説明

周波数安定化レーザー・システム

【課題】周波数安定化レーザ・システムを提供する。
【解決手段】レーザー安定化システム100は、第1の端部及び第2の端部を備えたレーザー源104と、第1の端部及び第2の端部を備えた第1の導波管部であって、第1の導波管部の第1の端部がレーザー源104の第1の端部に結合される第1の導波管部と、第1の端部及び第2の端部を備えた第2の導波管部であって、第1の導波管部の第1の端部がレーザー源104の第2の端部に結合される第2の導波管部と、第1の導波管部の第2の端部と第2の導波管部の第2の端部との間に結合された共鳴振動数を備えたマイクロキャビティ102から成る。さらに、マイクロキャビティ102とレーザー源104との間に結合された電子ロッキングループ108が、レーザー源104をマイクロキャビティ102の共鳴振動数に電子的にロックする。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願についてのクロス・リファレンス
[0001] 本出願は、2011年5月24日に米国に仮出願された出願番号第61/489,659号に基づく優先権を有し、その開示はリファレンスとしてここに組み入れられる。
【背景技術】
【0002】
[0002] より大きなレーザー技術が、2、3のヘルツ(Hz)のライン幅のレーザー源を提供することができ、より大きなレーザーシステムの高い電力消費および物理的なサイズは、レーザー・ジャイロスコープ、原子時計および分配されたファイバー光学センシングのような多くの市販用途に関しては容認できない。
【0003】
[0003] いくつかのレーザー技術がレーザーのライン幅を減らすために波長選択フィルタとしてマイクロキャビティを使用すると共に、多くのマイクロキャビティのライン幅はマイクロキャビティの大きな自由なスペクトル範囲(FSR)のために、全く大きい。
【発明の概要】
【課題を解決するための手段】
【0004】
[0004] レーザー安定化システムは、
第1の端部及び第2の端部を備えたレーザー源と、
第1の端部及び第2の端部を備えた第1の導波管部であって、第1の導波管部の第1の端部が前記レーザー源の第1の端部に結合されることを特徴とする第1の導波管部と、
第1の端部及び第2の端部を備えた第2の導波管部であって、第1の導波管部の第1の端部が前記レーザー源の第2の端部に結合されることを特徴とする第2の導波管部と、
前記第1の導波管部の第2の端部と前記第2の導波管部の第2の端部との間に結合されたマイクロキャビティであって、該マイクロキャビティが共鳴振動数を備えることを特徴とするマイクロキャビティと、
前記マイクロキャビティと前記レーザー源との間に結合された電子ロッキングループであって、該電子ロッキングループが、前記レーザー源を前記マイクロキャビティの共鳴振動数に電子的にロックし、前記第1の導波管部が、前記マイクロキャビティと前記レーザー源との間に結合された光学ロッキングループであり、前記光学ロッキングループが、前記レーザー源を前記マイクロキャビティの共鳴振動数に光学的にロックする、ことを特徴とする電子ロッキングループと、
前記マイクロキャビティと結合するマイクロキャビティ安定化ループであって、該マイクロキャビティ安定化ループが、リファレンス周波数に対して前記マイクロキャビティの共鳴振動数を安定化させることを特徴とする、マイクロキャビティ安定化ループと、
前記レーザー安定化システムから光を出力するための出力部と、
を有することを特徴とする。
【0005】
[0005] 図面は典型的な実施形態だけを表し、したがって、限定するように解釈されるべきではなく、典型的な実施形態は添付の図面および詳細な説明によってで追加的な特性を理解されるであろう。
【図面の簡単な説明】
【0006】
【図1】[0006] 図1は、本発明の周波数安定化レーザー・システムのブロック図である。
【図2】[0007] 図2は、本発明のレーザーを安定化させる方法200を例示しているフローチャートである。
【図3】[0008] 図3は、本発明の図1に示される周波数安定化レーザー・システムを利用する光ファイバ・ジャイロスコープのブロック図である。
【発明を実施するための形態】
【0007】
[0009] 一般の慣行によれば、種々の記載されている特徴は、一定の比率で描かれず、典型的な実施形態に関連する特定の特徴を強調するように描かれる。
[0010] 以下の詳細な説明では、本願発明の一部を形成する図面を参照して説明特定の例示の実施形態を介して示される。しかし、他の実施形態が利用されることができ、論理的、機械的、および、電気的な変更がなされ得ると理解されよう。さらに、図面および明細書に示される方法は、個々のステップが実行されることができる命令を制限することとして解釈されることになっていない。したがって、以下の詳細な説明は、限定的な意味にはとられない。
