義内に含まれる。完全長タンパク質およびそのフラグメントの両者が定義に含まれる。この用語は、例えば、タンパク質が投与される対象において、タンパク質が免疫応答を誘発する、または治療効果を有する能力を維持するような、未変性のタンパク質配列(一般に自然界に保存されている)への欠失、付加、および置換などの修飾がさらに含まれる。
【0045】
「ポリペプチドを含む種」は、少なくともその一部がポリペプチドである分子である。実例としては、ポリペプチド、糖タンパク質を含むタンパク質、担体タンパク質に接合した糖類抗原などがある。
【0046】
「抗原」は、抗原が提示される場合に細胞性抗原特異性免疫応答を発生させるために宿主の免疫系、または体液性抗体反応を刺激することができる1つ以上のエピトープを含む分子を意味する。単独、または他の分子と併用して存在する場合に、抗原は細胞性および/または体液性応答を誘発することができる。
【0047】
「エピトープ」は、その免疫学的特異性を決定する抗原分子または抗原複合体の一部である。エピトープはここに示した抗原の定義の範囲内にある。一般に、エピトープは天然の抗原中のポリペプチドまたは多糖類である。人工抗原の場合、これはアルサニル酸誘導体などの低分子量物質でもよい。エピトープは、例えば同種抗体またはTリンパ球とインビボあるいはインビトロで特異的に反応する。別の言い方としては、抗原決定基、抗原構造基、およびハプテン基がある。
【0048】
ポリペプチドエピトープは、例えば、約5〜15個のアミノ酸を含むことができる。与えられた抗原のエピトープは、当業界において公知のいくつかのエピトープマッピング技術を使用して同定することができる。例えば、Epitope Mapping Protocols in Methods in Molecular Biology, Vol.66 (Glenn E. Morris, Ed.,1996)Humana
Press,Totowa,New Jersey参照。例えば、直鎖状エピトープは、例えばこのペプチドが支持体にまだ付着している間に、蛋白質分子の一部に相当するペプチドである固体支持体上に多数のペプチドを同時に合成すること、およびそのペプチドを抗体と反応させることによって決定される。このような技術は当業者において公知であり、例えば米国特許第4,708,871号明細書、Geysen et al.(1984)Proc.Natl.Acad.Sci.USA 81:3998−4002;Geysen et al.(1986)Molec.Immunol.23:709−715に記載されている。同様に高次構造エピトープは、例えば、X線結晶学および2次元核磁気共鳴などによって、アミノ酸の空間的高次構造を決定するにより容易に同定される。例えば、上述のエピトープマッピングプロトコル参照。
【0049】
本明細書に使用される用語「抗原」は、両方のサブユニット抗原、すなわち本質的に会合し、あるいは死滅され、減弱または不活化された細菌、ウイルス、寄生虫、あるいはその他の病原体または腫瘍細胞である抗原とともに生物体全体から分離、単離された抗原を意味する。抗イディオタイプ抗体などの抗体、あるいはそれらのフラグメント、および抗原またが抗原決定基を模倣することができる合成ペプチドミモトープ(mimotope)も明細書に使用される抗原の定義に含まれる。
【0050】
同様に、免疫原性タンパク質を発現するオリゴヌクレオチドまたはポリヌクレオチド(オリゴヌクレオチドは、一般に2〜100個のヌクレオチドを含む比較的低分子量のポリヌクレオチドである)、あるいは核酸免疫化用途におけるなどのインビボの抗原決定基も本明細書の定義に含まれる。
【0051】
更に、本発明の目的のため「抗原」は、タンパク質が免疫応答を誘発する能力を維持する限りにおいて、未変性のタンパク質配列(一般に自然界に保存されている)に対する欠失、付加、および置換などの修飾を含むタンパク質を指す。これらの修飾は部位特異的変異誘発のように作為的でも、あるいは抗原を産生する宿主の変異によるなどの偶発的なものでもよい。
【0052】
抗原または組成物に対する「免疫応答」は、目的とする組成物の中にある分子に対する体液および/または細胞性免疫応答の対象における現象である。本発明の目的のため「細胞性免疫反応」は、抗体分子によって媒介された免疫応答を、一方、「体液性免疫応答」はTリンパ球および/または他の白血球によって媒介された免疫応答を指す。細胞性免疫の重要な1つの態様は、細胞溶解性T細胞(「CTL」)による抗原特異性反応を含む。CTLは主組織適合遺伝子複合体(MHC)によって符号化され、細胞の表面上で発現されたタンパク質と会合して提示されるペプチド抗原用特異性を有する。CTLは、細胞内微生物の細胞内破壊、あるいはそのような微生物に感染した細胞の溶解を誘発および促進を支援する。細胞性免疫の別の態様では、ヘルパーT細胞による抗原特異性反応が含まれる。ヘルパーT細胞は非特異的効果細胞の表面上のMHC分子と会合してペプチド抗原を提示する細胞に対する非特異的効果細胞の機能を刺激し、および活性にフォーカスすること支援するように作用する。「細胞性免疫応答」は、
CD4+およびCD8+T細胞から誘導されたものをはじめとする活性化T細胞および/または他の白血球がにより産生されたサイトカイン、ケモカイン、およびその他の類似の分子の産生をさらに意味する。細胞性免疫応答を誘発する免疫原性組成物またはワクチンなどの組成物は、細胞表面でMHC分子と会合した抗原の提示により、脊椎動物の対象を感作する役割をはたす。この細胞性免疫応答はその表面における抗原提示細胞またはその近傍に向かっている。さらに、抗原特異性Tリンパ球を免疫化された宿主の将来的な保護を可能とするために産生することができる。特別の抗原または組成物の細胞性免疫応答を刺激する能力は、リンパ球増殖(リンパ球活性化)分析、CTL細胞傷害性細胞分析、感作された対象におけるTリンパ球特異性抗原を分析すること、あるいは抗原による再刺激に応答したT細胞によるサイトカイン産生の測定によるなどのいくつかの分析により判定される。このような分析は当業者において公知のである。例えば、Erickson et al.,J.Immunol.(1993)151:4189−4199;Doe et al.,Eur.J.Immunol.(1994)24:2369−2376参照。目的とする抗原は抗体媒介性免疫応答をさらに誘発する。したがって、免疫応答は、以下の効果の1つ以上を含む。すなわち、B細胞による抗体の産生、および/または目的とする組成物またはワクチン中に存在する抗原または抗原へ特異的に割り当てられたサプレッサーT細胞および/またはγδ−T細胞の活性化である。これらの応答は、感染力を中和する、および/または免疫化された宿主への保護を提供する抗体−補体依存性または抗体依存性細胞傷害(ADCC)を媒介する役目を果たす。このような応答は、当業者において公知の例えば、ラジオイムノアッセイおよびELISAなどの標準の免疫測定法および中和分析を使用して決定することができる。
【0053】
本発明の免疫原性組成物が、異なる組成物中の抗原の相当量で誘発された免疫応答よりも大きな免疫応答誘発能力を有する場合に、本発明の免疫原性組成物は「増強された免疫原性」を提示する。したがって、例えば、この組成物はより強い免疫応答を示すので、あるいはそれが投与される対象において免疫応答を達成するのに低投与量の抗原が必要であるので、組成物は「増強された免疫原性」を提示する。このような増強された免疫原性は、例えば、本発明の組成物、抗原対照群を動物に投与し、2者の分析結果を比較することにより判定することができる。
【0054】
本明細書で使用される「治療」(例えば「治療する」あるいは「治療された」などのその変形を含む)は、(i)問題(例えば癌あるいは従来のワクチンにおける病原性の感染)における病原体または疾患の予防、(ii)症状の軽減または排除、(iii)問題の病原体または疾患の実質的または完全な排除のいずれの状態を指す。治療は、(問題の病原体または疾患の発生に先立ち)予防的にあるいは(同じ状態の発生後)治療的に達成されてもよい。
【0055】
本発明の免疫原組成物の用語「有効量」あるいは「薬剤的に有効量」は、本明細書では、目的とする状態を治療するために十分な量の免疫原組成物を指す。必要とされる正確な量は、例えば対象の種、年齢、および全身状態、治療すべき状態の重症度、目的とする特定の抗原、免疫応答の場合は例えば対象の抗体を合成する免疫系の能力、所望の防御度合い、および投与方法、その他の因子の間で対象ごとに異なるであろう。任意の個々の症例において適切な「効果的な」量は、当業者によって決定される。したがって、「治療的に有効量」は、一般に日常的な試行を通じて決定することができる比較的広い範囲となると予想される。
【0056】
「脊椎動物対象」あるいは「脊椎動物」によっては、これに限定されないが、ウシヒツジ、ブタ、ヤギ、ウマ、およびヒトなどの哺乳類、イヌおよびネコなどの家畜、ニワトリ、シチメンチョウ、および他のキジ類の鳥類をはじめとするコックおよびめんどりなどの家畜、野生、および猟鳥を含む鳥類などを含む亜門cordataの任意のメンバーを意味する。この用語は特別の年齢を意味しない。したがって、成体および生まれたての動物の両者が含まれる。
【0057】
「薬剤的に許容可能な」あるいは「薬理学的に許容可能な」によっては、生物学的にあるいはその他の望ましい物質、すなわちこの物質をいかなる過剰に望ましくない生物学的作用を引き起こさず、またはそこに含まれる組成物のいかなる成分とも過剰に有害な機序で相互作用せずに個体に投与してもよいことを意味する。
【0058】
用語「賦形剤」は、完成した剤形中に存在する任意の付属物質を本質的に指す。例えば、用語「賦形剤」は、賦形剤、結合剤、崩壊剤、充填剤(希釈液)、潤滑剤、グリダント(流動エンハンサー)、圧縮助剤、着色料、甘味料、防腐剤、懸濁化剤/分散剤、塗膜形成剤/コーティング、着香料、および印刷インクなどが含まれる。
【0059】
「生理的pH値」あるいは「生理的範囲中のpH値」によっては、7.2〜8.0までを含む範囲、より一般にはおよそ7.2〜7.6を含む範囲のpH値を意味する。
【0060】
本明細書で使用される語句「ベクター構成物」は、目的とする(複数の)核酸配列または(複数の)遺伝子の発現を割り当てることができる任意の組み合わせを一般に指す。ベクター構成物は、転写プロモーター/エンハンサーあるいは遺伝子座を定義する要素、あるいは交互スプライシング、核RNA搬出、メッセンジャーの翻訳後修飾、あるいはタンパク質の転写後修飾などの他の手段により遺伝子発現をコントロールするその他の要素を一般に含む。さらにベクター構成物は、(複数の)配列または(複数の)遺伝子に操作可能に結合し、翻訳開始配列として作用する配列を一般に含んでいる。ベクター構成物は、さらにポリアデニル化を指図する信号、選択可能なマーカ、あるいは1つ以上の制限部位、および翻訳終結配列を任意に含む。さらに、ベクター構成物がレトロウイルス内に置かれる場合、ベクター構成物はパッケージング信号、末端反復配列(LTR)、および(これらがまだ存在しない場合)使用されるレトロウイルスに適切な陽性および陰性鎖のプライマー結合部位を含む場合がある。
【0061】
「DNAベクター構成物」は、目的とする(複数の)核酸配列または(複数の)遺伝子の発現を割り当てることができるDNA分子を指す。
【0062】
1つの特異型DNAベクター構成物は、宿主細胞内で自律増殖可能な環状エピソーム性DNA分子であるプラスミドである。一般に、プラスミドは付加のDNAセグメントが連結することができる環状二本鎖DNAループである。pCMVはよく当業者において公知の1つの特異的プラスミドである。pCMVベクターは、CMVの即時−初期エンハンサー/プロモータおよびウシ成長ホルモン停止剤を含むものが好ましい。詳細は、Chapman,B.S.,et al.1991.“Effect of intron A from human cytomegalovirus (Towne) immediate−early gene on heterologous expression in mammalian cells.”Nucleic Acids Res.19:3979−86に記載されている。
【0063】
