説明

圧粉磁心及びその製造方法

【課題】熱処理成形体の表面を研削しても、その研削工程に伴って研削面における軟磁性粒子同士の絶縁を確保できる圧粉磁心とその製造方法を提供する。
【解決手段】 絶縁被覆を有する軟磁性粒子を圧縮成形し、得られた圧粉成形体を所定の温度に加熱した熱処理成形体100を用意する準備工程と、加工工具2で熱処理成形体100の一部を除去する加工工程とを備える。この加工工程は、熱処理成形体100を陽極とし、熱処理成形体100を機械加工する加工工具2又は加工工具2と間隔をあけて対向される第一対極5を陰極として、陽極と陰極間に導電性液体7Lを介在させて通電しながら行う。この通電により、熱処理成形体100の加工面において、隣り合う軟磁性粒子同士をつなぐブリッジ部を除去する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電磁弁、モータ、又は電源回路を有する電気機器などに使用される圧粉磁心及びその製造方法、並びにコイル部材に関するものである。特に、研削加工を行いながらも、研削面における軟磁性粒子同士の絶縁を適正に確保できる圧粉磁心に関するものである。
【背景技術】
【0002】
磁心を交流磁場で使用した場合、鉄損と呼ばれるエネルギー損失が生じる。この鉄損は、ヒステリシス損と渦電流損との和で表わされる。ヒステリシス損を低下させるためには、磁心の保磁力Hcを小さくすればよい。また、渦電流損を低下させるためには、磁心の電気抵抗率ρを大きくすればよい。特に高周波での使用においては渦電流損が顕著になる。
【0003】
この鉄損を低減できる磁心として、特許文献1、2に示す圧粉磁心が知られている。この圧粉磁心は、軟磁性粒子の表面に絶縁被覆を形成した複合磁性粒子を加圧して形成され、軟磁性粒子同士が絶縁被覆により絶縁されているので、渦電流損を低減する効果が高い。
【0004】
このような圧粉磁心は、一般に、ダイとパンチを組み合わせた成形金型を用いて圧粉成形体を成形する成形工程と、その成形体に熱処理を施して熱処理成形体を得る熱処理工程を経て製造される。ところが、この金型を用いて成形する圧粉成形体は、ある程度単純な形状に限定される他、安定して高い寸法精度を保つことが困難である。そのため、熱処理成形体に研削などの機械加工を施して、得られる圧粉磁心の形状を調整する場合がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−202956号公報
【特許文献2】特開2009−283774号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、熱処理成形体に対して研削加工を施せば、圧粉磁心の研削面に絶縁被覆の存在しない箇所が生じる。特に、図2(D)に示すように、研削面の軟磁性粒子110のうち、互いに隣り合う軟磁性粒子110同士は、研削時の加工応力で変形し、絶縁被覆120の研削面を乗り越えるブリッジ部110Bを生じて、導通することがある。このような導通は、圧粉磁心の渦電流損失の増加を招く。一方、研削面に事後的に上記導通を解消するための処理を施すことも考えられるが、微細な軟磁性粒子同士の一部に生じたブリッジ部を選択的に分断することは極めて困難である。その上、事後的に研削面に絶縁被覆を形成し直すことは製造工程の増加を招く。
【0007】
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、圧粉磁心の表面に研削面を有しながらも、その研削面の軟磁性粒子同士が適正に絶縁された圧粉磁心を提供することにある。
【0008】