【0008】
[0011] この説明は、ウェーハレベルの狭いライン幅の異成分から成る単一の周波数レーザーを含む、マイクロキャビティを備える周波数安定化レーザー・システムの方向性である。ある実施態様では、これらの周波数安定化レーザー・システムは、相補型金属酸化膜半導体(CMOS)互換性を持つシリコン基板または他の適当な基板材料上に製造される。ある実施態様では、これらの周波数安定化レーザー・システムが、レーザー・ジャイロスコープ、原子時計、分配されたファイバー光学センシングおよび他の商用光学的センシングアプリケーションで使われる。
【0009】
[0012] 実施形態によっては、非常に狭いライン幅を有する安定したリファレンスキャビティが、含まれる。キャビティの技巧は、100KHzのレベルにキャビティのライン幅に達するために極めて高いことを必要とする。whispering-gallery-modes(WGMs)に基づくマイクロキャビティは、高いスタンドアロン品質要因(Qファクタ)を提供することができる。マイクロキャビティが波長選択構成要素および光学的電動転送ツールとして使われるときに、高いQファクタは導波管とマイクロキャビティとの間の高いカップリング損失によって減少する。カップリング損失は、マイクロキャビティのライン幅の増加を引き起こすことができる。
【0010】
[0013] 図1は、本発明によるレーザー安定化システム100(また、マイクロキャビティ周波数安定化レーザー・システムと称される)のブロック図である。典型的な実施形態において、システム100はレーザーの周波数を安定させる周波数安定化レーザー・システムである。システム100は、2つの別々の係止環状線によって安定する。具体的には、システム100は、受動的なマイクロキャビティのwhispering-gallery-mode (WGM)に、レーザーダイオードを安定させるために、自己注入光学ロッキングとPound-Drever-Hall (PDH)エレクトロニックフィードバックロッキングとの間で用いる。
【0011】
[0014] PDHロッキングループ108は、予め定められた周波数にまで、レーザー源(例えば単一の周波数レーザー104)をロックするのに用いる。具体的には、PDHロッキング・ループ108は、Hzレベルでレーザーライン幅を制御するのに用いる。ある実施態様では、シリコンチップ上のヘテロジニアス設計は、それをCMOSエレクトロニクスと互換性を持つようにする。このように、システム100は、小さなシリコン-オン-絶縁体(SOI)チップ上にCMOS互換性を持つヘテロジニアス非常に狭いライン幅半導体レーザ(例えば単一の周波数レーザー104)を含む。図1の図示した実施形態において、大きいサイズのマイクロキャビティ102(例えばマイクロ・ディスク、マイクロ・リングまたは他の適当なマイクロキャビティ)が、単一の周波数レーザー104(例えばマルチ電極(配布されたフィードバック)DFBレーザー)を安定させるためにリファレンスキャビティとして使われる。他の実施形態では、他のレーザー源が、単一の周波数レーザー104の代わりに使われる。より高いQマイクロキャビティを製造することはより容易であるのでそれがよりかなりのキャビティサイズを有する、大きいサイズ・マイクロキャビティがマイクロキャビティ102のために好まれると共に、他の実施態様はマイクロキャビティ102のためのより小さいサイズ・マイクロキャビティを使用する。マイクロキャビティ102が、Pound-Drever-Hallロッキング信号として使われることができる反射信号を出力するためにリファレンスキャビティとして使われる。ある実施態様では、大部分のレーザーパワーは、リファレンスキャビティ(マイクロキャビティ102)の前に、Y-カプラ(例えばY-カプラ114)から放射される。レーザーの少ない分だけは、パッシブリファレンスマイクロキャビティ102にロックされるのに用いられ、それゆえ、リファレンスキャビティ(マイクロキャビティ102)が、キャビティの内部でハイパワーによって妨げられるのを得ない。
【0012】
[0015] 図1に示されるシステム100において、マイクロキャビティ102は、大きいサイズのマイクロキャビティ(例えば400ミクロンを超える)である。ある実施態様では、大きなサイズのマイクロキャビティ102は、ほぼ107(ほぼ1000万)または109(ほぼ10億)のレベルでQファクタを可能にする。かかる高いQ値は、ほぼ100-200KHzのライン幅を有するマイクロキャビティ102に結果としてなる。マイクロキャビティ102の高いQファクタを維持するために、結合導波管106は、あまりマイクロキャビティ102に近くないように配置される。導波管106が図1に示されるシステム100の実施態様で使われると共に、他の実施態様は導波管106の代わりにファイバーを使用する。