他のDNAベクター構成物はRNAウィルスに基づくものが知られている。これらのDNAベクター構成物は、一般に真核細胞中で機能するプロモータ、転写産物がRNAベクトル構成物である5’cDNA配列(例えばアルファウイルスRNAベクターレプリコン)、および3’終結領域を含む。RNAベクトル構成物はピコルナウイルス、トガウィルス、フラビウイルス、コロナウイルス、パラミキソウイルス、黄熱ウィルス、あるいはアルファ・ウイルス(例えばシンドビスウイルス、セムリキ森林熱ウィルス、ベネズエラウマ脳炎ウイルス、またはロスリバーウイルス)由来の、目的の生成物を符号化する選択された異種性核酸配列とともに1つ以上の構造蛋白質遺伝子の置換により修飾されたRNAゲノムを含むことが好ましい。RNAベクトル構成物はインビトロでDNA鋳型から転写により得ることができる。特定の事例としては、例えば、米国特許第5,814,482号明細書および第6,015,686号明細書、あるいは国際特許出願の国際公開第97/38087号パンフレット、国際公開第99/18226号パンフレットおよび慣用の国際公開第02/26209号パンフレットで記載されているpSINCPなどのシンドビスウイルスに基づくプラスミド(pSIN)などがある。このようなベクターの作成は、一般に、米国特許第5,814,482号明細書および第6,015,686号明細書に記載されている。
【0064】
ベクター構成物のその他の事例としては、RNAベクトル構成物(例えば、アルファウイルスベクター構成物)およびその類似物などがある。本明細書で使用されるように「RNAベクトル構成物」、「RNAベクターレプリコン」および「レプリコン」は、一般に標的細胞内でインビボでそれ自身の増幅あるいは自己複製を割り当てることができるRNA分子を指す。RNAベクトル構成物は、細胞内へのDNAの導入、およびおよび転写を生じる核への輸送の必要なしに直接使用される。宿主細胞の細胞質内への直接伝達のためにRNAベクトルを使用することにより、の自律増殖および異種性核酸配列の翻訳は効率的に行われる。
【0065】
B. 一般法
1. 微粒子組成物
本明細書に記載された免疫原性微粒子組成物を形成するための有用なポリマーとしては、ホモポリマー、コポリマー、および以下より誘導されたポリマーブレンドなどがある。すなわち、ポリヒドロキシ酪酸(ポリヒドロキシ酪酸塩としても知られる)、ポリヒドロキシ吉草酸(ポリヒドロキシ吉草酸塩としても知られる)、ポリグリコール酸(PGA)(ポリグリコリドとしても知られる)、ポリ乳酸(PLA)(ポリラクチドとしても知られる)、ポリジオキサノン、ポリカプロラクトン、ポリオルソエステル、およびポリ無水物。より一般的には、ポリ(L−ラクチド)、ポリ(D、L−ラクチド)(本明細書では両者APLA”と呼ぶ)などのポリ(α−ヒドロキシ酸)、ポリ(ヒドロキシブチレート)、ポリ(D、L−ラクチド−コ−グリコリド)(本明細書では「PLG」と呼ぶ)などのラクチドおよびグリコリドのコポリマー、あるいはD、L−ラクチドおよびカプロラクトンのコポリマーである。
【0066】
上記のポリマーは種々の分子量で利用でき、また所定の使用のための適切な分子量は、当業者により容易に決定される。したがって、例えばPLAに適した分子量は約2000〜5000までのオーダーである。PLGに適する分子量は、約10,000〜約200,000までの範囲、一般に約15,000〜約150,000までの範囲である。
【0067】
コポリマーが使用される場合、種々のモノマー比率を有するコポリマーを利用できる。例えば、微粒子を形成するためにPLGが使用される場合、本明細書では種々のラクチド:グリコリドモル比の使用が認められ、また任意の同時投与された吸着したおよび/または取り込まれた種、および所望の分解速度に部分的に依存して、その比率は大部分は選択の問題である。例えば、50%のD、L−ラクチドおよび50%のグリコリドを含む50:50PLGポリマーは、75:25、PLGがよりゆっくり、また85:15および90:10では増加したラクチド成分によりさらにゆっくりと分解する間に速やかに再吸収されるコポリマーを提供すると予想される。本明細書では所望の遊離動力学を達成するために種々のラクチド:グリコリド比率を有する微粒子混合物もさらに見出される。ポリマー分子量およびポリマー結晶化度のような因子により、本発明の微粒子の分解速度をさらにコントロールすることができる。
【0068】
種々のラクチド:グリコリド比率および分子量を有するPLGコポリマーは、ベーリンガーインゲルハイムBoehringer Ingelheim、ドイツおよびバーミンガムポリマー社Birmingham Polymers、バーミンガム、ALをはじめとする多数の供給元より容易に市販品を利用可能である。いくつかの代表的なPLGコポリマーとしては、(a)RG502、50:50ラクチド/グリコリドモル比および12,000Daの分子量を有するPLG、(b)RG503、50:50ラクチド/グリコリドモル比および34,000Daの分子量を有するPLG、(c)RG504、50:50ラクチド/グリコリドモル比および48,000Daの分子量を有するPLG、(d)RG752、75:25ラクチド/グリコリドモル比および22,000Daの分子量を有するPLG、(e)RG755、75:25ラクチド/グリコリドモル比および68,000Daの分子量を有するPLGなどがある。Tabata et al.,J.Biomed.Mater.Res.(1988)22:837−858に記載されるような当業者において公知の技術を使用して、PLGポリマーを乳酸成分の単純な重縮合によりさらに合成することができる。
【0069】
使用されたポリマー、すなわちポリ(D、L−ラクチド−コ−グリコリド)ポリマーは、20:80から80:20までの範囲、さらに一般的には40:60〜60:40までのラクチド/グリコリド・モル比をまた10,000〜100,000ダルトンまでの範囲、さらに一般的には20,000ダルトン〜70,000ダルトンまでの分子量を一般に有する。
【0070】
微粒子は当業者において公知のいくつかの方法のうち任意の方法を使用して調製される。例えば、いくつかの実施形態において、米国特許第3,523,907号明細書およびOgawa et al.,Chem.Pharm.Bull.(1988)36:1095−1103で記載されているようなダブル乳剤/溶剤蒸発技術を微粒子を作製するために本明細書では使用することができる。これらの技術は、高分子溶液の液滴から成る初乳剤の形成を含んでおり、これは続いて粒子安定剤/界面活性剤を含む連続水相で混合される。
【0071】
他の実施形態では、例えば、Thomasin et al.,J.Controlled Release(1996)41:131、米国特許第2,800,457号明細書、Masters,K.(1976)Spray Drying 2nd Ed. Wiley,New Yorkで記載されているように噴霧乾燥およびコアセルベーション、Hall et al.,(1980)The A Wurster Process@ in Controlled Release Technologies: Methods, Theory, and Applications (A.F. Kydonieus, ed.), Vol. 2, pp. 133−154 CRC Press, Boca Raton, Florida and Deasy, P.B., Crit. Rev. Ther. Drug Carrier Syst. (1988) S(2):99−139で記載されているようにパンコーティングおよびワースターコーチングなどのエアサスペンション塗布技術、および例えばLim et al.,Science(1980) 210:908−910で記載されているようにイオン性ゲル化を使用して微粒子をさらに形成することができる。
【0072】
好ましい実施形態では、O’Hagan et al.,Vaccine(1993)11:965−969、O’Hagan et al.and Jeffery et al.,Pharm. Res.(1993)10:362に対するPCT出願/米国特許99/17308号明細書(国際公開第00/06123号パンフレット)に記載されたラインに沿って、水中油中水型(w/o/w)溶剤蒸発システムを微粒子を形成するために使用することができる。
【0073】
一般に、PLGなどの目的のポリマーは、酢酸エチル、ジメチルクロリド(いわゆる塩化メチレンおよびジクロロメタン)、アセトニトリル、アセトン、クロロホルム、およびその類似物などの有機溶媒中に溶解される。このポリマーは有機溶媒中に約1〜30%、より一般的には2〜15%、さらに一般的には3〜10%、最も一般的には4〜8%溶液で一般に提供される。続いて、このポリマー溶液を最初の容量の水溶液と混合し、乳化しo/w乳剤を形成させる。この水溶液は、例えば脱イオン水、生理食塩水、例えばリン酸緩衝生理食塩水(PBS)あるいはクエン酸ナトリウム/エチレンジアミン四酢酸(クエン酸ナトリウム/ETDA)緩衝液などの緩衝液などが可能である。後者の溶液は、(a)正常な生理液と本質的に同一である張度(すなわち重量モル浸透圧濃度)を提供し、さらに(b)生理学的条件と同等のpH値を維持することができる。あるいは、本発明の組成物の張度および/またはpH値特性は、微粒子形成後および投与前に調整することができる。水溶液に対するポリマー溶液の容量比は、約5:1〜約20:1の範囲が好ましく、約10:1がより好ましい。乳化は、このタスクに適切な任意の設備を使用し、一般には例えばホモジナイザなどのような高剪断装置で行われる。
【0074】
いくつかの実施形態において、1つ以上の追加成分が微粒子内に取り込まれる。例えば、以下に述べる追加抗原、および/または補助成分を、(a)油溶性または油分散された形態の場合はポリマー溶液と、あるいは(b)水溶性または水分散された形態の場合はと水溶液と同一の物を添加することにより導入することができる。
【0075】
続いて、一定量のo/w乳剤を界面活性剤を一般に含む第2の大容量の水溶液に混合する。o/w乳剤に対する水溶液の容量比は、一般に約2:1〜10:1までの範囲、より一般的には約4:1である。本発明の実施に適した界面活性剤の例は先にリストされている。当業者は吸着させるべき種のタイプに適した界面活性剤を容易に選択できる。例えば、アニオンまたは陽イオン界面活性剤などの電荷を帯びた界面活性剤により、様々な分子を吸着することができる有効負電荷あるいは有効正電荷を有する表面を備える微粒子が生成される。例えば、ドデシル硫酸ナトリウム(SDS)、例えばSDS−PLG微粒子などのアニオン界面活性剤で製造された微粒子は、例えば、タンパク質などのポリペプチドを含む種などの正荷電の化学種を吸着する。同様に、CTAB、例えばPLG/CTAB微粒子などの陽イオン界面活性剤で製造された微粒子は、マイナス電荷の化学種、例えばDNAなどのポリヌクレオチドを含む種を吸着する。吸着される種が正電荷および負電荷の領域を有する場所では、陽イオンあるいはアニオン性あるいは非イオン性界面活性剤のいずれかが適切である。特定の種では、界面活性剤の組み合わせを有する微粒子とより容易に吸着する場合がある。さらに、いくつかの事例では、上記有機溶液に界面活性剤を加えることが望ましい。
【0076】
CTABなどの陽イオン界面活性剤が使用される場合、約0.00025−1%溶液、より一般的には約0.0025−0.1%溶液で一般に提供される。DSSなどのアニオン界面活性剤が使用される場合、約0.00001−.025%溶液、より一般的には約0.0001−0.0025%溶液で一般に提供される。PVAなどの非イオン性界面活性剤が使用される場合、約2−15%溶液、より一般的には約4−10%溶液で一般に提供される。陽イオン界面活性剤では、重量対重量界面活性剤対ポリマー比は、約0.00001:1から約0.5:1まで、より一般的には約0.001:1から約0.1:1まで、さらに一般的には約0.0025:1から約0.05:1までの範囲が一般に使用され、またDSSなどのアニオン界面活性剤では、重量対重量界面活性剤対ポリマー比は約0.00001:1から約0.025:1まで、より一般的には約0.0001:1から約0.0025:1までの範囲が一般に使用され、PVAなどの非イオン性界面活性剤では、重量対重量界面活性剤対ポリマー比は約0.001:1から約0.1:1まで、より一般的には約0.0025:1から約0.05:1までの範囲が一般に使用される。
【0077】
続いて、この混合物をホモジナイズし、安定なw/o/w複乳剤が産生される。上記ホモジナイズ工程の各々は、室温(すなわち25℃)以下で、より一般的には例えば氷浴内で冷却しながら行われる。
【0078】
続いて、有機溶媒を蒸発させる。調製後、微粒子をそのまま使用するか、あるいは例えば、将来の使用のために凍結乾燥することができる。
【0079】
0.05μm(50nm)オーダーの小さな微粒子から50μmあるいはさらに大きい微粒子までの調製が可能なように配合パラメータを操作できる。例えば、Jeffery
