説明

回転電機の検査方法

【課題】巻線間の耐サージ電圧を向上することをができる回転電機の検査方法を提供する。
【解決手段】接地された筐体2から絶縁されたコア20に巻線が巻回された複数のコイル3が回転磁界を生成する回転電機1の巻線間耐サージ電圧を検査する検査方法であって、接地された筐体から絶縁された前記コアと前記各巻線との間の静電容量Cccと、前記コアと前記筐体との間の静電容量Ccfと、前記コアが前記筐体に接地された状態の巻線間耐サージ電圧E0とを測定するステップと、前記接地された筐体と前記コアとを絶縁した状態で、E0を超えて{(Ccf+3Ccc)/(Ccf+2Ccc)}・E0未満の値のサージ電圧Esを前記巻線間に印加し、絶縁破壊電流が流れるか否かを判定するステップとを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は巻線間にサージ電圧が加わる回転電機の検査方法に関する。
【背景技術】
【0002】
近年、省エネルギー化の観点からインバータを用いたモータの可変速運転が盛んに行われている。しかしながら、矩形波電圧を生成するインバータ電源でモータを駆動した場合、インバータの発する急峻なサージ電圧が原因となりモータ巻線間に従来の商用周波電源駆動時に比し高い電圧が発生し、巻線間で絶縁劣化が生じる恐れがあった。このような報告例には、例えば非特許文献1がある。
一方、非特許文献2では、インバータサージ電圧が加わる口出し側第1コイルのターン数を減らし絶縁皮膜を厚くするなどの絶縁強化を施す方法が提案されている。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】電気学会技術報告第739号、p.14〜20,1999年 8月発行
【非特許文献2】電気学会回転機研究会資料RM−00−92〜109 P.19, 2000年10月18日発行,端子コイルの巻き数を低減した誘導電動機の特性試験,一杉 和良 森安 正司
【発明の概要】
【発明が解決しようとする課題】
【0004】
非特許文献1記載の問題を解決するために、例えば、モータの巻線間の絶縁強化をする方法が考えられてきた。絶縁強化を行い巻線間の耐サージ電圧を向上する方法の一つには、モータ巻線の絶縁皮膜を厚くする方法が考えられる。しかしながら、巻線の絶縁皮膜を厚くすると、ターン数×絶縁厚さ増加分だけコイル寸法が大きくなる。このため、固定子のスロットにコイルが納まらなくなる問題があった。また、非特許文献2の技術であっても、同文献にあるように、モータ(回転電機)の機械出力特性が変化するため、絶縁強化には限界があった。
【0005】
そこで、本発明は、巻線間の耐サージ電圧を向上することができる回転電機の検査方法を提供することを課題とする。
【課題を解決するための手段】
【0006】
前記課題を解決するため、本発明は、接地された筐体から絶縁されたコアに巻線が巻回された複数のコイルが回転磁界を生成する回転電機の巻線間耐サージ電圧を検査する検査方法であって、接地された筐体から絶縁された前記コアと前記各巻線との間の静電容量Cccと、前記コアと前記筐体との間の静電容量Ccfと、前記コアが前記筐体に接地された状態の巻線間耐サージ電圧E0とを測定するステップと、前記接地された筐体と前記コアとを絶縁した状態で、E0を超えて{(Ccf+3Ccc)/(Ccf+2Ccc)}・E0未満の値のサージ電圧Esを前記巻線間に印加し、絶縁破壊電流が流れるか否かを判定するステップとを備える検査方法。
【発明の効果】
【0007】
本発明によれば、巻線間の耐サージ電圧を向上することをができる回転電機の検査方法を提供することができる。
【図面の簡単な説明】
【0008】
【図1】本発明の一実施形態であるインバータ駆動回転電機システムの構成図である。
【図2】固定子コアとフレームとの間の静電容量、及び、各相の固定子巻線と固定子コアとの間の静電容量を用いた等価回路である。
【図3】相間サージ電圧を印加したときのモータ巻線間分担電圧の測定回路である。
【図4】U相、V相の対コア電圧及びコイル分担電圧波形である。
【図5】各相のコイル分担電圧である。
【図6】各相のコイル分担電圧割合及びコイル測定電圧測定回路である。
【図7】相関電圧波形、相−コア間電圧波形及び相−コア間電圧の測定回路である。
【図8】相−コア間電圧の急峻電圧変化量である。
【図9】モータ固定子コアをアースに対し浮動電位にしたとき及び接地にしたときの2レベルインバータ構成図、モータ等価回路及び状態遷移図である。
【図10】モータ巻線間のサージ耐電圧増加倍率及び電流低減倍率を示す図である。
【図11】巻線間及び固定子コア−フレーム間の熱抵抗等価回路図である。
【図12】発熱量低減倍率、コア−巻線間とコア−フレーム間との熱抵抗比及び絶縁体熱伝導率の倍率を示す図である。
【図13】本発明の他の実施形態であるインバータ駆動回転電機システムの構成図である。
【図14】本発明のさらに他の実施形態であるインバータ駆動回転電機システムの構成図である。
【図15】本発明のさらに他の実施形態であるインバータ駆動回転電機システムの構成図である。
【図16】比較例であるインバータ駆動回転電機システムの構成図である。
【発明を実施するための形態】
【0009】
(第1実施形態)