【0013】
[0016] 重大なカップリング状態が達されるとき、導波管106(それは、また、PDHロッキング理論のマイクロキャビティから、反射ポートと考慮される)の伝達ポートは、シャープなディップ(sharp dip)を見る。シャープなディップは、ほぼ100KHz以下のライン幅から生じる。シャープなディップが、Pound-Drever-Hall(PDH)ロック機構110のための判別式として使われることができる。共鳴振動数と同様に、リファレンスキャビティの屈折率は、注入-電流誘導された電気光学効果によって、能動的に制御されることができる。速い制御ループ(自己注入ロッキングループ107の光学位相変調)および遅い制御ループ(PDHロッキングループ108の電子直流変調)は、レーザー周波数を安定させるのに用いられる。実施形態によっては、第3の安定化ループ(例えばマイクロリング安定化ループ109)は、高いQマイクロキャビティ(例えばマイクロキャビティ102)の共鳴振動数を安定させるのに用いる。
【0014】
[0017] 導波管ベースの位相変調器は、PDHロッキングループ108のための高周波領域で、位相を調整するのに用いられる。図1に示される実装において、位相変調器は単一の周波数レーザー104に組み込まれる。(PDHロッキングループ108によって)レーザーの直流変調は、低速でレーザーを調整するのに用いられる。導波管ベースの光アイソレータ112は、後方のレーザーを遮断するのに用いられる。Y-カプラ114は、出力部116からのシステム100およびPDHロッキングループ108のために使われるリファレンスレーザービームから発されるメイン・レーザービームを切り離すのに用いられる。導波管ベースの光アイソレータ118は、システム100に出力部116から来ているいかなる光も遮断するのに用いられる。典型的な実施形態では、導波管ベースの光アイソレータ118は、サーキュレータの一部である。システム100において、PDHロッキングループのために使用されるレーザービームを伝播するのに用いられる導波管の近くで、大きいサイズのマイクロキャビティ102(例えばマイクロ・ディスク、マイクロ・リング)は、作られる。ある実施態様では、マイクロキャビティは、109より大きいQファクタおよび200KHz未満のライン幅を有する。いくらかの実装において、導波管とマイクロキャビティとの間のカップリング効率は、重大なカップリング状態に達するために調整されることができる。
【0015】
[0018] ある実施態様では、マイクロキャビティの屈折率は、ガスチャンバ120に入る時計回りの光線の強度のいかなる変化からも、フィードバックに基づいて注入電流の誘導された電気光学効果によって調整されることができる。強度の変化は、マイクロキャビティ102の共鳴振動数の変化を表す。強度の変化は、フォトディテクタ122(または他の適当な探知器)によって検出され、そして、この情報は、位相変調器124(例えば熱位相変調器)を共鳴振動数を修正するために制御するのに用いられる。
【0016】
[0019] 自己注入ロッキングループ107は、予め定められた周波数まで、レーザー源(例えば単一の周波数レーザー104)をロックするのに用いられる。具体的には、自己注入光学フィードバック信号は、自己注入ロッキングループ107のマイクロキャビティ102(または高いQマイクロ・リングキャビティ)の後、送信されたCCW光線から来る。フィードバック・ビームは、高いQマイクロキャビティフィルタ効果のために、高いフーリエ周波数での低いノイズと非常に狭いライン幅を有する。自己注入ロッキングループ107によって提供される自己注入光学フィードバックは、何十デシベル(dB)によってDFBレーザーライン幅を減らすのを助ける。自己注入ロッキングループ107によって提供された自己注入光学フィードバックは、レーザー周波数にマイクロキャビティ102の共鳴振動数に続く(または、ロックする)ことを強いて、より安定しているPDHロッキングループ108を作るのを助ける。
【0017】