et al., Phann. Res.(1993)10:362−368、McGee et al.,J.Microencap.(1996)参照。内相容量が増加し、ポリマー濃度が増加するので、例えば、撹拌の減少により一層大きな微粒子が一般に得られる。小さな粒子は、撹拌を増加させ、ならびに低い水相容量、高濃度の乳化安定剤、およびポリマー濃度の減少により一般に生成される。
【0080】
粒径は例えばヘリウム−ネオンレーザーが組み込まれた分光計を使用する例えばレーザー光散乱により測定することができる。一般に粒径は室温で測定され、粒子直径の平均値を算出するために問題の試料の複数回分析(例えば5−10回)を含む。粒径は走査型電子顕微鏡(SEM)を使用しても容易に測定される。
【0081】
調製に際して、トキソイド抗原および/または多糖類含有抗原、追加抗原、および以下に述べるような任意の補助成分をはじめとする種々の成分を微粒子に混合することができ、得られた製剤を必要に応じ使用前に凍結乾燥することができる。一般に、水溶液または分散液として学位論文成分を微粒子に添加される。いくつかの場合、これらの種は微粒子の表面に吸着するようになると予想される(例えば、トキソイド抗原は微粒子表面に吸着する下記の事例参照)。吸着種の含有量は標準的手法を使用して測定することができる。
【0082】
したがって、本発明のポリマー微粒子はその上に吸着した種々の成分、ならびにその中に取り込まれ、あるいはカプセル化された種々の成分を有する。例えば、本発明に従って当業者は吸着したトキソイド抗原および/または多糖類含有抗原に加えて、吸着した抗原および/または免疫アジュバントを有する微粒子調製してもよい。当業者は、本発明に従って本発明に従って当業者は吸着したトキソイド抗原および/または多糖類含有抗原に加えて、抗原および/または免疫アジュバントなどのカプセル化された成分を有する微粒子をさらに調製してもよい。
【0083】
2.抗原
本発明は、破傷風トキソイド、ジフテリアトキソイド、あるいはその両者由来のトキソイド抗原をはじめとする多数の抗原を利用する。トキソイドは適切な免疫原性を保持している間に、その毒性を減少させるかまたは脱離するように処理された毒素である。トキソイドは疾患を引き起こす細菌によって産出された毒素を熱および/または化学薬品で処理するにより一般に作られる。例えば、それぞれジフテリア菌(Corynebacterium diphtheriae)と破傷風菌(Clostridium tetani)の外毒素のホルマリン処理によって調製された精製ジフテリア−破傷風トキソイドが市販されている。
【0084】
本発明は、トキソイド抗原に加えて多様な抗原に対する免疫応答を刺激するために使用されることがさらに分かるであろう。
【0085】
例えば、A型肝炎ウイルス(HAY)、B型肝炎ウイルス(HBV)、C型肝炎ウイルス(HCV)、δ肝炎ウイルス(HDV)、E型肝炎ウイルス(HEV)、およびG型肝炎ウイルス(HGV)などの肝炎ウイルスファミリーからの抗原は、本明細書に記載された技術を有効に使用することができる。事例として、配列を得る方法があるように、HCVのウイルス性ゲノム配列が知られている。例えば、国際公開番号、国際公開第89/04669号パンフレット、国際公開第90/11089号パンフレット、国際公開第90/14436号パンフレット参照。HCVゲノムは、E1(Eとしても知られる)およびE2(E2/NSIとしても知られる)およびN末端ヌクレオカプシドタンパク質(「コア」と名付けられた)などのいくつかのウイルスタンパク質を符号化する(E1およびE2を含むHCVタンパク質の考察に関するHoughton et al.,Hepatology(1991)14:381−388参照)。これらのタンパク質の各々、ならびにこれらの抗原性フラグメントを本発明の組成物および方法に使用されることが分かるであろう。
【0086】
同様にHDV由来のd−抗原のための配列(例えば米国特許第5,378,814号明細書参照)が知られており、本発明の組成物および方法にこの抗原も有効に使用できる。さらに、コア抗原などのHBVに由来した抗原、表面抗原、sAg、ならびに前表面配列、Pre−S1、およびPre−S2(以前はPre−Sと呼ばれる)、ならびにsAg/Pre−S1、sAg/Pre−S2、sAg/Pre−S1/Pre−S2およびPre−S1/Pre−S2などの上述の組み合わせも本明細書に使用されることが分かるであろう。例えば、HBV構造の考察ににおけるAHBV Vaccines−from
the laboratory to license:a case study@
in Mackett,M.and Williamson,J.D.,Human Vaccines and Vaccination,pp.159−176、本明細書にその内容全体を参照により引用された米国特許第4,722,840号明細書、第5,098,704号明細書、第5,324,513号明細書、Beames et al.,J.Virol.(1995)69:6833−6838,Birnbaum et al.,J.Virol.(1990)64:3319−3330;and Zhou et al.,J.Virol.(1991)65:5457−5464を参照。
【0087】
HSV−1およびHSV−2糖タンパク質gB、gDおよびgHなどの単純疱疹ウイルス(HSV)1型および2型に由来したタンパク質などのヘルペスウイルスファミリー由来の抗原、CMV、gBおよびgHを含む水痘帯状疱疹ウイルス(VZV)、エプスタインバーウイルス(EBV)、およびサイトメガロウイルス(CMV)に由来の抗原、およびHHV6およびHHV7などのその他のヒトヘルペスウイルスに由来した抗原も本発明に関連して有効に使用することができる。(例えば、Chee et al., Cytomegaloviruses (J.K. McDougall, ed., Springer−Verlag 1990) pp. 125−169, for a review of the protein coding content of cytomegalovirus; McGeoch et al., J. Gen. Virol. (1988) 69:1531−1574, for a discussion of the various HSV−1 encoded proteins; U.S. Patent No. 5,171,568 for a discussion of HSV−1 and HSV−2 gB and gD proteins and the genes encoding therefor; Baer et al., Nature (1984) 310:207−211, for
the identification of protein coding sequences in an EBV genome; and Davison and Scott, J Gen. Virol. (1986) 67:1759−1816, for a review of VZV.参照。)
ピコルナウイルス科(例えばポリオウイルスなど)、カリチウイルス科、ドガウイルス科(例えば風疹ウイルス、デング熱ウイルスなど)、フラビウイルス科、コロナウイルス科、レオウイルス科、ビルナウイルス科、Rhabodoviridae(例えば狂犬病ウイルスなど)、フィロウイルス科、パラミクソウイルス科(例えば流行性耳下腺炎ウイルス、麻疹ウイルス、呼吸器合胞体ウイルスなど)、オルソミクソウイルス科(例えば、A、B,C型インフルエンザウィルスなど)、ブンヤウイルス科、アレナウイルス科、レトロウイルス科(例えばHTLV−I、HTLV−II、HIV−1型(HTLV−III、LAY、ARV、hTLRなどとしても知られる))分離株これらに限定されないが、HIVIIIb、HIVSF2、HIVLAV、HlVLAI、HIVMN由来の抗原をはじめとする)、HIV−1CM235、HIV−1US4、HIV−2型、サル免疫不全ウイルス(SlV)、その他のファミリーメンバー由来のタンパク質などの他のウイルスに由来した抗原もこれに制限されずに、本発明の組成物および方法において使用されることが分かるであろう。さらに、抗原はヒトパピローマウイルス(HPV)およびダニ媒介性脳炎ウィルスに由来したものでもよい。例えば、Virology,3rd Edition (W.K.Joklik ed.1988);Fundamental Virology, 2nd Edition(B.N. Fields and D.M. Knipe,eds.1991 for a description of these and other viruses)参照。
【0088】
さらにとりわけ、上記のHIV分離株のうちの任意のものより得たHIVの多様な遺伝的サブタイプのメンバーを含むgp120またはgp140外皮タンパク質が知られ、報告されているが(例えば、Myers et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., Human Retroviruses and Aids, 1990, Los Alamos, New Mexico: Los Alamos National Laboratory; and Modrow et al., J. Virol. (1987) 61:570−578, for a comparison of the envelope Sequences of a variety of HIV isolates参照)、これらのたんぱく質およびこれらの分離株のうちの任意のものに由来した抗原は本発明の方法に使用されることが分かるであろう。更に本発明は、gp160とgp41などの多様な外皮タンパク質、p24gagとp55gagなどのgag抗原、ならびにpol、tat領域由来のタンパク質などのうちの任意を含む多様なHIV分離株のうちの任意に由来したその他の免疫原性タンパク質に等しく適用可能である。
【0089】
インフルエンザウィルスは、本発明が特に有用であるウイルスのもう一つの例である。特に、インフルエンザA型の外被糖タンパク質HAおよびNAは、免疫応答の生成に特別に注目されている。インフルエンザA型の多数のHAサブタイプが同定されている(Kawaoka et al., Virology (1990) 179:759−767; Webster et al., “Antigenic variation among type A influenza viruses,” p. 127−168. In: P. Palese and D.W. Kingsbury (ed.), Genetics of influenza viruses. Springer−Verlag, New York)。したがって、これらの分離株のうちの任意に由来したタンパク質も本明細書に記載された組成物および方法に使用することができる。
【0090】
本明細書に記載された組成物および方法は、これらに限定されないが百日咳菌(Bordetella pertussis)、髄膜炎菌(Neisseria meningitidis)(A、B、C、Y)、淋菌(Neisseria gonorrhoeae)、ピロリ菌(Helicobacter pylori)およびヘモフィルスインフルエンザ(Haemophilus influenza)。ヘモフィルスインフルエンザ(Haemophilus influenza)B型(HIB)、ピロリ菌(Helicobacter pylori)およびこれらの組み合わせをはじめとする、ジフテリア(さらに詳しくは上述)、コレラ、炭疽、結核、テタヌス(さらに詳しくは上述)、百日咳、髄膜炎、およびその他の病原的性状態を引き起こす生物体に由来したものなど多くの細菌抗原にさらに使用されることが分かるであろう。ナイセリア属髄膜炎B由来の抗原の実施例は以下の共同所有された特許出願で開示される。すなわち国際特許出願PCT/US99/09346、PCT IB98/01665、およびまたPCTIB99/00103。寄生虫抗原の例としては、マラリアおよびライム病を引き起こす生物体に由来したものを含む。
【0091】
さらなる抗原としては、疫病、ロッキー山紅斑熱、天然痘、腸チフス、チフス、ネコ白血病ウイルスおよび黄熱病に関する抗原を含む。
【0092】