本発明の一実施形態であるインバータ駆動回転電機システムを図1を参照して説明する。インバータ駆動回転電機システム200は、回転電機であるモータ1と、インバータ電源11と、モータ1及びインバータ電源11を接続する動力線18とを備え、モータ1の回転出力が負荷9を駆動する。
【0010】
インバータ電源11は、交流電圧を直流電圧に変換するコンバータ回路12と、直流電圧を安定化させる2つの平滑コンデンサ13a,13bと、直流電圧をFET(Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)などのスイッチング素子でスイッチングし、交流電圧に変換するインバータ回路14から構成される。また、インバータ電源の直列接続された平滑コンデンサ13a,13bの、上アーム16、下アーム17もしくは中間点15のいずれかが接地されている。
【0011】
モータ1は、三相交流電圧、電流によって回転磁界を作るための固定子3と、その回転磁界に応じて回転する回転子5が、筐体であるフレーム2に納められている。また、固定子3は、フレーム2と絶縁された固定子コア20と、固定子コア20に巻回された固定子巻線19とを備え、回転子5に固定されるシャフト8は、フレーム2に取り付けられた軸受6によって支えられている。シャフト8は、負荷9を回転させるため、負荷に接続されるシャフト10と絶縁カップリング22を介して連結されている。フレーム2は安全のため、直接もしくは電線を介して接地(アース)されている。
【0012】
本実施形態のモータ1は、特に、固定子3とフレーム2の間に絶縁体4を介装し、固定子コア20をアースに対し浮動電位にしている。また、回転子5のシャフト8を支える軸受6とフレーム2との間にも絶縁体7を設け、回転子5をアースに対し浮動電位にしている。浮動電位の回転子5のシャフト8は、一般に接地電位にある負荷9に接続されたシャフト10と絶縁カップリング22により機械的に接続され、電気的には絶縁されている。
【0013】
固定子3とフレーム2との間に介装された絶縁体4は、少なくとも固定子コア20がフレーム2と接触する部分に取り付けられており、すなわち、固定子コア20がフレーム2に接触するヨーク端面部分23と、固定子コア20をフレームに固定するボルト21の周囲及びボルトあるいはナットの頭下とに設けられている。この絶縁体にはエポキシ板、FRP板などの成型絶縁板や成型絶縁管を用いることができるが、固定子コア20外周や固定ボルト貫通孔に絶縁ワニスをコートすることで形成することもできる。あるいは、固定子コア表面に絶縁体を取り付けるのではなく、フレームの内側表面やボルト孔に絶縁体を取り付けてもよい。
【0014】
回転子5に嵌挿されるシャフト8の両側に設けられる軸受6とフレーム2との間にも絶縁体7が設けられ、絶縁体7は軸受6の外周に施されている。また、絶縁体7は軸受内部のボールベアリングやすべり面、シャフトの接触面に施される。絶縁体7は、回転子5の浮動電位の電圧に対し十分な耐電圧特性を有するものが望ましく、エポキシ、ポリエステルなどの樹脂やアルミナ、シリカなどのセラミックスやこれらの複合体が用いられる。
【0015】
シャフト8とシャフト10とを接続する絶縁カップリング22は、各々のシャフトに取り付けられたフランジ24,25の間に絶縁板26を挟むとともに、フランジ同士を固定するボルト27の周囲及びボルトあるいはナットの頭下に絶縁板28を挟むことで、回転子5とシャフト10とが絶縁される。
【0016】
次に、固定子3とフレーム2との間の静電容量、及び、三相モータの各相の固定子巻線19の端末U,V,Wと固定子コア20との間の静電容量を用いた等価回路を図2に示す。モータ1の固定子巻線19と固定子コア20との間には絶縁体の静電容量Cccが存在する。また、これらは中性点を固定子コア20とするY型結線回路で表すことができる。一方、固定子コア20とフレーム2とは一般には同電位であるが、本実施形態では絶縁体4にて絶縁されているため、固定子コア20とフレーム2との間に静電容量Ccfが接続される。本実施形態では、特に、静電容量Ccfを、モータ1の固定子巻線19と固定子コア20との間の静電容量Cccの7倍以下とする。
【0017】
以下、本実施形態の作用及び効果を説明するに際し、本実施形態で問題としているインバータ駆動モータの巻線間分担電圧について、比較のために、これまでの研究で得られた知見を説明する。図3に、相間サージ電圧を印加したときのモータ巻線間分担電圧測定回路を示す。サージ電源40は、ファンクションジェネレータ(FG)42と、フィルタ43と、高電圧アンプ44とで構成した。ファンクションジェネレータ42で発生した正極性のサージ電圧(急峻電圧)の立ち上がり時間はフィルタ43で調整した。この調整された正極性サージ電圧は、高電圧アンプ44で増幅した。サージ電源40は、絶縁変圧器41で100V電源系統と絶縁し浮動電位としている。これは、相間サージ電圧がモータ巻線間分担電圧に与える影響のみを検討するためには、一般的に固定子コアが接地されたモータでは、サージ電源側をアースに対して浮動電位としなければならないためである。
【0018】