また、本発明の別の目的は、圧粉磁心の表面を研削しても、その研削工程に伴って研削面における軟磁性粒子同士の絶縁を確保できる圧粉磁心の製造方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明者らは、熱処理成形体に研削などの機械加工を施す場合に、その機械加工の過程で、隣り合う軟磁性粒子のブリッジ部を除去したり、機械加工により絶縁被覆から露出した軟磁性粒子の表面に絶縁層を形成することを検討した。その検討過程で、ELID研削(電解インプロセスドレッシング:Electrolytic In-process Dressing)に着目した。
【0010】
ELID研削は、導電性の砥石を陽極、この砥石に所定の間隔で対向される対極を陰極とし、両電極間に導電性の研削液を供給しながら通電して、被削材を研削する技術である(例えば特開平1-188266号公報参照)。この技術では、砥石のボンド材が選択的に電気分解されて溶出し、砥粒の一部がボンド材から露出されて、砥石が目立てされた状態となる。このとき、溶出したボンド材の構成元素の一部は、酸化して砥石の表面に不導体膜として堆積される。この不導体膜の形成がある程度進行すると、電解電流は低下し、ボンド材の電気分解も抑制される。この状態で研削作業を行うと、砥石表面の不導体膜が被削材との接触により摩耗・剥離されて次第に除去される。同時に砥粒は、被削材を研削する。そして、不導体膜の除去がある程度進んで砥石のボンド材と対極との絶縁性が低くなると、再度ボンド材の電気分解が再開される。つまり、ボンド材の選択的電気分解→不導体膜の形成→研削に伴う不導体膜の除去→再度のボンド材の選択的電気分解のサイクルを繰り返すことで、目立てしながら研削を行うことができ、砥石の目詰まりを抑制して高精度の加工を継続することができる。
【0011】
本発明者らは、このELID研削の研削過程において、陽極のボンド材が電気分解されて溶出し、溶出された元素が酸化により不導体膜を形成することに注目した。即ち、圧粉成形体を研削する際、軟磁性粒子の構成元素を電気分解して溶出させ、この溶出された元素の酸化膜(水酸化膜)を形成することができれば、圧粉磁心を機械加工しても、その加工面に生じやすいブリッジ部を除去したり、加工面に絶縁膜を生成できるのではないかと考えた。そして、砥石をドレッシング(目立て)しながら高精度の研削を継続できるELID研削(電解インプロセスドレッシング)の技術を応用し、陽極や陰極となる部材などを適正に選択することで、機械加工を施す過程において、上記ブリッジ部の除去や、絶縁層の形成が可能であるとの知見を得て本発明を完成するに至った。
【0012】
〔圧粉磁心の製造方法〕
本発明の圧粉磁心の製造方法は、以下の工程を備える。
準備工程:絶縁被覆を有する軟磁性粒子を圧縮成形し、得られた圧粉成形体を所定の温度に加熱した熱処理成形体を用意する。
加工工程:この熱処理成形体を陽極とし、その熱処理成形体を機械加工する加工工具又は加工工具と間隔をあけて対向される第一対極を陰極として、陽極と陰極間に導電性液体を介在させて通電しながら加工工具で熱処理成形体の一部を除去する。
そして、この加工工程は、熱処理成形体の加工面において、隣り合う軟磁性粒子同士をつなぐブリッジ部を除去する除去過程を含むことを特徴とする。
【0013】
一般的なELID研削では、砥石のボンド材を電気分解するため、砥石を陽極としているが、本発明の圧粉磁心の製造方法では、熱処理成形体を陽極とし、砥石などの加工工具又は第一対極を陰極として通電している。それにより、熱処理成形体と加工工具との間の放電と、軟磁性粒子の構成元素を溶出させる電気分解との少なくとも一方を生じさせることができる。この放電や電気分解により上記ブリッジ部を除去することができると考えられる。その結果、この方法により得られた圧粉磁心を各種コイル部材に用いた場合、軟磁性粒子同士の導通による渦電流損失の増加を抑制することができる。
【0014】