本発明による使用のための追加の抗原としては、本明細書に他にリストされたものを必ずしも除外するものではないが、(a)以下の参考文献1〜7のようなN.髄膜炎菌(N. meningitidis)血清型B由来のタンパク質抗原、(b)以下の参考文献8、9、10、11などに開示されたようなN.髄膜炎菌(N. meningitidis)血清型Bからの外膜小胞(OMV)製剤、(c)以下の参考文献12に開示のオリゴ糖などのN.髄膜炎菌(N. meningitidis)血清型A、C、W135および/またはY、および血清型C(参考文献13も参照)由来の糖類抗原、(d)肺炎連鎖球菌(Streptococcus pneumoniae)由来の糖類抗原[例えば参考文献14、15、16]、(e)淋菌(N.gonorrhoeae)由来の抗原[例えば審判参考文献1、2、3]、(e)Chlamydia pneumoniae由来の抗原[例えば参考文献17、18、19、20、21、22、23]、(f)トラコーマ病原体由来の抗原[例えば参考文献24]、(g)不活化ウイルスなどのA型肝炎ウイルス由来の抗原[例えば参考文献25および26]、(h)表面および/またはコア抗原などのB型肝炎ウィルス由来の抗原[例えば参考文献26および27]、(i)C型肝炎ウィルス由来の抗原[例えば参考文献28]、(j)B.pertussis由来の百日咳ホロトキシン(PT)および線維状赤血球凝集能(FHA)などの百日咳菌(Bordetella pertussis)由来の抗原、さらに任意にペルタクチン(pertactin)および/または凝集原2および3と組み合わせたもの[例えば参考文献29および30]、(k)ジフテリアトキソイド、例えばCRM197変異体[例えば参考文献32](詳細は上述)などのジフテリア抗原[例えば参考文献31の3章]、(l)破傷風トキソイドなどのテタヌス抗原、[例えば参考文献31の4章](詳細は上述)、(m)CagA[例えば参考文献33]、VacA[例えば参考文献33]、NAP[例えば参考文献34]、HopX[例えば参考文献35]、HopY[例えば参考文献35]および/またはウレアーゼなどのピロリ菌(Helicobacter pylori)由来のタンパク質抗原、(n)Haemophilus influenzae B由来の糖類抗原[例えば参考文献13]、(o)Porphyramonas gingivalis由来の抗原[例えば参考文献36]、(p)IPVまたはOPVなどのポリオ抗原[例えば参考文献37および38]、(q)凍結乾燥された不活化ウイルス[例えば参考文献40、Rabavert(登録商標))などの狂犬病抗原[例えば参考文献39]、(r)はしか、おたふく風邪、および/または風疹抗原[例えば参考文献31の9、10および11章]、(s)赤血球凝集素、および/またはノイラミニダーゼ表面蛋白などのインフルエンザ抗原[例えば参考文献31の19章]、(t)Moraxella catarrhalis由来の抗原[例えば、時間41]、(u)Streptococcus agalactiae(連鎖球菌群B)由来の抗原[例えば参考文献42および43]、(v)化膿連鎖球菌(Streptococcus pyogenes)(連鎖球菌群A)由来の抗原[例えば参考文献43、44、45]、(w)黄色ブドウ球菌(Staphylococcus aureus)由来の抗原[例えば参考文献46]、および(x)これらの抗原の1つ以上を有する組成物などがある。糖類または糖鎖抗原が使用される場合、免疫原性を増強するために担体タンパク質と接合されることが好ましい[例えば参考文献47〜56]。担体タンパク質は、ジフテリアまたは破傷風トキソイドなどの細菌毒素あるいはトキソイドが好ましい。CRM197ジフテリアトキソイドが特に好ましい。その他の適切な担体タンパク質としては、N. meningitidis外膜蛋白[例えば参考文献57]、合成ペプチド[例えば参考文献58および59]、熱ショックタンパク[例えば参考文献60]、百日咳タンパク質[例えば参考文献61および62]、H. Influenzae由来のタンパク質D[例えば参考文献63]、C.difficile由来の毒素AまたはB[例えば参考文献64]などがある。混合物が血清型AおよびCの両方に由来のカプセル化糖類を含む場合は、MenA糖類::MenC糖類比(w/w)が1以上(例えば、2:1、3:1、4:1、5:1、10:1、あるいはそれ以上)が好ましい。N. meningitidisの異なる血清型由来の糖類は同一または異なる担体タンパク質と接合してもよい。必要な場合任意の適切なリンカーによる 任意の適切な接合反応を使用することができる。必要な場合、(例えば化学的および/または手段による百日咳毒素の解毒、毒素蛋白抗原を解毒してもよい[参考文献30]。
参照 International patent application 99/24578 [Ref. 1]; International patent application W099/36544 [Ref. 2]; International patent application WO99/57280 [Ref. 3]; International patent application WO00/22430 [Ref. 4]; Tettelin et al., (2000)
Science 287:1809−1815 [Ref. 5]; International patent application WO96/29412 [Ref. 6]; Pizza el al. (2000) Science 287:1816−1820 [Ref. 7]; International patent application PCT/IB01/00 166 [Ref. 8]; Bjune et al. (1991) Lancet 338(8775):1093−1096 [Ref. 9]; Fukasawa et al. (1990) Vaccine 17:2951−2958 [Ref. 10]; Rosenqvist
et al. (1998) Dev. Biol. Stand. 92:323−333 [Ref. 11]; Costantino et al. (1992) Vaccine 10:691−698 [Ref. 12]; Costantino
et al. (1999) Vaccine 17:1251−1263 [Ref. 13]; Watson (2000) Padiatr Infect Dis J 19:331−332 [Ref. 14]; Rubin (2000) Pediatr Clin North Am 47:269−285, v [Ref. 15]; Jedrzejas (2001) MicrobiolMol Biol Rev 65:187−207 [Ref. 16]; International patent application filed on 3rd July 2001
claiming priority from GB−00 16363.4 [Ref. 17]; Kalman et al. (1999) Nature Genetics 21 :385−389 [Ref. 18]; Read et al.
(2000) Nucleic Acids Res 28:1397−406 [Ref. 19]; Shirai et al. (2000) J. infect.
Dis. 181(Suppl 3):S524−S527 [Ref. 20]; International patent application WO99/27
105 [Ref. 21]; International patent application WO00/27994 [Ref. 22]; International patent application WO00/37494 [Ref.
23]; International patent application WO99/28475 [Ref. 24]; Bell (2000) Pediatr
Infect Dis J 19:1187−1188 [Ref. 25]; Iwarson (1995) APMIS 103:321−326 [Ref. 26]; Gerlich etal. (1990) Vaccine 8 Suppl:S63−68 & 79−80 [Ref. 27]; Hsu et al. (1999) Clin Liver Dis 3:901−915 [Ref. 28]; Gustafsson et al. (1996) N. Engi. J. Med 334:349−355 [Ref. 29]; Rappuoli et al. (1991) TIBTECH9:232−238 [Ref. 30]; Vaccines (1988) eds. Plotldn & Mortimer. ISBN 0−72 16−1946−0 [Ref. 31]; Del Guidice et
al. (1998) Molecular Aspects of Medicine 19:1−70 [Ref. 32]; International patent application WO93/18 150 [Ref. 33]; International patent application WO99/533 10 [Ref. 34]; International patent application WO98/04702 [Ref. 35]; Ross et al. (2001) Vaccine 19:4135−4142 [Ref. 36]; Sutter et al. (2000) Pediatr Clin North Am 47:287−308 [Ref. 37]; Zimmerman & Spann (1999) Am Fain Physician 59:113−118, 125−126 [Ref. 38]; Dreesen (1997) Vaccine
15 Suppl:S2−6 [Ref. 39]; MMWR Morb Mortal W7dy Rep 1998 Jan 16;47(1): 12, 19 [Ref. 40]; McMichael (2000) Vaccine 19 Suppl 1:S101−107 [Ref. 41]; Schuchat (1999)
Lancet 353(9146):51−6 [Ref. 42]; GB patent applications 0026333.5, 0028727.6 & 0105640.7 [Ref. 43]; Dale (1999) Infect Dis Clin North Am 13:227−43, viii [Ref. 44]; Ferretti et al. (2001) PNAS USA 98:4658−4663 [Ref. 45]; Kuroda et al. (2001) Lancet 357(9264):1225−1240; see also pages 1218−1219 [Ref. 46]; Ramsay et at. (2001) Lancet 357(9251): 195−196 [Ref. 47]; Lindberg (1999) Vaccine 17 Suppl 2:S28−36 [Ref. 48]; Buttery & Moxon (2000) JR Coil Physicians London 34:163−168 [Ref. 49]; Abmad & Chapnick (1999) Infect Dis Clin North Am 13:113−133, vii [Ref. 50]; Goldblatt (1998) J. Med. Microbiol. 47:563−567 [Ref. 51]; European patent 0477 508 [Ref. 52]; US Patent No. 5,306,492 [Ref. 53]; International patent application W098/42721 [Ref. 54]; Conjugate Vaccines (eds. Cruse et al.) ISBN 3805549326, particularly vol. 10:48−114 [Ref. 55]; Hermanson (1996) Bioconjugate Techniques ISBN: 0123423368 & 012342335X [Ref. 56]; European patent application 0372501
[Ref. 57]; European patent application 0378881 [Ref. 58]; European patent application 0427347 [Ref. 59]; International patent application WO93/17712 [Ref. 60];
International patent application W098/58668 [Ref. 61]; European patent application 0471177 [Ref. 62]; International patent application W000/56360 [Ref. 63]; international patent application WO00/6 1761 [Ref. 64].