[0020] 標準の単一の周波数半導体レーザ(例えば単一の周波数レーザー104)は、電界の位相と振幅との間でその低いQキャビティおよび強いカップリングのために高い位相ノイズを示す。自己注入光学フィードバックは、マイクロキャビティ102(または安定したマイクロリングリファレンスキャビティ)に、レーザーをロックするのに用いることができる。加えて、PDHロッキング技術は、PDHロッキングループ108でより堅くてより多くの安定したロッキングを成し遂げるのに用いられる。PDHロッキングループ108は、非常に高い変調周波数領域を探査することによって周波数安定化の高い感度を有する。マイクロキャビティ102からの時計回りの他のレーザービームが、吸収線測定のために使われる。マイクロキャビティ102上の位相変調器124(例えば熱位相変調器)は、吸収線測定から誤差信号に基づいてマイクロキャビティの光路を調整するのに用いられる。
【0018】
[0021] マイクロキャビティ102は、システム100のダイオードレーザ安定化のためのリファレンスキャビティとして役立つ。ある実施態様では、マイクロキャビティ102は、高品質ファクター(Q)を有する非常に安定した受動的なマイクロリングキャビティである。ある実施態様では、安定したリファレンスキャビティとして使用されるマイクロキャビティ102は、このヘテロジニアス・レーザーアプローチの安定したリファレンスキャビティとしての窒化ケイ素の高いQマイクロ・リングである。ある実施態様では、モノリシック設計は、マイクロキャビティ102の感度を音響振動に対して下げるのに用いられる。窒化ケイ素(Si3N4)の熱光学係数(TOC)は、SiO2(1*10-5)の同じレベルにあって、シリコン(2.3*10-4)のTOCより1桁低い。リファレンスキャビティの熱安定は、窒化ケイ素を用いて利用されるが、真空キャビティと比較してまだ熱的にノイズが多い。このように、ネガティブフィードバック制御は、熱的にそれを安定しているようにするのに必要である。
【0019】
[0022] マイクロリング安定化ループ109を有する典型的な実施形態では、分子吸収線が、熱雑音に対してマイクロキャビティ102を安定させるのに参照として使われる。図1に示すように、マイクロキャビティ102(例えばマイクロ・リング)からの時計回りのレーザービームが、吸収線測定のために使われる。マイクロキャビティ102上の位相変調器124(例えば熱位相変調器)は、吸収線測定から誤差信号に基づいて光路を調整するのに用いられる。
【0020】
[0023] 自己注入ロック機構(例えば自己注入ロッキングループ107)は、マイクロキャビティ102の共鳴振動数に、単一の周波数レーザー104のレーザー周波数をロックするのに用いられる。外部の電界音に対するレーザーダイオード(例えば単一の周波数レーザー104)の高い感度は位相ノイズ周波数域の高水準に結果としてなることがありえるが、それもレーザーダイオード(例えば単一の周波数レーザー104)のレーザービームを出している特徴を修正することを弱い外部の光学フィードバックを使用する可能性があるようにする。自己注入ロッキングループ107(または他の光学フィードバックループ)は、DFBレーザー(単一の周波数レーザー104)にリファレンスキャビティ(マイクロキャビティ102)の共鳴器周波数に続いて、それをPDHロッキングループ108(または他の電子ロック・ループ)がロックするのがより容易にすることを強いることができる。光学フィードバックループ(自己注入ロッキングループ107)の遅い位相変調器は、マイクロキャビティ102の反響するピークに安定ロッキングを維持するのに役立つ。高いQリファレンスキャビティ(マイクロキャビティ102)も、2、3桁ダイオードレーザライン幅を減らすのを助ける。自己注入ロッキング理論によれば、最終的なライン幅減少は、注入力の一部およびDFBレーザーキャビティ(単一の周波数レーザー104)、および、リファレンスキャビティ(マイクロキャビティ102)と間のキャビティライン幅の比率と比例している。図1に示すように、光学フィードバック信号は、マイクロ・リング(マイクロキャビティ102)からの反時計回りの送信された(CCW)レーザービームである。マイクロキャビティ102もまた、そのライン幅より高い周波数構成要素で、相対的な強度音(RIN)および位相ノイズにフィルタをかけるために光学フィルタとして作用する。
【0021】
[0024] ある実施態様では、単一の周波数レーザー104は、遅いおよび速い位相変調器を有する単一の周波数半導体レーザーである。単一の周波数レーザー104は、2、3百MHzまでフラットな周波数変調(FM)反応を有する。
【0022】