モータ45のU相には、サージ電源の高電圧側Hを接続し、モータ45のV,W相にはサージ電源の低電圧側Lを接続し、U−V間及び、U-W間のモータ異相間に正極性のサージ電圧が加わるようにした。サージ電源40とモータ45との接続には高周波用の同軸ケーブル46を使用し、モータ端にはインピーダンス不整合を防止するため、終端抵抗器47を接続した。モータ45の巻線間分担電圧は、各コイルのシリーズ接続部48の絶縁を除去し、電圧プローブ49,50にて各コイルの入口と出口との対コア間電圧を計測し、これらの差分をデジタルオシロスコープ400上で演算し計測した。なお、一般に乱巻きモータでは、各コイルの巻き始めターンと巻き終わりターンとが同一スロット内で接触する場合が考えられるため、ここでは、コイルの入口と出口との間に発生するコイル分担電圧を巻線間分担電圧として計測した。
【0019】
図4(a)にU相の対コア電圧及びコイル分担電圧波形を、図4(b)にV相の対コア間電圧及びコイル分担電圧波形を示す。何れも縦軸のスケールは1[V/div]であり、横軸のスケールは500[ns/div]である。図4(a)では、U相口出し側から各コイルにU1,U2,U3,U4の番号をつけ、一方、図4(b)では、V相口出し側から各コイルにV1,V2,V3,V4の番号をつけた。図4(a)では、U相の対コア電圧は正極性に変化している。また、対コア電圧の電圧立ち上がり時刻は、U1,U2,U3,U4の順に、U相口出し側からモータ巻線内部に進むにつれて遅くなっている。U相のコイル分担電圧は、U相の対コア電圧の伝播遅延に伴って発生しており、例えば、U1のコイル分担電圧はU1とU2の対コア電圧波形の伝播遅延によって発生している。U相のコイル分担電圧では、U1の大きさがもっとも大きく、U2,U3と口出し側から中性点側に進むにつれて小さくなっている。また、コイル分担電圧がピークに達する時刻はU1,U2,U3の順に口出し側からモータ巻線内部側に進むにつれて遅くなっている。
【0020】
一方、図4(b)のV相では、対コア電圧は負極側に変化している。対コア電圧の電圧の立ち下がり時刻は、V1,V2,V3,V4の順に、V相口出し側から中性点側に進むにつれて遅くなっている。V相のコイル分担電圧は、V相の対コア電圧の伝播遅延に伴って発生しており、V1の大きさがもっとも大きく、V2,V3と口出し側からモータ巻線内部側に進むにつれて小さくなっている。また、コイル分担電圧がピークに達する時刻はV1,V2,V3の順に口出し側からモータ巻線内部側に進むにつれて遅くなっている。
【0021】
ところで今回、モータ1のU−V相間に正極性のサージ電圧を印加し、この結果、U相では、U1,U2,U3,・・・の順にモータ巻線内部側に行くにつれてコイル分担電圧が低下していることを観測した。つまり、コイル分担電圧がピークに達する時刻はU1,U2,U3の順に口出し側からモータ巻線内部側に進むにつれて遅くなっていることから考えると、モータ巻線内部側からV相口出しに行くにつれてコイル分担電圧が小さくなり、コイル分担電圧がピークに達する時刻も遅くなると推定されるところである。しかしながら、実際には、V相では口出し側V1のコイル分担電圧の大きさはモータ巻線内部側のV2やV3のコイル分担電圧に比し大きい。また、コイル分担電圧の発生時刻も、V1,V2,V3の順に口出し側からモータ巻線内部側に進むにつれて遅くなっている。さらに、U相とV相のコイル分担電圧の大きさは一致していない。
【0022】
このことは、例えば、IEC60034−17に示されているように、これまで一般的にモータ巻線間の分担電圧及びこれに伴う絶縁劣化は、相間サージ電圧が原因となり発生し、相間サージ電圧が決まればモータ巻線間分担電圧が一意に決定され、この電圧に対して絶縁対策を施せばよく、相間サージ電圧の立ち上がり時間及び変化量でモータの絶縁耐力クラスが規定されると考えられてきたことに反しており、実際には相間サージ電圧が決まっても、モータ巻線間分担電圧は一意に決定されず、従来の相間サージ電圧を基準としたインバータサージ電圧の考察、モータ絶縁設計は間違っていることを示す。
【0023】
ここで、再度、図4の電圧波形を見直すと、図4(a)のU相と、図4(b)のV相との双方の相で、各相の口出しの対コアサージ電圧が内部に伝播する際の伝播遅れによってコイル分担電圧が発生していることが判る。また、U相とV相とのコイル分担電圧は、各相の口出しに印加された対コアサージ電圧の大きさと伝播遅れにのみ関係しており、他相の対コア電圧の影響を受けていない。このことから、インバータ駆動モータのサージ電圧に対する巻線間分担電圧の発生と、これに伴う巻線間絶縁劣化とは、各相の対コアサージ電圧によって一意に決定されると考えられる。
【0024】
U相とV相とのコイル分担電圧を、各相の口出しに印加された対コアサージ電圧に対する割合で示したときの各相のコイル分担電圧割合を図5(a)に示し、比較例として相間サージ電圧に対する割合で示したときの各相のコイル分担電圧割合を図5(b)に示す。図5(a)の対コアサージ電圧では、U相とV相とのコイル分担電圧は一致している。しかしながら、図5(b)の相間サージ電圧では、U相とV相とのコイル分担電圧は一致していない。このことから、インバータ駆動モータのサージ電圧に対する巻線間分担電圧の発生と、これに伴う巻線間絶縁劣化とは、各相の対コアサージ電圧によって一意に決定されることが示された。
【0025】