3.補助成分
本発明の免疫原組成物は種々の補助成分を任意に含んでいる。このような補助成分としては、(a)抗生物質および抗ウイルス薬、非ステロイド性抗炎症薬、鎮痛薬、血管拡張薬、心血管薬、向精神薬、神経弛緩薬、抗うつ薬、抗パーキンソン薬、β遮断薬、カルシウム拮抗薬、ブラジキニン阻害薬、阻害物質、ACE阻害薬、血管拡張薬、プロラクチン阻害薬、阻害物質、ステロイド、抗ホルモン剤、抗ヒスタミン剤、セロトニン拮抗薬、ヘパリン、化学療法薬、抗悪性腫瘍薬、およびこれらに限定されないがPDGF、EGF、KGF、IGF−1およびIGF−2、FGFなどの成長因子などの医薬品、(b)インシュリン、プロインシュリン、成長ホルモン、GHRH、LHRH、EGF、ソマトスタチン、SNX−111、BNP、インシュリノトロピン、ANP、FSH、LH、PSHおよびhCGホルモン、生殖腺ステロイドホルモン(男性ホルモン剤、エストロゲン薬、およびプロゲステロン)、甲状腺刺激ホルモン、インヒビン、コレシストキニン、ACTH、CRF、ダイノルフィン、エンドルフィン、エンドセリン、フィブロネクチン・フラグメント、ガラニン、ガストリン、インシュリノトロピン、グルカゴン、GTP結合蛋白質フラグメント、グアニリン、ロイコキニン、マガイニン、マストパラン、デルマセプチン、システミン、ニューロメディン、ニューロテンシン、パンクレアスタチン、膵臓ポリペプチド、サブスタンスP、セクレチン、チモシン、およびその類似物などのペプチドホルモンをはじめとするホルモン類、(c)酵素、(d)転写または翻訳媒介物質、(e)代謝経路の中間体、(f)インターロイキン−1、インターロイキン−2、インターロイキン−3、インターロイキン−4、およびγインターフェロンを含む種々のサイトカインのうちの任意の免疫調節物質、および(g)以下に記載されたものなどの補助免疫アジュバントなどがある。
【0093】
このような補助成分は、例えば、微粒子の表面に吸着し、微粒子内に取り込まれ、微粒子と結合していない間は溶液中に溶解または分散され、別のグループの微粒子などに吸着または取り込こまれるなどの可能性がある。
【0094】
補助免疫アジュバントは免疫原組成物の有効性を増強するために使用してもよい。例えば、このような免疫アジュバントを、例えば同じ組成物あるいは個別の組成物中に本発明の免疫原組成物と同時に投与してもよい。あるいは、本発明の免疫原組成物の投与前にあるいは投与後にこのようなアジュバントを投与してもよい。
【0095】
補助免疫アジュバントとしては、(1)上述のようにアルミニウム塩は局所反応に関連していることが指摘されており、このため本発明のいくつかの実施形態においては好ましいとは言えないが、水酸化アルミニウム、リン酸アルミニウム、硫酸アルミニウムなどのアルミニウム塩(ミョウバン)、(2)例えば(a)モデル110Yマイクロフリューダイザー(Microfluidics、ニュートン、MA)などのマイクロフリューダイザーを使用して、サブミクロン粒子に配合された5%スクアレン、0.5%トウィーン80、および0.5%スパン85(必要とされないが、種々の量のMTP−PE(以下を参照)を任意に有する)を含むMF59(International Publication W090/14837;Chapter 10 in Vaccine design: the subunit an adjuvant approach, Eds. Powell & Newman, Plenum Press 1995)、(b)サブミクロン乳剤にマイクロフリューダイズされた、あるいはより大きな粒径乳剤を産生するためにボルテックスされた10%スクアラン、0.4%トウィーン80、5%プルロニックブロックトポリマーL121、およびthr−MDP(以下を参照)を含むSAP、および(c)2%スクアレン、0.2%トウィーン80、およびモノホスホリリピドA(MPL)、トレハロースジミコレート(TDM)、および細胞壁骨格(CWS)、好ましくはMPL+CWS(DetoxJ)から成る群由来の1つ以上の細菌細胞壁成分を含むRibiJアジュバントシステム(RAS)(Ribi Immunochem、ハミルトン、MT)などのその他の水中油型乳剤配合物(ムラミルペプチド(以下を参照)または細菌細胞壁成分などの他の特異的な免疫賦活性薬を含む、あるいは含まない)(本明細書に使用される適切なサブミクロン水中油型乳剤のより詳細な記載は、1998年1月29日に提出された一般に所有された特許出願09/015、736参照)、(3)QuilAあるいはQS21(例えばStimulonJ(Cambridge Bioscience,Worcester,MA))などのサポニンアジュバントを使用し、これよりISCOM(免疫賦活性複合体)などの粒子が産生されるが、ISCOMは補助洗浄剤(例えば国際特許出願第00/07621パンフレット)が欠けていてもよい、(4)完全フロイントアジュバント(CFA)および不完全フロイントアジュバント(IFA)、(5)インターロイキン(例えばIL−1、IL−2、IL−4、IL−5、IL−6、IL−7、IL−12(WO99/44636)など)などのインターフェロン(例えばガンマインターフェロン)、マクロファージコロニー刺激因子(M−CSF)、腫瘍壊死因子(腫瘍壊死因子)、etcなどのサイトカイン、(6)リポポリ多糖およびリポ多糖リン酸アジュバントを含むリン脂質アジュバント、例えば、一リン酸化リピドA(MPL)、3−O−脱アシルMPL(3dMPL)、例肺炎球菌糖類とともに使用された場合、任意にミョウバンが本質的に存在しない状態のGB−2220221、EP−A−0689454、例えば国際特許出願第00/56358号パンフレット、ならびに、米国特許第6,355,257号明細書に記載されたようなアミノアルキルグルコサミンリン酸、(7)例えばQS21および/または水中油型乳剤、例えばEP−A−08353 18、EP−A−0735898、EP−A−0761231を含む3dMPLの組み合わせ、(8)CpGモチーフを有する、すなわちシトシンの代わりに任意に用いられている5−メチルシトシンと共に、少なくとも1つのCGジヌクレオチド(グアノシンヌクレオチドがシトシンヌクレオチドに続く)を含むオリゴヌクレオチド(Roman et al., Nat. Med., 1997, 3, 849−854; Weiner et al., PNAS USA, 1997,94, 10833−10837; Davis et al., J. Immunol. 1988, 160, 870−876; Chu et al., J. Exp. Med., 1997,
186, 1623−1631; Lipford et al., Eur. J.
Immunol. 1997,27, 2340−2344; Moldoveanu
et al., Vaccine, 1988, 16, 1216−1224, Krieg et al., Nature, 1995, 374, 546−549;
Klinman et al., PNAS USA, 1996, 93, 2879−2883: Ballas et al., J. Immunol., 1996, 157, 1840−1845; Cowdery et al., J. Immunol., 1996, 156, 4570−4575; Halpem et al., Cell. Immunol., 1996, 167, 72−78; Yamamoto etal., Jpn. J. Cancer Res., 1988,
79, 866−873; Stacey et al., J. linmunol, 1996, 157, 2116−2122; Messina et al., J. Immunol., 1991, 147, 1759−1764; Yi et
al., J. Immunol., 1996, 157, 4918−4925;
Yi et al., J. Immunol., 1996, 157, 5394−5402; Yi et al., J. Immunol., 1998, 160,4755−4761; and Yi et al., J. Immunol., 1998, 160, 5898−5906;国際特許出願第96/02555号パンフレット,国際公開第98/16247号パンフレット、国際公開第98/18810号パンフレット、国際公開第98/40100号パンフレット、国際公開第98/55495号パンフレット、国際公開第98/37919号パンフレット、および国際公開第98/52581号パンフレット)、(9)ポリオキシエチレンエーテルあるいはポリオキシエチレンエステル、例えば国際公開第99/52549号パンフレット、(10)オクトキシノール(国際公開第01/21152号パンフレット)と併用したポリオキシエチレンソルビタンエステル界面活性剤、オクトキシノール(国際公開第01/21207号パンフレット)などの少なくとも1つの補助非イオンの界面活性剤と併用したあるいはポリオキシエチレンアルキルエーテルまたはエステル界面活性剤、(11)サポニンおよび免疫賦活性オリゴヌクレオチド(例、CpGオリゴヌクレオチド)(国際公開第00/62800号パンフレット)、(12)免疫賦活薬および金属塩の粒子、例えば国際公開第00/23105号パンフレット、(13)サポニンおよび水中油型乳剤、例えば国際公開第99/11241号パンフレット、(14)サポニン(例えばQS21)+3dMPL+IL−12(任意に+ステロール)、例えば国際公開第98/57659号パンフレット、(15)コレラ毒素(CT)、百日咳毒素(PT)、または大腸菌熱不安定性毒素(LT)、特にLT−K63(リジンは位置63で野生型アミノ酸の代わりに用いられる)、LT−R72(アルギニンは位置72で野生型アミノ酸の代わりに用いられる)、CT−S109(セリンは位置109で野生型アミノ酸の代わりに用いられる)、およびPT−K9/G129(リジンが位置9で、およびグリシンが位置129で野生型アミノ酸の代わりに用いられる)などの細菌性ADPリボシル化毒素の解毒変異体(例えば国際公開第93/13202号パンフレット、国際公開第92/19265号パンフレット参照)、(16)アミノアルキルグルコサミニド4−リン酸塩(AGP)、例えば Johnson, D.A. et al.; Bioorg. Med. Chem. Lett., 1999 Aug 2; 9(15):2273−8参照、(17)イミキモド(R−837)およびレシクイモド(R−848)などのイミダゾキノリン類、例えばVasilakos, J.P. et al.; Cell. Immunol. 2000
Aug 25; 204(1):64−74参照、(18)Hawkins, L.D. et al; J. Pharmacol. Exp. Ther., 2002 Feb.; 300(2):655−61および米国特許第6,290,973号明細書に記載される非糖類性リン脂質(例えば二糖類を欠く単純化リピドA類似体)などのリポポリ多糖模倣体(一リン酸化リピドA模倣体を含む)、(19)間欠性リボグアニル酸−リボシチジル酸([rG−rC])およびリボアデニル酸−ポルリボウリジル酸([rA−rUJ)塩基対より一般に構成される天然または合成の二本鎖RNA(「dsRNA」)を有するアジュバント、より詳細は例えば一般所有の国際特許出願PCT/US02/30423参照、および(20)免疫賦活性薬剤として作用し、組成物の有効性を増強するその他の物質、などがあるがこれに限定されない。