[0025] PDHロッキングループ108において使用されるPound-Drever-Hall(PDH)ロッキング技術は、非常に高い変調周波数地域を探査することによって周波数安定化の高い感度を有する。単一の周波数レーザー104として複数電極DFBレーザーを使用することにより、広いバンド幅平面周波数変調にレーザーダイオードへの(FM)反応を提供する。複数電極DFBレーザーの周波数変調速度は、2、3数百MHzものレベルに達することができ、PDHロッキングループ108のPDHロッキング感度を改良する。PDHロッキングループ108では、DFBレーザー(単一の周波数レーザー104)の右側の側面(HRファセット)からのキャリア・ビームは、マイクロキャビティ102(またはマイクロリングリファレンスキャビティ)に連結され、一方、反響の外側である変調側波帯は、直接フォトディテクタ126に発信される。次いで、電気フィードバックループ(PDHロッキングループ108)のための誤差信号を与える受け取られる正弦波信号の位相は、正弦波参照RFのそれと比較される。
【0023】
[0026] 用途によっては、例えばジャイロ・アプリケーションに関して、システム100のレーザー周波数は、異なる回転方向の下でジャイロ共鳴器と共鳴するために調整できなければならない。提案されたヘテロジニアスの単一の周波数レーザー104の周波数は、異なる直接的な現在の(DC)レベルに、PDHロッキングループ108のPDH誤差信号をロックすることによって調整されることができる。より広いチューニング範囲が要求される場合、より大きい周波数シフトはマイクロキャビティ102上に取り付けられる位相変調器124(例えば熱位相変調器)を調整することによって成し遂げられることができる。ある実施態様では、位相変調器124(例えば熱位相変調器)がマイクロキャビティ102の安定化のためにも使われる。追加的な外部の変調信号については、キャビティ共鳴振動数は、2、3KHz速度で調整されることができる。
【0024】
[0027] 図2は、本発明のレーザーを安定させる方法200を例示しているフローチャートである。方法200は、レーザーが予め定められた周波数に光学的ロックされる202から始まる。レーザーが予め定められた周波数に電子的に係止される所で、次の方法200は204へ進む。他の実施形態では、追加的なステップは、また、レーザーを安定させるには必要とされる。例えば、マイクロリング安定化ループ109を有する典型的な実施形態は、マイクロキャビティ102の共鳴振動数変化に応答し、マイクロキャビティ102の位相を調整する。典型的な実施形態において、位相変調器124(例えば熱位相変調器)はマイクロキャビティ102の共鳴振動数変化に応答して、マイクロキャビティ102の位相を調整するのに用いられる。
【0025】
[0028] 図3は、本発明の図1に示される周波数安定化レーザー・システム100を利用している光ファイバ・ジャイロスコープ300のブロック図である。光ファイバ・ジャイロスコープは、少なくとも単一のマイクロキャビティ周波数安定化レーザー・システム(例えばシステム100および光ファイバ・コイル302)を含む。システム100および光ファイバ・コイル302に加えて、光ファイバ・ジャイロスコープはまた、ソフトウェア・プログラム、ファームウェアまたはさまざまな方法、方法作業、算出および制御機能を実行するための他の計算機可読の指示を含むかまたは機能する処理ユニットを含むことができ、光ファイバ・ジャイロスコープ300において使われる。
【0026】
[0029] これらの指示は、概して計算機可読の指示またはデータ構造の記憶のために使用されるいかなる適切な計算機可読の媒体にも保存される。計算機可読の媒体は、汎用であるか特別な目的のコンピュータまたはプロセッサによってアクセスされることができるいかなる利用できるメディアもまたはいかなるプログラム可能な論理装置としても実装されることができる。適切なプロセッサで読取り可能なメディアは、磁気であるか光学的メディアのような記憶装置またはメモリ・メディアを含むことができる。例えば、記憶またはメモリ・メディアは、従来のハードディスク、コンパクトディスク−読み取り専用メモリ(CD-ROM)、揮発性または不揮発性媒体(例えばランダムアクセスメモリ(RAM))(シンクロナスなダイナミックランダムアクセスメモリ(SDRAM)、ダブルデータレート(DDR)RAM、RAMBUSダイナミックRAM(RDRAM)、静的なRAM(SRAM)その他のものを含むがこれらに限定されない)、読み取り専用メモリ(ROM)電気的消去書込み可能な読出し専用メモリ(EEPROM)およびフラッシュメモリ、その他)を含むことができる。適切なプロセッサで読取り可能なメディアはまた、電気であるか、電磁気であるかデジタル信号のような伝達メディアを含むことができ、通信媒体(例えばネットワークおよび/または無線リンク)を経て伝えられる。
【0027】