なお、図5(a)では、口出しからのコイルNo.が大きくなるとともに、U相とV相のコイル分担電圧の割合のずれが大きくなっている。この原因は、中性点側のコイルではサージ電圧が巻線内を伝播する際に発生するコイル分担電圧が小さく、むしろ、固定子コアを介した遠隔コイル同士の相互誘導に伴う分担電圧の影響や、コイルエンド部の曲間亘り線の絶縁体を介した遠隔コイル同士の容量性結合に伴う分担電圧の影響が大きくなるためである。
【0026】
図6(a)に、モータ1のU相−コア間にサージ電圧を印加したときのコイル分担電圧測定結果を示し、図6(b)にその測定回路を示す。測定では、サージ電源71の高圧側を、同軸ケーブル46を介してモータ72のU相に接続し、低圧側はアース(モータコアと同電位)に接続し、U相の口出しとコア間にサージ電圧を直接印加するようにした。U相のモータ端にはインピーダンス不整合を防止するため、終端抵抗器47を接続した。一方、モータ72のV相,W相はスイッチS1,S2を用いてアースと接続するか、あるいは浮動電位にし、他相がU相のコイル分担電圧に与える影響を調べた。特に、V相,W相をフロートにした試験では、U−V相間にはサージ電圧が印加されない状態となり、従来、モータ巻線間分担電圧が相間サージ電圧に対して検討されてきたことが間違っていることを確認するための試験も兼ねている。モータ72の巻線間分担電圧は、各コイルのシリーズ接続部75の絶縁を除去し、電圧プローブ49,50にてコイルの入口と出口との対コア間電圧を計測し、これらの差分をデジタルオシロスコープ400上で演算し計測した。ここでも、乱巻コイルの巻始めターンと巻き終わりターンとの接触を想定し、コイル分担電圧を巻線間分担電圧として計測した。
【0027】
図6(a)の測定結果では、V,W相を接地したときのU相コイル分担電圧とV,W相をアースに対し浮動電位にしたときのU相コイル分担電圧は一致している。このことから、U相のコイル分担電圧は、U相−コア間に印加したサージ電圧が原因となり発生しており、他の相の影響を受けないことが示された。また、特にV,W相をアースに対し浮動電位にし、U−V相、U−W相間にはサージ電圧が印加されないようにした場合でも、U相のコイル分担電圧が発生していることから、インバータサージ電圧に対するモータ巻線間分担電圧は相間サージ電圧ではなく、各相の口出しに印加された対コアサージ電圧が原因となり発生していることが判る。なお、図3の測定回路で測定したU相コイル分担電圧を、U相の対コアサージ電圧に対する割合で示した結果も併記したが、図6の測定結果と一致しており、このことからもモータ巻線間分担電圧は、モータの各相に印加される対コアサージ電圧のみによって決定されることが示された。以上の詳細な検討の結果、インバータ駆動モータでは、モータ端における各相の対コアサージ電圧(急峻電圧変化)を低減すれば、モータ巻線間分担電圧を低減できることが明らかになった。具体的には、図6ではV,W相をアースに対し浮動電位にしてモータの相間にサージ電圧が印加されないようにしたが、モータの各相とコア間にサージ電圧が印加されないようにするためにはモータコアをアースに対し浮動電位にするか、あるいはモータコアが接地されている場合にはインバータ電源側をアースに対し浮動電位にすればよいと考えられる。
【0028】
図7(a)にモータ1をインバータ電源で駆動したときのモータ相−コア電圧波形測定回路図を示す。測定では、インバータ電源として2レベルインバータ電源80を使用した。2レベルインバータ電源80の入力側には中性点84を接地した三相絶縁トランス81を設置し、配電電源系統側の影響を受けないようにするとともに、中性点接地の三相平衡電源電圧を作成した。モータ1の固定子コア20は、アースに対し浮動電位と接地電位とが切り替えられるようにした。モータ1のU相コイル端の対コア電圧は、U相の口出しと固定子コア20の対地電圧を電圧プローブ49,50で計測し、デジタルオシロスコープ400で差分演算することで求めた。2レベルインバータ電源80が生成する相間電圧は、U相及びV相の口出しの対地電圧を電圧プローブ49,50で計測し、デジタルオシロスコープ400で差分演算することで求めた(図7(b)参照)。
【0029】
モータ1の固定子コア20をアースに対し浮動電位にしたときU相の対コア電圧波形を図7(c)に示し、接地にしたときのU相の対コア電圧波形を図7(d)に示す。ここで、モータ1の固定子コア20を浮動電位と接地に変化させても、相間電圧波形は変化しなかった。モータ1の固定子コア20を浮動電位にした場合、U相と固定子コアとの間には電圧が印加されないと推定していたが、実際には図7(c)に示す電圧が印加されていた。相対固定子コア間の急峻電圧変化量、すなわち、対コアサージ電圧は210Vであった。一方、モータ1の固定子コア20を接地した場合、U相と固定子コア間には、2レベルインバータ電源80の平滑コンデンサ13,13の対地電圧変動に伴うリップルが重畳しているが、+E/2と−E/2との間を状態遷移する2レベルインバータ電源80の典型的な電圧波形が観測された。対コアサージ電圧は300Vであった。したがって、モータ1の固定子コア20をアースに対し浮動電位にしても対コアサージ電圧を0にはできないが、少なくとも固定子コア20を接地した場合に比し低減することができることが明らかになった。