本発明の圧粉磁心の製造方法の一形態として、前記加工工具が、研削砥石、切削工具、研磨工具又は切断工具であることが挙げられる。
【0015】
いずれの工具を用いても、熱処理成形体の一部を機械的に除去する加工を行うことで、形状の自由度の高い圧粉磁心を得ることができる。
【0016】
本発明の圧粉磁心の製造方法の一形態として、前記加工工程の後、加工工具と熱処理成形体との間に間隔をあけて、その間隔に導電性液体を介在させながら通電し、軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を加工面に形成する被覆工程を備えることが挙げられる。
【0017】
電気分解で溶出された軟磁性粒子の構成元素は、酸化(水酸化)されて加工面に絶縁層を形成する。それにより、加工により絶縁被覆が除去された加工面であっても、加工後に絶縁被覆と同等の機能を有する絶縁層を形成することができ、軟磁性粒子が何も覆われることなく露出されることを抑制できる。その結果、得られた圧粉磁心を各種コイル部材に用いた場合、軟磁性粒子同士の導通による渦電流損失の増加を抑制することができる。
【0018】
本発明の圧粉磁心の製造方法の一形態として、前記被覆工程は、前記加工工具と熱処理成形体とを相対的に移動させることで、両者の間隔を一定に保持しながら行うことが挙げられる。
【0019】
加工工具と熱処理成形体との間隔を一定に保持することで、両者の間で安定して軟磁性粒子を電気分解させ、均一な絶縁層を形成することができる。
【0020】
本発明の圧粉磁心の製造方法の一形態として、熱処理成形体の外周面のうち、加工面以外の面であって絶縁被覆の脱落箇所に間隔をあけて第二対極を対向させ、熱処理成形体を陽極、第二対極を陰極として両電極間に導電性液体を介在させながら通電し、軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を絶縁被覆の脱落箇所に形成する被覆補完工程を備えることが挙げられる。
【0021】
圧粉成形体は、絶縁被覆を有する軟磁性粒子の圧縮時や金型から抜き出す際などに、軟磁性粒子に形成された絶縁被覆を損傷することがある。そのように、加工面以外の面であっても、絶縁被覆が損傷している箇所が存在する場合に、その損傷箇所に絶縁層を形成することで、絶縁被覆を修復したことと同等の状態に回復することができる。それにより、得られた圧粉磁心を各種コイル部材に用いた場合、軟磁性粒子同士の導通による渦電流損失の増加を抑制することができる。
【0022】
本発明の圧粉磁心の製造方法の一形態として、前記被覆補完工程は、前記熱処理成形体と第二対極とを相対的に移動させることで、両者の間隔を一定に保持しながら行うことが挙げられる。
【0023】
熱処理成形体と第二対極との間隔を一定に保持することで、両者の間で安定して軟磁性粒子を電気分解させ、均一な絶縁層を形成することができる。
【0024】
本発明の圧粉磁心の製造方法の一形態として、前記被覆補完工程は、導電性液体の供給をノズルから行い、このノズルを第二対極とすることが挙げられる。
【0025】
この構成によれば、ノズルが第二対極を兼ねることで、被覆補完工程を行う際、必要な装置構成を簡略化することができる。
【0026】
本発明の圧粉磁心の製造方法の一形態として、前記加工工具に、Al、Si、Ti、Mg、Ca、Cr、Zr、P、及びBから選択される少なくとも一種の元素を含むことが挙げられる。
【0027】
この構成によれば、加工工具に含まれる所定の添加元素を軟磁性粒子中に拡散させて、所定の添加元素を含む絶縁層を形成させることができる。
【0028】
〔圧粉磁心〕
一方、本発明に係る圧粉磁心は、絶縁被覆を有する軟磁性粒子を圧縮成形してなる圧粉磁心であって、この磁心の外周面の少なくとも一部に、当該磁心の一部を加工工具により除去した加工面を備える。そして、この加工面における隣り合う軟磁性粒子は、当該加工面における絶縁被覆により隔離されていることを特徴とする。