【0096】
ムラミルペプチドとしては、N−アセチル−ムラミル−L−スレオニル−D−イソグルタミン(thr−MDP)、N−アクテイルacteyl−ノルムラミル−L−アラニル−D−イソグルタミン(ノル−MDP)、N−アセチルムラミル−L−アラニル−D−イソグルタミニル−L−アラニン−2−(1’−2’−ジパルミトイル−sn−グリセロ−3−huydroxyphosphoryloxy)−エチルアミン(MTP−PE)などがあるが、これに限定されない。
【0097】
アジュバントの追加例については、Vaccine Design, The Subunit and the Adjuvant Approach, Powell, M.F. and Newman, M.J, eds., Plenum Press, 1995)参照。
【0098】
4.製剤および投与
本発明の組成物は1つ以上の薬学的に許容可能な賦形剤が一般に含まれる。例えば、水、生理食塩水、グリセリン、ポリエチレングリコール、ヒアルロン酸、エタノールなどの賦形剤が使用される。湿潤剤あるいは乳化剤、生物学的緩衝物質、およびその類似物などの他の賦形剤が存在してもよい。生物学的緩衝液は、薬理学的に許容可能で、かつ所望のpH値、すなわち生理的範囲内のpH値を有する製剤提供する実質的に任意の溶液が可能である。事例としては生理食塩水、リン酸緩衝液、クエン酸緩衝液、ホウ酸塩緩衝液、コハク酸塩緩衝液、およびヒスチジン緩衝液、ならびにリン酸緩衝食塩水、トリス緩衝食塩水、ハンクス緩衝食塩水、およびその類似物をはじめとする緩衝食塩水の組み合わせを含む種々の緩衝液などがある。
【0099】
最終剤形に依存して、結合剤、崩壊剤、充填剤(希釈液)、潤滑剤、グリダントglidant(血流エンハンサー)、圧縮助剤、着色料、甘味料、防腐剤、サスペンシング/分散剤、塗膜形成剤/コーティング、着香料、および印刷インクなどの当業者において公知のその他の賦形剤も導入することができる。
【0100】
一度配合されると、本発明の組成物を、例えば注射(ニードルレスでもよい)によって非経口的に投与することができる。組成物を例えば皮下、腹腔内に、静脈内に、皮内に、動脈内に、あるいは筋肉内に注射することができる。その他の投与モードとしては、鼻、粘膜、眼内、直腸、膣、経口および肺投与、坐薬、および経皮的または経皮的適用などがある。
【0101】
いくつかの実施形態において、本発明の組成物を部位特異的標的化送達のために使用することができる。例えば、組成物の静脈内投与は、肺、肝臓、脾臓、血液循環、あるいは骨髄を標的とするために使用することができる。
【0102】
治療は単回投与量スケジュールあるいは複数回投与スケジュールによって行う。複数回投与スケジュールは、続いて後続時間間隔で1回以上の追加投与が行われる投与の主要コースが与えられる場合であり、治療反応を維持および/または強化するために選択される。投与計画はさらに、少なくとも部分的に、対象の必要性によって決定され、また開業医の判断に依存するであろう。
【0103】
既に示したように、本発明はトキソイドおよび/または多糖類を含む抗原を吸着させた生分解性高分子微粒子を有する免疫原性医薬品組成物に関する。さらに示したように、本組成物は、種々の病原体あるいは腫瘍に割り当てられたワクチンを含む多様な範囲のワクチンに適用可能である。
【0104】
したがって、有益な組成物としては、別々にあるいは種々の組み合わせのいずれかの以下の抗原を含むものなどがある。すなわち、テタヌス抗原(例えば破傷風トキソイド抗原)、ジフテリア抗原(例えばジフテリアトキソイド抗原)、肝炎抗原(HAV、HBV、HCV、HDV、HEY、およびHGVの抗原を含む)、水痘ウィルス(水痘)抗原、はしか抗原、おたふく風邪抗原、風疹抗原、インフルエンザ抗原、髄膜炎菌性抗原(髄膜炎A、髄膜炎B、髄膜炎C、髄膜炎W、および髄膜炎Y抗原を含む)、ジフテリア抗原、百日咳抗原、テタヌス抗原、Hib抗原、および肺炎球菌抗原である。
【0105】
多くのこのような抗原は、現在利用可能である。例えば、(A)酵母にHBVゲノム部分を挿入することにより作製される組換えDNAB型肝炎抗原(HbsAg)が利用可能である。(B)岡株と命名された凍結乾燥・生存・弱毒化水痘ウィルスより一般に調製される水痘帯状疱疹ウィルス抗原が利用可能である。(C)不活性化され、または生存ポリオウイルスに相当するポリオ・ウィルス抗原が利用可能であるが、不活化ポリオウイルス(IPV)抗原が一般に好ましい。IPV抗原は一般にホルマリン−不活化生成物であり、細胞(例えばベロ細胞、ヒト二倍体細胞)上で産生され、3つの型の野生ポリオウイルスに一般に相当する。(D)生麻疹ウイルス抗原は、原株(例えば、Moraten、Edmonston−Zagreb、SchwarzおよびConnaught菌株)よりさらに減弱されたEdmonstonB菌株より頻繁に調製される。はしか抗原は、ニワトリ線維芽細胞細胞培養株、あるいはヒト線維芽細胞中で一般に調製される。(E)流行性耳下腺炎ウイルス抗原は、一般に生の弱毒化ウイルス抗原である。それらは、Jeryl Lynn弱毒化ウイルス株より調製され、ニワトリ胚細胞培養中で培養されることが多い。(F)風疹ウイルス抗原も一般に生弱毒化ウイルス抗原である。現在知られている1つの風疹ウイルス抗原は、生弱毒化ウイルス株のRA27/3に相当し、ヒト二倍体細胞培養株中で調製される。(G)インフルエンザ抗原は、ニワトリ胚の中で増殖されたインフルエンザウイルスより調製されることが多い。ウイルスは有機溶媒で不活化され、精製され、処理され、表面糖タンパク質が除去される。この抗原は、インフルエンザA型の2つの株およびインフルエンザB型の1つの株から一般に選択される。インフルエンザワクチンへの封入のために選定されたウイルス株は、その後の冬季に最良防護が得られるために期待される抗原を含むことを確認するため、一般に毎年調査される。インフルエンザ抗原は生弱毒化ウイルス抗原、および組織培養に由来した抗原も含まれる。(H)利用可能な髄膜炎菌抗原は、精製莢膜多糖抗原(Men−Ps)およびO−アセチル化C−多糖類がタンパク質CRM197(交差反応物質197)に接合した抗原、およびデ−O−アセチル化C−多糖類が破傷風トキソイドに接合した抗原などのタンパク質−多糖類接合体抗原(Men−接合)が含まれる。(I)利用可能な百日咳抗原は全細胞および無細胞百日咳抗原の両方を含む。無細胞抗原は、全細胞の百日咳抗原に関連した局所および全身性の有害反応の頻度および重症度を減少させるために開発された。無細胞の百日咳抗原は、例えば百日咳トキソイド、線維状赤血球凝集素、およびペルタクチン(pertactin)が含まれる。(J)利用可能なHib抗原は、多糖類抗原および多糖類−タンパク質接合体抗原などがあり、これらは乳児および幼児において、精製多糖類抗原に対してより大きな免疫応答を示す利点を有する。利用可能なHib接合体抗原は、タンパク質および多糖類サイズなどの多くの異なる方法がある。事例はHbOC、PRP−OMP、PRP−T、およびPRPD抗原などである。(K)肺炎球菌の抗原は、多糖類抗原あるいは接合体抗原として一般に利用可能である。利用可能な多糖類肺炎球菌ワクチンとしては、23種の肺炎球菌の各々に由来する(すなわち1、2、3、4、5、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17W、18C、19A、19F、20、22F、23Fおよび33F、デンマーク命名法)カプセル化多糖抗原などがある。利用可能な肺炎球菌接合ワクチン(PCV)は、それぞれCRM197と接合された7種のS.肺炎血清型(血清型4、9V、14、18C、19F、23F、および6B)のカプセル化抗原の精製多糖類が含まれる。
【0106】
本発明で使用される抗原の組み合わせの事例は、上述のすべての可能性のある組み合わせ、例えばDT,DPT,Hib,Hep,PV,Men,Pnu,VarおよびMMRのすべての可能な組み合わせを含む。いくつかの特定の事例を以下に示す。
【0107】
【化1】

【0108】
【化2】

ここで、DT=ジフテリアトキソイド抗原および破傷風トキソイド抗原、DTP=ジフテリアトキソイド抗原、破傷風トキソイド抗原、および百日咳抗原(全細胞および無細胞百日咳抗原、一般的には無細胞を含む)、Hib=インフルエンザ菌型b抗原(多糖類および接合体抗原を含む)、Hep=肝炎抗原(HAV抗原、HBV抗原、HCV抗原、HDV抗原、HEY抗原、HGV抗原、およびこれらの組み合わせ、例、HAV抗原−HBV抗原を含む)、PV=ポリオ抗原(不活性化または生抗原、例えば3種のポリオ菌株由来の不活化抗原を含む)、Men=髄膜炎菌(Neisseria meningitidis)抗原(接合および多糖類抗原を含む、一般に接合体抗原、またMenA、B、C、W、Y,および組み合わせ、例、MenA、C抗原、MenA、B、C抗原、MenA、C、W、Y抗原、およびMenA、B、C、W、Y抗原を含む)、Pnu=肺炎球菌(肺炎連鎖球菌)抗原(接合および多糖類抗原、一般には接合体抗原を含む)、Var=水痘帯状疱疹ウィルス抗原(例えば生、弱毒化水痘ウィルス)、MMR=はしか、おたふく風邪、および風疹抗原(例えば生、減弱はしか、おたふく風邪、および風疹ウイルス抗原)。
【0109】
上記の抗原のいくつかを含むワクチンのための推奨される投与計画が利用可能である。特例として、米国保健社会福祉省、疾病管理および予防センター、全国予防接種National Immunization Programは、推奨される幼児期および思春期の免疫化スケジュールを出版している。米国2003年における現行スケジュールの一部を図1に、またその総括を以下に示す。
【0110】
遵守すべきスケジュールは、Recommended Childhood and Adolescent Immunization Schedule−United States 2003,from the U.S.Department of Health and Human Services, Centers for Disease Control and Prevention,National mmunization Programに基づく。
【0111】