なお、結果は図示しないが、図7(a)の三相絶縁トランス81の中性点84の接地を外し、三相絶縁トランス81の相端子85、2レベルインバータ電源80の平滑コンデンサ13,13の中間点15、高圧側87、低圧側88に接地点を変えても、モータ1の固定子コア20をアースに対し浮動電位にした場合、U相対コアサージ電圧の大きさは210Vであり、変化しなかった。一方、モータ1の固定子コア20を接地し、モータ1から2レベルインバータ電源80側を見たときの機器、すなわち三相絶縁トランス81、2レベルインバータ電源80をいずれもアースに対し浮動電位にした場合にもモータ1のU相対コアサージ電圧の大きさは210Vであり、インバータ電源側のいずれかの点とモータの固定子コアを接地した場合の300Vに比し対コアサージ電圧を小さくすることができた。
【0030】
図7(a)において、モータ1の固定子コア20をアースに対し浮動電位にしたにも関わらず、U相の対コアサージ電圧が発生した原因を検討する。図8に、インバータ電源90とモータ1の等価回路及び状態遷移を示す。2レベルインバータの平滑コンデンサの中間点を接地した場合を考えると、インバータ電源90は、2つの直流電源92a,92bとスイッチ93a,93b,93cとで表すことができる。一方、モータ1の各相の巻線と固定子コア20間には絶縁体の静電容量Cccが存在する。このため、モータ1は、固定子コア20を中性点とした静電容量CccのY型結線回路で表すことができる。このような等価回路において、U相の状態がHigh(H)からLow(L)に変化し、V,W相はそれぞれH,Lのまま変化しなかった場合を考える。
【0031】
固定子コア20をアースに対し浮動電位にした場合と、固定子コア20を接地した場合との状態遷移及び各相の対コア電圧Vphase to core、対コアサージ電圧ΔVphase to coreを、それぞれ図8(a),(b)の表に示す。固定子コアを接地した場合には、U相の状態がHからLに変化した際に、対コア電圧Vphase to coreは+E/2から−E/2に変化するため、対コアサージ電圧ΔVphase to coreはEとなる。一方、固定子コアをアースに対し浮動電位にした場合、固定子コア20には静電容量CccのY型回路の中性点電位が現れる。また、インバータが表の状態遷移した際には、対コア電圧Vphase to coreは、+E/3から−E/3に変化し、対コアサージ電圧ΔVphase to coreは2E/3が発生する。このため、固定子コア20を浮動電位にしても対コア電圧を0にはできない。しかしながら、少なくとも対コア電圧は、固定子コア20を浮動電位にした場合、モータコアを接地した場合に比し小さくすることができる。なお、ここではモータ1の固定子コア20を浮動電位にした場合を検討したが、モータ1の固定子コア20を接地し、インバータ電源90のあらゆる点をアースに対して浮動電位にした場合にも同じ効果が得られることが同様にして導かれる。
【0032】
図9に、各相のモータ巻線の端末U,V,Wと固定子コア100との間の静電容量をCcc、固定子コア20とアースとの間の静電容量をCcfとしたときの、各相の対コア電圧Vphase to core及び対コアサージ電圧ΔVphase to coreの計算結果を示す。ここでは、図8と同じく、U相の状態がHigh(H)からLow(L)に変化し、V,W相はそれぞれH,Lのまま変化しなかった場合を考える。この場合、U相の対コア電圧Vphase to coreは、表中の左の値から右の値に変化する。この結果、対コアサージ電圧ΔVphase to coreは、これらの差だけ発生し、表中に示す値となる。モータ1の固定子コア20を接地した場合には、対コアサージ電圧ΔVphase to coreはEであるため、対コアサージ電圧ΔVphase to coreを
E(Ccf+2Ccc)/(Ccf+3Ccc)
に低減することができる。先の検討で明らかになったように、インバータ駆動時のモータ巻線間分担電圧は、対コアサージ電圧ΔVphase to coreが原因となり発生することから、同じインバータ電源でモータ1を駆動した場合にも、固定子コア20をアースに対し浮動電位にすることでモータ巻線間分担電圧を
(Ccf+2Ccc)/(Ccf+3Ccc)
だけ低減できる。逆に考えれば、固定子コア20をアースに対し浮動電位にすると、モータ巻線間の絶縁構成が同じ場合にも、モータ1の巻線間インバータサージ耐電圧を
(Ccf+3Ccc)/(Ccf+2Ccc)
倍にすることができる。
【0033】