【0029】
この構成によれば、加工面に面した軟磁性粒子同士がブリッジ部で連結されることなく絶縁被覆の加工面で隔離されていることで、この圧粉磁心を各種コイル部材に用いた場合、軟磁性粒子同士の導通による渦電流損失の増加を抑制することができる。
【0030】
本発明に係る圧粉磁心の一形態として、前記加工面が、加工対象を陽極とする通電を伴った加工により形成された面であることが挙げられる。
【0031】
この加工により、加工対象となる熱処理成形体の形状を所望の形状に容易に変化させることができる。そして、この加工対象を陽極とすることで、熱処理成形体を構成する軟磁性粒子の構成元素を電気分解により溶出させ、或いは軟磁性粒子の一部を放電により除去させることができる。特に、隣り合う軟磁性粒子同士が連結されたブリッジ部を前記溶出や放電により除去することができる。
【0032】
本発明に係る圧粉磁心の一形態として、前記加工面は、軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を有し、その絶縁層は、前記通電に伴って形成されたことが挙げられる。
【0033】
加工面に所定の絶縁層を形成することで、加工により絶縁被覆が除去された加工面であっても、絶縁被覆と同等の機能を有する絶縁層が形成されることで、軟磁性粒子が何も覆われずに露出されることを抑制できる。
【0034】
本発明に係る圧粉磁心の一形態として、前記圧粉磁心の外周面のうち、加工面以外の面であって絶縁被覆の脱落した箇所に前記軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を有し、その絶縁層は、前記通電に伴って形成されたことが挙げられる。
【0035】
この構成によれば、加工面以外の面であっても、絶縁被覆が損傷などで脱落している箇所が存在する場合に、その脱落箇所に絶縁層を備えることで、絶縁被覆を修復したことと同等の状態に回復することができる。
【0036】
本発明に係る圧粉磁心の一形態として、前記絶縁層の表面の電気抵抗値が加工前の熱処理成形体の表面の電気抵抗値の1/5以上であることが挙げられる。特に、絶縁層の表面の電気抵抗値が加工前の熱処理成形体の表面の電気抵抗値以上であることが好ましい。
【0037】
絶縁層の電気抵抗値を上記規定の値とすることで、隣り合う軟磁性粒子同士の絶縁性を十分に確保することができ、この圧粉磁心を各種コイル部材に用いた場合、軟磁性粒子同士の導通による渦電流損失の増加を抑制することができる。より好ましい上記電気抵抗値の比率は、1/3以上、さらに好ましくは1/2以上である。とりわけ、この比率が1.0以上であれば、さらに軟磁性粒子同士の絶縁を十分に確保できる。特に好ましい電気抵抗値の比率は、5.0以上、さらには7.0以上である。
【0038】
本発明に係る圧粉磁心の一形態として、前記絶縁層の表面の電気抵抗値が150μΩm以上であることが挙げられる。
【0039】
絶縁層の電気抵抗値を上記規定の値とすることで、隣り合う軟磁性粒子同士の絶縁性を十分に確保することができ、この圧粉磁心を各種コイル部材に用いた場合、軟磁性粒子同士の導通による渦電流損失の増加を抑制することができる。より好ましい電気抵抗値は300μΩm以上、特に好ましい電気抵抗値は500μΩm以上である。なお、機械加工しない圧粉磁心の表面の電気抵抗値は、軟磁性粒子の平均粒径が微粒であるほど大きくなる傾向にある。例えば、圧粉磁心を構成する軟磁性粒子の平均粒径が50μmである場合には、電気抵抗値は106〜108μΩm程度の値となる。そのため、本発明の圧粉磁心において、加工面に形成した絶縁層における表面の電気抵抗も軟磁性粒子の平均粒径が微粒であるほど大きくなっていると考えられる。