B型肝炎(Hepatitis B)(A)最初の投与量。出生2カ月まで。母親がB型肝炎表面抗原陽性、またはB型肝炎表面抗原状態が未知の子供は、出生12時間以内にこの投与を行うことが望ましい。全ての乳児は生後直ちに、および退院前にB型肝炎ワクチンの初回投与を行うことが望ましい。乳児の母親がB型肝炎表面抗原陰性ならば、最初の投与も月齢2カ月までに行ってもよい。一価のB型肝炎ワクチンのみが、出生時投与のために現在推奨される。一価あるいはHepBを含む併用ワクチンをシリーズを完了するために使用してもよい。併用ワクチンを使用する場合は、ワクチンを4回投与してもよい。B型肝炎表面抗原陽性の母親から生まれた乳児では、B型肝炎ワクチンおよび0.5mlのB型肝炎免疫グロブリン(HBIG)を別々の部位に出生後12時間以内に投与することが望ましい。B型肝炎表面抗原状態が未知の母親から生まれた乳児は、生後12時間以内にB型肝炎ワクチンシリーズの最初の投与を行うことが推奨される。母親のB型肝炎表面抗原状態を判定するため、出産時に母体血を吸引することが望ましい。検査が陽性である場合、乳児はできるだけ早く(また遅くとも1週間以内)HBIGを投与することが望ましい。(B)2回目の投与。1ヶ月から4ヶ月後、最初の投与から少なくとも4週間後。2回目の投与は、最初の投与後、少なくとも4週後に行うことが望ましい。Hibを含むワクチンを6週齢以前に投与することは推奨しない。B型肝炎表面抗原陽性の母親から生まれた乳児の場合、2回目の投与は月齢で1〜2ヶ月が望ましく、ワクチン接種シリーズは、月齢で6ヶ月に完了することが(3回あるいは4回目の投与)推奨される。(c)3回目の投与:6ヶ月から18ヶ月、最初の投与から少なくとも16週後、2回目の投与から少なくとも8週後。一般に、ワクチン接種シリーズの最後の投与(3回あるいは4回目の投与)は、月齢で6ヶ月前に行うべきではないことが望ましい。しかしながら、B型肝炎表面抗原陽性母親より生まれた乳児の場合、ワクチン接種シリーズは月齢で6ヶ月に完了することが(3回あるいは4回目の投与)推奨される。(D)小児年齢4ヶ月から6年の間のキャッチアップスケジュール。B型肝炎に対して免疫化されていない全ての小児および青年は、任意の来院中にHepBワクチン接種シリーズを始めることが望ましい。提供者は誕生しあるいは親から生まれたB型肝炎ウィルス感染が中程度または高度に流行している地域の小児を免疫化するために特別な努力をすることが望ましい。1回目と2回目の投与の最小間隔:4週間。2回目と3回目の投与の間の最小間隔:8週間(最初の投与後の16週後)(E)7歳から18歳の子供のキャッチアップスケジュール。1回目と2回目の投与の最小間隔:4週間。2回目と3回目の投与の間の最小間隔:8週間(最初の投与後の16週後)
ジフテリア、テタヌス、百日咳(DTaP)(A)最初の投与:2ヶ月。(B)2回目の投与:4ヶ月。(C)3回目の投与:6ヶ月月。(D)4回目の投与:15〜18ヶ月。DTaPの4回目の投与は、早ければ月齢12ヶ月に投与し、3回目の投与までに6ヶ月経過させると、子供は月齢で15〜18ヶ月まで元の状態に戻らないようである。(E)5回目の投与:4〜6年。(F)月齢4ヶ月から年齢6歳の間のキャッチアップスケジュール。1回目と2回目の投与の最小間隔:4週間。2回目と3回目の投与の間の最小間隔:4週間。3回目と4回目の投与の間の最小間隔:6ヶ月。4回目と5回目の投与の間の最小間隔:6ヶ月。4回目の投与が4才の誕生日の後に与えられた場合は、5回目の投与は不要である。
【0112】
テタヌスおよびジフテリア。(A)テタヌスおよびジフテリアトキソイドを含むワクチンの最後の投与以来少なくとも5年が経過している場合は、年齢で11〜12歳が推奨される。その後の通常のTdブースターは10年ごとが望ましい。(B)年齢7歳から18歳までの子供のキャッチアップスケジュール。1回目と2回目の投与の最小間隔:4週間。2回目と3回目の投与の間の最小間隔:6ヶ月。3回目とブースター投与の間の最小間隔:最初の投与が12ヶ月未満に行われた場合、および現在の年齢が11歳未満の場合、6ヶ月、最初の投与が12ヶ月以降に行われた場合、3回目の投与が年齢7歳未満で行われた場合、および現在の年齢が11歳以上の場合、5年、3回目の投与が年齢7歳以上で行われた場合、10年。(注:年齢7〜10歳の子供の場合、3回目とブースター投与との間の間隔は、最初の投与が行われた年齢により決定される。年齢11〜18歳の青年の場合、間隔は3回目の投与が行われた年齢により決定される。)
ヘモフィルスインフルエンザB型。(A)最初の投与:2ヶ月。(B)2回目の投与:4ヶ月。(C)3回目の投与:6ヶ月。月齢2ヶ月〜4か月にPRP−OMPが投与されている場合、月齢6ヶ月の投与は不要である。(D) 4回目の投与:12〜15ヶ月。(E)年齢4ヶ月から6歳の間の小児のキャッチアップスケジュール。(注:ワクチンは、年齢5歳以上の子供には一般に推奨されない。)1回目と2回目の投与の最小間隔:最初の投与が12ヶ月未満に行われた場合、4週間、最初の投与が12ヶ月〜14ヶ月に行われた場合、8週間、最初の投与が15ヶ月以降に行われた場合、これ以上の投与は推奨されない。2回目と3回目の投与の間の最小間隔:現在の年齢が12ヶ月未満の場合、4週間、2回目の投与が15ヶ月未満に行われた場合、および現在の年齢が12ヶ月以上の場合、8週間(最終投与)、年齢15ヶ月以降に2回目の投与が行われた場合、これ以上の投与は不要である。(現在の年齢が12月未満で、かつ最初の2回の投与がPRP−OMPであった場合、3回目および最終投与は月齢12から15ヶ月に、少なくとも2回目の投与後8週間に行うことが望ましい。)3回目と4回目の投与の間の最小間隔:8週間(最終投与)。この投与は月齢12カ月以前に3回投与を受けた12カ月〜5歳の小児にのみ推奨される。
【0113】
不活化ポリオ。(A)最初の投与:2ヶ月。(B)2回目の投与:4ヶ月。(C)3回目の投与:6〜18ヶ月。(D)4回目の投与:4〜6年。E)1回目と2回目との投与の最小間隔:4週間、2回目と3回目との間の投与の最小間隔、4週間、3回目と4回目の投与の間の最小間隔、4週間。全てIPVまたは全てOPVシリーズを受けた小児の場合、3回目の投与が年齢4歳以上で行われた場合、4回目の投与は不要である。シリーズの一部としてOPVおよびIPVの両方が投与された場合、小児の現在の年齢に関係なく合計4回の投与を行うことが推奨される。(D)年齢7〜18歳の小児のキャッチアップスケジュール。(注:このワクチンは、年齢18歳以上の者には一般に推奨されない。)1回目と2回目の投与の最小間隔:4週間、2回目と3回目の投与の間の最小間隔、4週間。
【0114】
はしか、おたふく風邪、風疹。(A)最初の投与:12〜15ヶ月。(B)2回目の投与:4〜6年。MMRの2回目の投与は、年齢4〜6歳で一般に推奨されるが、最初の投与から少なくとも4週間の間隔を開けた上で、任意の来院時に投与してもよく、両方の投与は月齢で12ヶ月以降に投与を開始することが望ましい。2回目の投与を以前に受けていない者は、年齢が11歳から12歳になる来院までにスケジュールを完了することが推奨される。(C)年齢4ヶ月から6歳の小児のキャッチアップスケジュール。最少年齢:12ヶ月。1回目と2回目の投与の最小間隔:4週間。MMRの2回目の投与は、年齢4〜6歳が一般に推奨されるが、必要に応じそれ以前に投与してもよい。(D)年齢7〜18歳の小児のキャッチアップスケジュール。1回目と2回目の投与の最小間隔:4週間。
【0115】
水痘。12〜18ヶ月。水痘ワクチンは、感受性のある小児(すなわち水痘の信頼できる病歴を持たない小児)において、来院時または月齢12ヶ月以降に投与することが推奨される。年齢13歳以上の感受性のある者は、少なくとも4週間隔てて2回投与を行うことが好ましい。年齢7〜18歳までの小児のキャッチアップスケジュール。1回目と2回目の投与の最小間隔:4週間。
【0116】
肺炎球菌接合ワクチン。7価の肺炎球菌接合ワクチン(PCV)は、月齢2ヶ月から23ヶ月の全ての小児、および月齢24〜59ヶ月の特定の小児に推奨される。(A)最初の投与:2ヶ月。(B)2回目の投与:4ヶ月。(C)3回目の投与:6ヶ月。(D)4回目の投与:12〜15ヶ月。(E)年齢4ヶ月から6歳の小児のキャッチアップスケジュール。(注:このワクチンは、年齢5歳以上の小児には一般に推奨されない。)1回目と2回目の投与の最小間隔、最初の投与が12ヶ月未満に行われた場合、および現在の年齢が24カ月未満の場合、4週間、最初の投与が12ヶ月以降に行われた場合、および現在の年齢が24〜59カ月未満の場合、8週間(最終投与)、最初の投与が24ヶ月以降に行われた場合で健康な小児の場合は、これ以上の投与は不要。2回目と3回目との間の投与の最小間隔:2回目の投与が12ヶ月未満に行われた場合、4週間、2回目の投与が12ヶ月以降に行われた場合、8週間(最終投与)、2回目の投与が24ヶ月以降に行われた場合で健康な小児の場合はこれ以上の投与は不要。3回目と4回目との間の投与の最小間隔、8週間(最終投与)。この投与は、12ヶ月以前に3回の投与を受けた年齢12カ月〜5歳までの小児にのみ必要である。
【0117】
肺炎球菌多糖ワクチン(PPV)。特定のハイリスクグループにおいて、PCVに加えて推奨される。
【0118】
A型肝炎。A型肝炎シリーズを2歳以上の小児に投与してもよい。HAワクチンは、選択された状態および部位に、および特定のハイリスクグループのために使用することが推奨される。
【0119】
インフルエンザ。インフルエンザワクチンは、あるリスクファクター(喘息、心臓病、鎌型赤血球症、HIV、および糖尿病などを含み、これらに限定されない)を有する年齢6ヶ月以上の小児に毎年行うことが推奨され、また免疫を得ることを望むすべての者に投与することができる。12歳以下の小児はその年齢に適する投与量でワクチンを接種することが推奨される。初めてインフルエンザワクチンを接種する8歳以下の小児は、少なくとも4週間隔てて2回接種することが好ましい。
【0120】
これらのスケジュールは、年齢18歳までの小児に関係する。推奨される年齢で投与されなかった任意の接種は、その後の指示され適した時期に行うことが一般に推奨される。明らかに、多様なリストされたワクチンにおいて追加スケジュールを確立することができる。
【0121】
ある実施形態において、本発明によるワクチンの投与回数は、図1に示す、または上述の推奨されるスケジュールに基づいて行われるものとする。例えば、本発明によるワクチン投与の時間は、本発明のワクチン内に認められる1つ(以上)の抗原を含むワクチンの推奨されたスケジュールに基づいて選択することができる。
【0122】
特例として、ジフテリア、百日咳、およびテタヌス抗原(任意に1つ以上の追加抗原)を含む本発明によるワクチン組成物を以下の時期のいずれかに投与することができる。すなわち2ヶ月、4ヶ月、6ヶ月、15〜18ヶ月、および4〜6年、その他の時期。別の特定の例として、DTP/HepB/Hib/PV/Pnu(あるいはこれらの任意組み合わせ)を含むワクチンを、2ヶ月、4ヶ月、6ヶ月、あるいは15ヶ月、その他の時期に投与することができる。さらに別の特定の例として、DTP/HepB/PV(あるいはこれらの任意の組み合わせ)を含むワクチンを、4〜6年、その他の時期に投与することができる。別の特定の例として、DTP/HepB/Hib/PV/Pnu/MMR/Var(あるいはこれらの任意の組み合わせ)を含むワクチンを15ヶ月に投与することができる。別の特定の例として、ジフテリアおよびテタヌス抗原を含むワクチン組成物(任意に1つ以上の追加抗原)を11〜18年(以上)、その他の時期に投与することができる。別の特定の例として、DT/HepBを含むワクチンを11〜18年(以上)、その他の時期に投与することができる。さらに別の特定の例として、DT/HepB/MMR/Var(あるいはこれらの任意の組み合わせ)を含むワクチンを、11〜18年(以上)、その他の時期に投与することができる。など。