このモータ巻線間サージ耐電圧増加倍率を、固定子コア20及びアースの間の絶縁体の静電容量Ccfとモータ巻線及び固定子コア20の間の静電容量Cccとの比に対してプロットすると、図10(a)のグラフが得られる。すなわち、Ccf/Cccの値が小さくなるほど、モータ1のサージ耐電圧が増加することになる。ここで、例えば、インバータサージ電圧に対するモータ巻線間のサージ耐電圧を、1割安全率を見て1.1倍とするには、Ccf/Cccの値を7以下とすればよいことが判る。また、例えば、400V級インバータ駆動モータで一般的に観測される1.2kVのサージ電圧に対して、1.5kVの巻線間サージ耐電圧をモータに持たせるためには、Ccf/Cccの値を2以下とすればよいことが判る。さらに、一般的な従来の商用周波駆動用モータのサージ耐電圧0.85kVを400V級インバータ駆動モータで一般的に観測される1.2kVに変更するためには、Ccf/Cccの値を0.4以下にすればよいことが判る。一方、モータの巻線間サージ耐電圧増加倍率は、Ccf/Cccが0.01以下になるとほぼ一定になる。Ccf/Cccの値が小さいことは、モータ固定子コアとアース間の絶縁体の厚みが厚いことを意味するため、モータ寸法が過大になる可能性が発生する。このため、Ccf/Cccの値は7以下であり、望ましくは0.01以上であればよいと考えられる。
【0034】
また、同じ出力のモータについて考える場合、モータの巻線間サージ耐電圧が高ければ、モータの入力電圧増加分だけ、入力電流を低減することができる。すなわち、図10(a)のモータ巻線間サージ耐電圧増加倍率の逆数だけ電流を低減でき、これをグラフにプロットすると図10(b)が得られる。
【0035】
一方、モータ1の固定子コア20からフレームアースまでの経路はモータ巻線の発熱の放熱経路にもなっている。このため、固定子コア20とフレームアースとの間を厚みが厚い絶縁体や、熱抵抗の大きな絶縁体で絶縁した場合、モータ1の温度上昇が問題となる可能性が考えられる。そこで、固定子コア20とフレームアースとの間に挿入された絶縁体の熱抵抗及び熱伝導率についても制限があると考えられる。
【0036】
そこで、図1に示される固定子3とフレーム2を絶縁する絶縁体4の熱抵抗、及び、三相モータの各相の固定子巻線19と固定子コア20の熱抵抗を用いたモータ熱伝導等価回路について検討し、この等価回路(放熱回路)を図11に示す。モータ1の固定子巻線19と固定子コア20の間には絶縁体の熱抵抗Rthermal ccが存在する。また、これらは中性点を固定子コア20とするY型結線回路で表すことができる。一方、固定子コア20とフレーム2との間の熱抵抗は一般には無視できるほど小さいが、本実施形態では固定子コア20とフレーム2の間に絶縁体4を設けているため、絶縁体4の熱抵抗Rthermal cfが接続される。本実施形態では、特に、絶縁体4の熱抵抗Rthermal cfを、モータ1の固定子巻線19と固定子コアとの間の絶縁体の熱抵抗Rthermal ccの0.75倍以下とする。
【0037】
さらに、これらの静電容量及び熱抵抗を満足するためには、例えば、固定子コアとフレームの間に施す絶縁厚みを、巻線とコア間の絶縁厚みの0.14倍以上とし、かつ絶縁体の熱伝導率を、巻線とコア間の絶縁体の熱伝導率に比し1.8倍以上とすることによって実現することができる。
【0038】
モータ巻線のジュール発熱は、電流の2乗に比例することから、モータの発熱量は図10(b)の2乗だけ低減でき、これをプロットすると図12(a)が得られる。発熱量Qと熱抵抗Rthermalと温度差ΔTとの関係は、
ΔT=Rthermal・Q
で表すことができるため、発熱量Qが低下した分だけ熱抵抗Rthermalを大きくしても温度差ΔTは変化しない。
【0039】
図11の放熱回路において、モータ巻線の発熱量Qは、巻線と固定子コア間の絶縁体の熱抵抗Rthermal ccと固定子コアとフレーム間の絶縁体の熱抵抗Rthermal cfを介して放散される。この放熱回路の全体の熱抵抗Rthermal totalは、
Rthermal total=Rthermal cc/3+Rthermal cf
で表すことができる。合計熱抵抗Rthermal totalは、発熱量Qが低下した分だけ大きくできるので、固定子コア20とフレーム間の絶縁体の熱抵抗Rthermal cfの限界は、巻線と固定子コア間の絶縁体の熱抵抗Rthermal ccとの比で図12(b)に示す曲線として得られる。曲線Rthermal cf/Rthermal ccは、
Rthermal cf/Rthermal cc=(1/3)・((Ccf+3Ccc)/(Ccf+2Ccc))
である。したがって、本実施形態のモータ1では、固定子コア20とフレーム間の絶縁体の熱抵抗Rthermal cfは、巻線と固定子コア間の絶縁体の熱抵抗Rthermal ccを基準として、図12(b)の斜線でハッチングした範囲(有効範囲)にすればよいと考えられる。すなわち、0.75倍以下にすればよいと考えられる。
【0040】
以上の静電容量及び熱抵抗を満足するために必要な固定子コアとフレームの間に施す絶縁厚みと絶縁体の熱伝導率は、例えば、巻線と固定子コアの絶縁体表面積と固定子コアとフレームの間の絶縁体の表面積を同じと仮定すると、図12(c)の曲線及び斜線でハッチングした範囲(有効範囲)にすればよいことが導かれる。すなわち、巻線とコア間の絶縁厚みの0.14倍以上とし、かつ絶縁体の熱伝導率を、巻線とコア間の絶縁体の熱伝導率に比し1.8倍以上とすればよい。以上の結果、第1実施形態の固定子コアとフレームの間に施す絶縁構成を採用することで、インバータサージ耐電圧と放熱性を両立したモータを提供できることが明らかになった。
【0041】