【0040】
〔コイル部材〕
上述の本発明の圧粉磁心を利用した本発明のコイル部材は、上記圧粉磁心と、この圧粉磁心の外周に配置されたコイルとを備えることを特徴とする。
【0041】
この構成によれば、本発明の圧粉磁心を用いることで、特に圧粉磁心の表面における軟磁性粒子同士の絶縁が十分に確保されており、渦電流損失の小さなコイル部材とすることができる。
【発明の効果】
【0042】
本発明の圧粉磁心は、隣り合う軟磁性粒子間の導通箇所が除去されているため、渦電流損失を低減することができる。また、本発明の圧粉磁心の製造方法は、熱処理成形体への通電を利用して、隣り合う軟磁性粒子間の導通箇所を除去することができる。さらに、本発明のコイル部材は、電磁弁、モータ、又は電源回路を有する電気機器などに用いられるコイル部材の渦電流損失を低減することができる。
【図面の簡単な説明】
【0043】
【図1】実施形態1に係る本発明方法の実施に用いる装置の模式構成図である。
【図2】(A)は熱処理成形体を研削する状態を示す模式説明図、(B)は実施形態1に係る方法により熱処理成形体のブリッジ部を除去した状態を示す模式拡大図、(C)は実施形態1に係る方法によりブリッジ部を除去した研削面に絶縁層を形成した状態を示す模式拡大図、(D)は従来の方法によりブリッジ部が生じた熱処理成形体を示す模式拡大図である。
【図3】実施形態1に係る圧粉磁心で構成したチョークコイルの平面図である。
【図4】実施形態2に係る本発明方法の実施に用いる装置の模式構成図である。
【図5】実施形態3に係る本発明方法の実施に用いる装置の模式構成図である。
【図6】実施形態4に係る本発明方法の実施に用いる装置の模式構成図である。
【図7】実施形態5に係る本発明方法の実施に用いる装置の模式構成図である。
【図8】実施形態6に係る本発明方法の実施に用いる装置の模式構成図である。
【図9】実施形態7に係る本発明方法の実施に用いる装置の模式構成図である。
【図10】実施形態1に係る方法による熱処理成形体の加工面の薄膜XRDによる分析結果を示すパターンである。
【図11】従来法による熱処理成形体の加工面の薄膜XRDによる分析結果を示すパターンである。
【図12】熱処理成形体の表面抵抗の測定結果を示すグラフである。
【図13】実施形態5に係る方法による熱処理成形体の加工面のESCA分析の結果を示すグラフである。
【発明を実施するための形態】
【0044】
以下、本発明の実施の形態を図に基づいて説明する。各図において、同一の部材又は対応する部材には同一符号を付している。実施形態1では、まず圧粉磁心の製造に用いる製造装置について説明し、順次、圧粉磁心の製造方法、その方法で得られる圧粉磁心、及びその圧粉磁心を用いたコイル部材を説明する。
【0045】
[実施形態1]
〔圧粉磁心の製造装置〕
この装置は、図1に示すように、圧粉磁心となる熱処理成形体100を保持するテーブル1、熱処理成形体100を機械加工する加工工具2、電源3、陽極となる熱処理成形体100と電源3とをつなぐ陽極用電線4、陰極となる第一対極5と電源3とをつなぐ陰極用電線6、加工工具-陰極間に導電性液体7Lを供給する導電性液体ノズル7、加工工具-熱処理成形体間に研削液8Lを供給する研削液ノズル8を備える。熱処理成形体100の加工は、後に詳述するように、陽極-陰極間に通電しながら行われる。
【0046】
{テーブルと加工工具}