[0030] 典型的な実施形態では、周波数安定化レーザー・システムが複数電極DFBレーザー源、高いQマイクロキャビティ、導波管/繊維、循環器、マスター出力、光アイソレータ、レシーバ(例えばフォトディテクタ)、ロック・サーボ1PDHループ、ガスチャンバおよび探知器そして、熱位相変調器を含む。マルチ電極DFBレーザー源は、2つの別々のロッキングループによって安定する。第一に、自己注入ロッキングループは、予め定められた周波数に複数電極DFBレーザー源をロックするのに用いられる。第2に、PDHロッキングサーボループは、予め定められた周波数に複数電極DFBレーザー源をロックするのに用いられる。加えて、第3のマイクロリング安定化ループは、高いQマイクロキャビティの共鳴振動数を安定させるのに用いられる。
【0028】
[0031] 特定の実施形態が例示され、本願明細書において記載されていたにもかかわらず、いかなる装置(それは同じ目的を達成するために算出される)も特定の図示した実施形態と置換されることができることは従来技術において通常の技術のそれらによって認められる。したがって、本発明が請求項およびそれの等価物だけによって制限されることを明白に意図される。
例示の実施形態
[0032] 実施形態1は、レーザー安定化システム(100)であって、
第1の端部及び第2の端部を備えたレーザー源(104)と、
第1の端部及び第2の端部を備えた第1の導波管部(106)であって、第1の導波管部(106)の第1の端部が前記レーザー源(104)の第1の端部に結合されることを特徴とする第1の導波管部(106)と、
第1の端部及び第2の端部を備えた第2の導波管部(106)であって、第1の導波管部(106)の第1の端部が前記レーザー源(104)の第2の端部に結合されることを特徴とする第2の導波管部(106)と、
前記第1の導波管部(106)の第2の端部と前記第2の導波管部(106)の第2の端部との間に結合されたマイクロキャビティ(102)であって、該マイクロキャビティ(102)が共鳴振動数を備えることを特徴とするマイクロキャビティ(102)と、
前記マイクロキャビティ(102)と前記レーザー源(104)との間に結合された電子ロッキングループ(108)であって、該電子ロッキングループ(108)が、前記レーザ源(104)を前記マイクロキャビティ(102)の共鳴振動数に電子的にロックし、前記第1の導波管部(106)が、前記マイクロキャビティ(102)と前記レーザー源(104)との間に結合された光学ロッキングループ(107)であり、前記光学ロッキングループ(107)が、前記レーザー源(104)を前記マイクロキャビティ(102)の共鳴振動数に光学的にロックする、ことを特徴とする電子ロッキングループ(108)と、
前記マイクロキャビティ(102)と結合するマイクロキャビティ安定化ループ(109)であって、該マイクロキャビティ安定化ループ(109)が、リファレンス周波数に対して前記マイクロキャビティ(102)の共鳴振動数を安定化させることを特徴とする、マイクロキャビティ安定化ループ(109)と、
前記レーザー安定化システム(100)から光を出力するための出力部(116)と、
を有することを特徴とする。
【0029】
[0033] 第2の実施形態は、実施形態1のシステムを含み、マイクロキャビティ安定化ループは、マイクロキャビティに結合する熱位相変調器を含み、熱位相変調器は、ガスチャンバを介してマイクロキャビティから放射されるレーザービームの吸収線測定に基づいて変化するフィードバック信号を受信する。
【0030】
[0034] 実施形態3は、実施形態2のシステムを含み、マイクロキャビティ安定化ループはさらに、マイクロキャビティに結合した吸収線を有するガスチャンバ、および、ガスチャンバに連結するフォトディテクタを更に含み、レーザービームがガスチャンバを通過したあと、フォトディテクタは、マイクロキャビティから放射されるレーザービームの強度を測定し、フィードバック信号は、強度に基づいて異なり、強度の変化は、マイクロキャビティの共鳴振動数の変化を表すことを特徴とする。
【0031】
[0035] 実施形態4は、実施形態1乃至3のいずれかの1つのシステムを含み、マイクロキャビティ安定化ループは、熱的ノイズに対して熱的にマイクロキャビティを安定させることを特徴とする。
【0032】
[0036] 実施形態5は実施形態1乃至4のいずれかのシステムを含み、レーザー源は単一の周波数レーザーである。
[0037] 実施形態6は実施形態1乃至5のいずれかのシステムを含み、レーザー源は複数電極分配されたフィードバック・レーザーである。
【0033】
[0038] 実施形態7は、実施形態1乃至6のいずれかのシステムを含み、マイクロキャビティは、ほぼ107を超える品質ファクター(Q)を有する受動的なマイクロリングキャビティである。
【0034】