一方、モータ1の固定子コア20をフレームアースから絶縁した場合、固定子コア20が浮動電位となり、固定子コア20がインバータ電源のコモンモード電圧で変動する。この結果、固定子コア−回転子間のギャップの静電容量を介して、インバータ電源のコモンモード電圧が回転子5に発生する。これにより、モータ1の軸受6に軸電流が流れ、軸受6が電食するため、モータ1の破壊の恐れが発生する。また、シャフト8を介して負荷側に電圧が発生し、電流が軸受6に流れ込むことも考えられる。このため、本実施形態では、モータ1の固定子コア20をフレームアースから絶縁すると同時に、絶縁カップリング22で回転子側と負荷側とを絶縁している。この絶縁構成によって、本実施形態のモータ1では、インバータサージ耐電圧と放熱性を両立すると同時に、軸受6や負荷側の機器の破壊を防止することができる。なお、本実施形態では巻線の発熱は固定子コア20とフレーム2との間の絶縁体4を介して放熱したが、例えば、モータ1の固定子内部に絶縁油を循環させるか、あるいはモータ1の固定子3と回転子5が内蔵されたフレーム内に絶縁油を注入することで油冷し、放熱性を向上させることもできる。
【0042】
また、接地されたフレーム2から絶縁された固定子コア20と各巻線との間の静電容量Cccと、固定子コア20とフレーム2との間の静電容量Ccfと、固定子コア20がフレーム2に接地された状態の巻線間耐サージ電圧E0とを測定し、固定子コア20をフレーム2から絶縁された状態で、E0から(Ccf+3Ccc)/(Ccf+2Ccc)E0の範囲内のサージ電圧Esを巻線間に印加し、絶縁破壊電流が流れるか否かを判定することによって、モータ1の巻線間耐サージ電圧を検査することができる。
【0043】
以上説明したように、本実施形態によれば、モータあるいはインバータ駆動回転電機システムを使用した場合、モータ1の対コアサージ電圧を低減することができるため、モータ巻線間の分担電圧を低減し、巻線間絶縁劣化を防止することができる。このため、インバータ駆動時にも急峻なインバータサージ電圧が原因と考えられるモータ巻線間絶縁劣化を防止したモータ1あるいはインバータ駆動回転電機システム200を提供することができる。また、特に、本実施形態のモータ1では、対コアサージ電圧を低減すると同時に放熱性も考慮した設計や、インバータ電源のコモンモード電圧、電流に伴う軸受の電食や負荷側への電流流入を防止する設計を施しているため、従来のモータと同様の使い勝手でモータ1を使用することができる。
【0044】
(第2実施形態)
本発明の第2実施形態であるインバータ駆動回転電機システムの構成を図13を参照して説明する。インバータ駆動回転電機システム210は、回転電機であるモータ150と、インバータ電源11と、動力線18とを備え、モータ1の回転出力が負荷9を駆動する。インバータ電源11及び負荷9は、第1実施形態と同様であるので、説明を省略し、モータ150についても、第1実施形態と同じ構成部分については、同じ符号を記載し、説明を省略する。
【0045】
モータ150は、固定子コア151とフレーム152との間に絶縁体153が介装され、固定子コア151が接地されたフレーム152から浮動電位にされている。第1実施形態では、固定子コア20を軸方向からボルト21でフレーム2に固定したが、本実施形態では、固定子コア151の外周とフレーム152とを、絶縁体153を介して接触させることで固定している。この場合、ボルト及びボルトの周囲に絶縁体を施さなくてもよいため、絶縁体を少なく、かつ、構造を簡単にできる。さらに、固定子コア151の外周とフレーム152とを、絶縁体153を介して接触させているので、接触面積を第1実施形態に比し大きくとれるため、放熱効率が高くなる。なお、本実施形態では巻線の発熱は固定子コア151とフレーム152との間の絶縁体153を介して放熱したが、例えば、モータの固定子内部に絶縁油を循環させるか、あるいはモータの固定子と回転子が内蔵されたフレーム内に絶縁油を注入することで油冷とし、放熱性を向上させることもできる。
【0046】
(第3実施形態)
本発明の第3実施形態であるインバータ駆動回転電機システムの構成を図14を参照して説明する。第1実施形態と同一の構成部分については、同じ符号を記載し、説明を省略する。
本実施形態では、モータ160のシャフト162の表面にブラシ161を接触させ接地することにより、インバータ電源11のコモンモード電圧を回転子5に発生させないようにすると共に、コモンモード電流をブラシ161を介してフレーム2に放出している。このことから、軸受163とフレーム2との間に絶縁体を挿入しなくてもよくなる。また、シャフト162を負荷9側に直接接続することができる。なお、ブラシ161が磨耗した場合も考慮する場合には、ブラシ161によるシャフト162の接地と第1実施形態の絶縁軸受及び絶縁カップリングとを併用することもできる。
【0047】
(第4実施形態)
本発明の第4実施形態であるインバータ駆動回転電機システムの構成を図15を参照して説明する。第1実施形態と同一の構成部分については、同じ符号を記載し、説明を省略する。
本実施形態のインバータ駆動回転電機システム230にはモータ170が使用され、モータ170は、固定子コア171がフレーム172と電気的に接続され接地された一般的なモータを使用している。しかしながら、インバータ電源173では、インバータ電源173の平滑コンデンサ174a,174bの中間点175とインバータ電源173のフレームアース176との間のインピーダンス177は、モータ170の一相の巻線178とアースとの間の絶縁体の容量性インピーダンスに比し1/7以上としている。なお、回転子5はベアリングを介してフレーム172に固定されている。