【0123】
C.実験
以下は、本発明を実施するための特定の実施形態の実施例である。この実施例は説明のためになされるものであり、いかなる場合も本発明の範囲を限定するためのものではない。
【0124】
使用される数値(例えば量、温度など)に関して、できるだけ正確さを保証するように努めているが、もちろん、いくつかの実験誤差および偏差は許容されるべきである。
【実施例】
【0125】
実施例1
破傷風トキソイドおよびジフテリアトキソイドのPLG粒子への吸着効率
塩化メチレン中に、RG503ポリマー(50:50のラクチド/グリコリドモル比およびおよそ34kダルトンの分子量を有するPLGポリマー、Boehringer Ingelheim社より入手可能)の6%w/v溶液を使用して微粒子を調製する。この溶液10mlを、2.5m1PBSとともに10mmプローブのホモジナイザ(Ultra−Turrax T25 IKA−Labortechnik、ドイツ)を使用して、23,000rpmで3分間ホモジナイズし、これにより油中水型乳剤を形成させる。続いて、6μg/mlスルホコハク酸ジオクチルナトリウム(DSS)(Sigma社、米国より入手可能)を含む蒸留水50mlにこの乳剤を添加し、20mmプローブを有するホモジナイザ(ES−IS Omni International、GA、米国)を使用して、氷浴中で25分間非常に高速にホモジナイズする。この結果、水中油中水型乳剤が得られる。これを室温で12時間、1000rpmで撹拌し、塩化メチレンを揮発させる。得られた微粒子は0.05%wt/wtDSSを含んでいる。得られた微粒子懸濁液の粒度分布を、粒径分析計(Master Sizer, Malvern Instruments, 英国)を使用して測定すると、0.8〜1.2μmであることが分かる。
【0126】
破傷風トキソイドおよびジフテリアトキソイド(TTおよびDT)は、種々のpH値を有する多様な緩衝液中で0.05%DSS PLG粒子へ吸着される。この吸着は、1mgのDTまたは0.5mgTTと共に上記の微粒子懸濁液100mgを4℃で振動させながら10mM緩衝液中で一晩インキュベートすることにより行われる。緩衝液は以下の通りである。PBSpH7、リン酸塩pH7、クエン酸塩pH5、ホウ酸塩pH9、コハク酸塩pH5.5、コハク酸塩pH5、およびヒスチジンpH5。
【0127】
この懸濁液を翌日遠心分離し、上澄液についてHPLC(原料の減少から吸着効率%を把握するため)により未結合タンパク質の濃度を評価した。粒子上のタンパク質については、粒子を水で最初に洗浄し、未結合タンパク質を除去し、続いて凍結乾燥させてから評価する。吸着されたタンパク質の量は、10mgの凍結乾燥された粒子を0.2NのNaOH2mlおよび5%SDSで4時間加水分解することにより測定し、次にBCAタンパク質分析(粒子の%吸着効率を把握するため)を行う。結果を以下の表1AおよびlBに示す。
【0128】
【表1A】

【0129】
【表1B】

実施例2
PLG粒子への/からの破傷風トキソイドおよびジフテリアトキソイドの吸着および遊離
実施例1に記載されるように微粒子を調製する。10mMヒスチジン緩衝液中にDTあるいはTTの適正量を有する上記微粒子懸濁液100mgを4℃で振動させながら一晩インキュベートすることにより、DTおよびTTタンパク質を0.25%、0.5%、あるいは1%の標的負荷で微粒子に吸着させる。翌日、この懸濁液を遠心分離し、上澄液についてHPLCにより未結合タンパク質の濃度を評価し、消耗による%吸着効率を把握した。結果を以下の表2のカラム2、および図2に示す。
【0130】
微粒子より遊離されたタンパク質の量は、10mg凍結乾燥された未洗浄の粒子を水1ml、4℃で振動させながら1時間インキュベートし、遠心分離し、上述のように、上澄液についてHPLCで遊離されたタンパク質を分析することにより把握した。結果を以下の表2Aおよび2Bのカラム3、および図2に示す。
【0131】
【表2】

実施例3
髄膜炎菌タンパク質−多糖類接合体のPLG粒子への/からの吸着および遊離(RG503/0.05%DSS)
実施例1に記載されるように0.05%DSSwt/wtを含む微粒子を調製する。Men−A、Men−B、Men−CあるいはMen−W由来の精製されたカプセル化多糖抗原中のタンパク質−多糖類接合髄膜炎菌抗原をこの微粒子に吸着させる。
【0132】
10mMヒスチジン緩衝液中に髄1mgの膜炎菌接合体抗原を有する微粒子100mgを4℃で振動させながら一晩インキュベートすることにより、髄膜炎菌接合体抗原を1%の標的負荷で微粒子に吸着させる。翌日、この懸濁液を遠心分離し、上澄液についてHPLCにより未接合体抗原の濃度を評価し、消耗による%吸着効率を把握した。結果を以下の表3のカラム2に示す。
【0133】
微粒子に吸着した接合体抗原は、最初に微粒子を水で洗浄し、未結合の接合体抗原を除去することにより評価され、続いて凍結乾燥される。吸着された接合体抗原の量は、凍結乾燥された粒子の加水分解により測定し、次に上述のようにBCAタンパク質分析を行う。結果を以下の表3のカラム3および図3に示す。
【0134】
微粒子から遊離されたタンパク質の量を測定するため、粒子−抗原懸濁液のアリコートを洗浄せずに凍結乾燥し、次にこの凍結乾燥粒子10mgを1mlの水で4℃で振動させながら1時間インキュベートする。結果を以下の表3のカラム4および図3に示す。
【0135】
【表3】

実施例4
PLG粒子により調製された破傷風トキソイド(TT)およびジフテリアトキソイド(DL)の免疫原性
マウス試験
この試験では、PLG/DSS微粒子懸濁液を実施例1で記載されるように調製する。テタヌスおよびジフテリアトキソイド、DTおよびTTを、10mMヒスチジン緩衝液中にDTあるいはTTの適正量を含む上記微粒子懸濁液100mgを4℃で振動させながら一晩インキュベートすることにより0.5%または1%の標的負荷で微粒子に吸着させる。続いて、それぞれの配合物を単独(PLG/TTあるいはPLG/DTT)あるいは組み合わせ(PLG/DT+PLG/TF)て試験を行う。等価なミョウバン配合物(ミョウバン/TTあるいはミョウバン/DTT、および(ミョウバン/DTT+ミョウバン/TT))も比較のためさらに試験に含めた。0日および14日目にマウスの前脛骨筋に1つの脚当たり50μlを注入した。28日目に眼窩洞出血により血清を採取した。
【0136】
ELISA分析
DT−CRMまたはTT抗原を塗布したプレート上で1/50から開始する血清の8個の連続希釈試験により、IgG抗体の存在を各々のマウスについて測定した。システムに適切な対照のため、各プレート上で陽性対照および陽性マウス血清対照基準の試験を行った。450nmに吸収のある比色定量用の基質を併用して西洋わさびペルオキシダーゼに接合された第2の抗体により、血清抗体の存在を検出した。力価は0.5ELISA吸光度の光学濃度を示す血清希釈率の逆数と定義された。力価は吸光度対希釈の4−パラメータカーブフィットからの補間により得られた。幾何平均力価(GMT)を計算し、力価50以上のマウスを反応マウスとして報告した。結果を以下の表4A−Cに示す。これらの結果から分かるように、(1)抗原TTおよびDTの両者において、0.5%あるいは1%の標的負荷で調製されたPLG微粒子で誘発された力価に相違は認められなかった。(2)PLGまたはミョウバンを配合された両抗原の組み合わせでは、TTに対する反応が2倍に増強された。(3)全体として、これらの結果に基づいて、PLG/TTおよびPLG/DTにより誘発された反応は、ミョウバン/TTおよびミョウバン/DTと同等である。
【0137】
【表4A】

全ての計算は対数変換した力価値を使用して行った。示された最終の幾何平均力価および95%信頼限界は、逆対数をとることにより得られた。
表4A
【0138】
【表4B】

全ての計算は対数変換した力価値を使用して行った。示された最終の幾何平均力価および95%信頼限界は、逆対数をとることにより得られた。
表4B
実施例5
PLG粒子(RG503/0.05%DSS)およびミョウバンにより処方された髄膜炎菌タンパク質−多糖類接合体の免疫原性
上述の実施例1のように、0.05%DSSwt/wtを含む微粒子を調製する。カイロンワクチン、Siena、イタリアより得られ、CRM197ジフテリアトキソイドあるいはADHのいずれかに接合されたMenCからカプセル化多糖抗原を精製したタンパク質−多糖類接合髄膜炎菌性抗原をこの微粒子に吸着させる。髄膜炎菌接合体抗原1.0mgを含む微粒子100mgをPBS中で4℃で振動させながらpH7.0で一晩インキュベートすることにより、1.0%の標的負荷でこの微粒子に髄膜炎菌接合体抗原を吸着させる。0日および14日目にマウスの前脛骨筋に1つの脚当たり50μlを注入した。28日目に眼窩洞出血により血清を採取した。
【0139】
MenCADHまたはMenCCRM抗原を塗布したプレート上で1/50から開始する血清の8個の連続希釈試験により、IgG抗体の存在を各々のマウスについて測定した。システムに適切な対照のため、各プレート上で陽性対照および陽性マウス血清対照基準の試験を行った。450nmに吸収のある比色定量用の基質を併用して西洋わさびペルオキシダーゼに接合された第2の抗体により、血清抗体の存在を検出した。力価は0.5ELISA吸光度の光学濃度を示す血清希釈率の逆数と定義された。力価は吸光度対希釈の4−パラメータカーブフィットからの補間により得られた。総IgGおよびIgG(MenC CRMのため)について幾何平均力価(GMT)を計算した。結果を以下の表5に示す。これらの結果から分かるように、PLOで処方された抗原はミョウバンで処方された抗原に比較して優れていた。
【0140】
【表5】

本発明の好ましい実施形態をかなり詳細に説明したが、本発明の精神および範囲から逸脱せずに明らかに変形を得ることができることが分かる。

【特許請求の範囲】
【請求項1】
明細書に記載の発明。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−82228(P2012−82228A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−14940(P2012−14940)
【出願日】平成24年1月27日(2012.1.27)
【分割の表示】特願2006−515040(P2006−515040)の分割
【原出願日】平成16年6月2日(2004.6.2)
【出願人】(591076811)ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド (265)
【Fターム(参考)】