[0039] 実施形態8は、実施形態1乃至7のいずれかのシステムを含み、マイクロキャビティはマイクロ・ディスクかマイクロ・リングである。
[0040] 実施形態9は、実施形態1乃至8のいずれかのシステムを含み、電子ロック・ループはPound-Drever-Hallロック・ループからなる。
【0035】
[0041] 実施形態10は実施形態1乃至9のいずれかのシステムを含み、電子ロック・ループは、電気光学効果によって誘導された注入電流によって、共鳴振動数に対してレーザー源を電子的にロックすることを特徴とする。
【0036】
[0042] 実施形態11は、レーザーを安定化させる方法を含み、
光学的ロッキングループを使用しているマイクロキャビティの共鳴振動数にレーザーを光学的にロックするステップと、
電子ロッキングループを使用してマイクロキャビティの共鳴振動数にレーザーを電子的にロックするステップと、
マイクロキャビティ安定化ループを使用してリファレンス周波数にマイクロキャビティの共鳴振動数を安定させるステップと、を含むことを特徴とする。
【0037】
[0043] 実施形態12は、実施形態11の方法を含み、マイクロキャビティの共鳴振動数を安定させることは、マイクロキャビティからのレーザービームの吸収線測定から受け取られる誤差信号に基づいてマイクロキャビティの光路を調整することを含む。
【0038】
[0044] 実施形態13は、実施形態11または12の方法を含み、マイクロキャビティの共鳴振動数を安定させるステップは、
吸収線を有するガスチャンバを介してマイクロキャビティからレーザービームを通過させるステップと、
レーザービームが、吸収線を有するガスチャンバを通過した後、マイクロキャビティからレーザービームの強度を検出するステップと、
レーザービームが吸収線を有するガスチャンバを通過した後、レーザービームの強度に基づいて熱位相変調器を使用してマイクロキャビティの光路を調整するステップと、
を有することを特徴とする。
【0039】
[0045] 実施形態14は、実施形態11乃至13のいずれかの方法を含み、共鳴振動数にレーザーを光学的にロックするステップが、自己注入ロッキングループのレーザーの位相を光学的に調整するステップを更に含むことを特徴とする。
【0040】
[0046] 実施形態15は、実施形態11乃至14のいずれかの方法を含み、共鳴振動数にレーザーを電子的にロックするステップは、Pound-Drever-Hallロック・ループの直流電流を電子的に調整するステップを更に含むことを特徴とする。
【0041】
[0047] 実施形態16は、実施形態11乃至15のいずれかの方法を含み、マイクロキャビティ安定化ループを使用してリファレンス周波数に、マイクロキャビティの共鳴振動数を安定させるステップは、熱的雑音に対してマイクロキャビティを熱的に安定させるステップから成ることを特徴とする。
【0042】
[0048] 実施形態17は、光ファイバ・コイルから成る光ファイバ・ジャイロスコープと、光ファイバ・コイルに結合されたマイクロキャビティ周波数安定化レーザー・システムとを有し、マイクロキャビティ周波数安定化レーザー・システムが、
第1の端部および第2の端部を備えたレーザー源と、
第1の端部および第2の端部を備えた第1の導波管部であって、第1の導波管部の第1の端部がレーザー源の第1の端部に結合されることを特徴とする第1の導波管部と、
第1の端部および第2の端部を備えた第2の導波管部であって、第2の導波管部の第1の端部がレーザー源の第2端部に結合することを特徴とする第2の導波管部と、
第1の導波管部の第2の端部と第2の導波管部の第2の端部との間に結合されるマイクロキャビティであって、マイクロキャビティが共鳴振動数を備えることを特徴とするマイクロキャビティと、
前記マイクロキャビティと前記レーザー源との間に結合された電子ロッキングループであって、該電子ロッキングループが、前記レーザー源を前記マイクロキャビティの共鳴振動数に電子的にロックし、前記第1の導波管部が、前記マイクロキャビティと前記レーザー源との間に結合された光学ロッキングループであり、前記光学ロッキングループが、前記レーザー源を前記マイクロキャビティの共鳴振動数に光学的にロックする、ことを特徴とする電子ロッキングループと、
前記マイクロキャビティと結合するマイクロキャビティ安定化ループであって、該マイクロキャビティ安定化ループが、リファレンス周波数に対して前記マイクロキャビティの共鳴振動数を安定化させることを特徴とする、マイクロキャビティ安定化ループと、
レーザー安定化システムから光を出力するための出力部と、
を有することを特徴とする。
【0043】