【0048】
第1実施形態の図7〜12では、モータ固定子コア20とフレームアースとの間の絶縁体静電容量をモータの一相の巻線とアースとの間の絶縁体の容量性インピーダンスに比し1/7以上とすることにより、インバータ電源80,90が出力するモータ端の対コアサージ電圧を低減したが、本実施形態のように、インバータ電源173のフレームアース176と平滑コンデンサ174a,174bの中間点175との間のインピーダンス177を1/7としてもインバータ電源173が出力するモータ端の対コアサージ電圧を低減することができる。
【0049】
さらに、本実施形態では、平滑コンデンサ174a,174bの中間点175のアース間インピーダンスを規定し、その他のコンバータ回路1700及びコンバータ回路1700の入力電源、平滑コンデンサ174a,174bの高圧側1702、低圧側1703のアース間のインピーダンスについては無限大と仮定したが、平滑コンデンサ174a,174bの中間点175とアースとの間のインピーダンス177が十分高い場合には、その他のコンバータ回路1700、コンバータ回路1700の入力電源、平滑コンデンサ174a,174bの高圧側1702、あるいは低圧側1703のアース間のインピーダンスを規定することで同様の効果を得ることができる。
【0050】
(比較例1)
図16に、比較例1のインバータ駆動回転電機システムの構成を示す。本比較例ではモータ180には、固定子コア181がフレーム182と電気的に接続され接地された一般的なモータを使用している。また、インバータの平滑コンデンサ13a,13bの中間点15を接地したインバータを使用している。
本比較例のモータ及びインバータ駆動回転電機システムでモータを駆動した際のモータ端対コア電圧波形では、図7(d)と同様にモータ端の対コアサージ電圧ΔVphase to coreは300Vであった。これは、モータコアをアースに対して浮動電位にした図7(c)の210Vに比し大きく、インバータサージ電圧にともなうモータ巻線間絶縁劣化が懸念される。このため別途、モータ巻線の絶縁厚みを厚くするなどの絶縁強化を施さなければならず、コイルがスロットに入らなくなるなどの問題が発生する恐れがある。
【符号の説明】
【0051】
1,45,72,150,160,170,180 モータ
2,152,172,182 フレーム
3 固定子
4,7,153 絶縁体
5 回転子
6 軸受
8 シャフト
9 負荷
10 シャフト
11 インバータ電源
12 コンバータ回路
13,13a,13b 平滑コンデンサ
14 インバータ回路
15 中間点
16 上アーム
17 下アーム
18 動力線
19 固定子巻線
20 固定子コア
21 ボルト
22 絶縁カップリング
23 ヨーク端面部分
24,25 フランジ
26 絶縁板
27 ボルト
28 絶縁板
40 サージ電源
41 絶縁変圧器
42 ファンクションジェネレータ(FG)
43 フィルタ
44 高電圧アンプ
46 同軸ケーブル
47 終端抵抗器
48,75 接続部
49,50 電圧プローブ
71 サージ電源
80 2レベルインバータ電源
81 三相絶縁トランス
90,173 インバータ電源
92a,92b 直流電源
93a,93b,93c スイッチ
100,151,171,181,800 固定子コア
162 シャフト
161 ブラシ
163 軸受
174a,174b 平滑コンデンサ
175 中間点
176 フレームアース
177 インピーダンス
178 巻線
200,210,220,230,240 インバータ駆動回転電機システム
400 デジタルオシロスコープ
1700 コンバータ回路
1701 インバータ回路

【特許請求の範囲】
【請求項1】
接地された筐体から絶縁されたコアに巻線が巻回された複数のコイルが回転磁界を生成する回転電機の巻線間耐サージ電圧を検査する検査方法であって、
接地された筐体から絶縁された前記コアと前記各巻線との間の静電容量Cccと、前記コアと前記筐体との間の静電容量Ccfと、前記コアが前記筐体に接地された状態の巻線間耐サージ電圧E0とを測定するステップと、
前記接地された筐体と前記コアとを絶縁した状態で、E0を超えて{(Ccf+3Ccc)/(Ccf+2Ccc)}・E0未満の値のサージ電圧Esを前記巻線間に印加し、絶縁破壊電流が流れるか否かを判定するステップとを備える回転電機の検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−53051(P2012−53051A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2011−224537(P2011−224537)
【出願日】平成23年10月12日(2011.10.12)
【分割の表示】特願2006−565(P2006−565)の分割
【原出願日】平成18年1月5日(2006.1.5)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】