[0049] 実施形態18は、実施形態17の光ファイバ・ジャイロスコープを含み、マイクロキャビティ安定化ループは、マイクロキャビティに連結する熱位相変調器を含み、熱位相変調器は、マイクロキャビティから放射されるレーザービームの吸収線測定に基づいて変化するフィードバック信号を受信する。
【0044】
[0050] 実施形態19は、実施形態17または18の光ファイバ・ジャイロスコープを含み、電子ロック・ループは、Pound-Drever-Hallロッキングループからなることを特徴とする。
【0045】
[0051] 実施形態20は、実施形態17乃至19のいずれかの光ファイバ・ジャイロスコープを含み、電子ロッキングループは、電気光学効果によって誘導された注入電流によって、共鳴振動数にレーザー源を電子的にロックする。

【特許請求の範囲】
【請求項1】
レーザー安定化システム(100)であって、
第1の端部及び第2の端部を備えたレーザー源(104)と、
第1の端部及び第2の端部を備えた第1の導波管部(106)であって、第1の導波管部(106)の第1の端部が前記レーザー源(104)の第1の端部に結合されることを特徴とする第1の導波管部(106)と、
第1の端部及び第2の端部を備えた第2の導波管部(106)であって、第1の導波管部(106)の第1の端部が前記レーザー源(104)の第2の端部に結合されることを特徴とする第2の導波管部(106)と、
前記第1の導波管部(106)の第2の端部と前記第2の導波管部(106)の第2の端部との間に結合されたマイクロキャビティ(102)であって、該マイクロキャビティ(102)が共鳴振動数を備えることを特徴とするマイクロキャビティ(102)と、
前記マイクロキャビティ(102)と前記レーザー源(104)との間に結合された電子ロッキングループ(108)であって、該電子ロッキングループ(108)が、前記レーザ源(104)を前記マイクロキャビティ(102)の共鳴振動数に電子的にロックし、前記第1の導波管部(106)が、前記マイクロキャビティ(102)と前記レーザー源(104)との間に結合された光学ロッキングループ(107)であり、前記光学ロッキングループ(107)が、前記レーザー源(104)を前記マイクロキャビティ(102)の共鳴振動数に光学的にロックする、ことを特徴とする電子ロッキングループ(108)と、
前記マイクロキャビティ(102)と結合するマイクロキャビティ安定化ループ(109)であって、該マイクロキャビティ安定化ループ(109)が、リファレンス周波数に対して前記マイクロキャビティ(102)の共鳴振動数を安定化させることを特徴とする、マイクロキャビティ安定化ループ(109)と、
前記レーザー安定化システム(100)から光を出力するための出力部(116)と、
を有することを特徴とするレーザー安定化システム(100)。
【請求項2】
前記マイクロキャビティ安定化ループ(109)が、
前記マイクロキャビティ(102)に結合された熱位相変調器(124)と、
前記マイクロキャビティ(102)に結合された吸収線を備えたガスチャンバ(120)と、
前記ガスチャンバ(120)に結合されたフォトディクタ(122)と、
を有し、
レーザービームが前記ガスチャンバ(120)の中を通過した後、前記フォトディテクタ(122)は、前記マイクロキャビティ(102)から放射されたレーザービームの強度を測定し、該強度に基づいて変化するフィードバック信号を生成させ、
強度の変化が、前記マイクロキャビティ(102)の共鳴振動数における変化の強度であることを特徴とする請求項1に記載のシステム(100)。
【請求項3】
光学ロッキングループ(107)を用いてマイクロキャビティ(102)の共鳴振動数にレーザー(104)を光学的にロックするステップ(202)と、
電子的ロッキングループ(110)を用いてマイクロキャビティ(102)の共鳴振動数にレーザー(104)を電子的にロックするステップ(204)と、
マイクロキャビティ安定化ループ(109)を用いてリファレンス周波数にマイクロキャビティ(102)の共鳴振動数を安定化させるステップと
を有することを特徴とするレーザーを安定化させる方法(200)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−244182(P2012−244182A)
【公開日】平成24年12月10日(2012.12.10)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−116453(P2012−116453)
【出願日】平成24年5月22日(2012.5.22)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)
【Fターム(参考)】