テーブル1は、加工工具2の加工対象となる熱処理成形体100を保持する台座である。このテーブル1と加工工具2とは相対的に位置を変えられるように、両者の少なくとも一方に移動機構(図示略)が設けられている。また、このテーブル1の表面には、熱処理成形体100と電気的に絶縁する絶縁シート1Aが設けられている。絶縁シート1Aは、電源3より陽極用電線4を介して熱処理成形体100に供給された電流が、テーブル1を通じて、図示しない加工装置本体側へと漏電するのを防止する。この絶縁シート1Aは、テーブル1と加工装置本体との間に設けてもよい。加工工具2は、テーブル1上の熱処理成形体100の一部を除去して、同成形体100に形状変化をもたらす機械加工を行う工具である。加工工具2の具体例としては、研削砥石、切削工具、切断工具、又は研磨工具が挙げられる。
【0047】
図1では加工工具2としてメタルボンド砥石を示しているが、他の砥石として、ビトリファイド、レジノイド、ラバー、シリケート、シェラック、電着、マグネシアなどを結合剤とする砥石が挙げられる。砥粒には、ダイヤモンド、cBN、アルミナや炭化珪素が好適に利用できる。これらの砥石を利用した研削方法には、平面研削、円筒研削、内面研削などの各種方法が挙げられる。ここでは、一例として平面研削盤を図示している。
【0048】
切削工具としては、バイトやエンドミルなどが挙げられる。切断工具としては、ワイヤカット放電加工用ワイヤ、ソーワイヤなどが挙げられる。研磨工具には、研磨用定盤や研磨用バフが挙げられる。
【0049】
これらの加工工具2は導電性であることが好ましい。一般に切削工具の多くは高速度鋼や超硬合金など導電性の材料で構成されており、切断工具も通常は金属から構成されるため、導電性を備える。砥石もメタルボンド砥石や、レジン/メタル複合ボンド砥石であれば導電性とできる。この砥石のボンド材に利用される金属としては、鋳鉄、コバルト、ブロンズ、スチール、タングステン、ニッケルが好適に利用できる。実施形態1や後に実施形態3で述べるように、加工工具2を陰極としない場合は、加工工具2が導電性でなくても構わない。
【0050】
また、加工工具2の構成金属、例えば鋳鉄に対する添加元素としては、Al、Si、Ti、Mg、Ca、Cr、Zr、P、及びBから選択される少なくとも一種の元素が挙げられる。これらの添加元素を加工工具2が含有することで、添加元素が熱処理成形体を構成する軟磁性粒子に拡散し、そこから溶出した添加元素が熱処理成形体の加工面に酸化物及び水酸化物の少なくとも一方として絶縁層を形成する。添加元素を含む絶縁層は、その絶縁性を改善したり、機械的特性を向上させたりすることが期待される。
【0051】
{電源}
電源3は、陽極用電線4及び陰極用電線6を介して、陽極及び陰極に通電させる。この電源3には、所定の電圧・電流にて両電極間に通電できるパルス電源が好適に利用できる。
【0052】
{陽極用電線と陽極}
陽極用電線4は、電源3から陽極となる熱処理成形体100に電流を供給する。熱処理成形体100は、後に詳述するように、軟磁性粒子と、その外周を覆う絶縁被覆とを備える複合磁性粒子を圧縮成形して圧粉成形体とし、その圧粉成形体を熱処理したものである。この陽極となる熱処理成形体100は製造装置を構成するテーブル1上に配置される。
【0053】
{陰極用電線と陰極}
陰極用電線6は、電源3と陰極となる第一対極5とをつなぎ、陽極用電線4と共に電源-陽極(熱処理成形体)-加工工具-陰極(第一対極)-電源となる電流路を形成する。第一対極5は、加工工具2と所定の間隔をあけて対向して配置される部材で、導電性と適度な機械的強度を備えた材質、例えば銅、ステンレス、グラファイトなどが利用される。第一対極5の形状は、加工工具2の形状に応じて、加工工具-第一対極間の間隔を均一にできる形状が好ましい。本例では加工工具2との対向面を砥石の外周面に対応する円弧状の湾曲面としたブロック片で第一対極5を構成している。第一対極5と加工工具2との間の間隔は、0.05〜0.3mm程度とすることが好ましい。この間隔は、第一対極5と加工工具2とを相対的に移動することで一定に保持できるように、第一対極5と加工工具2の少なくとも一方に移動機構を備えることが好ましい。
【0054】
{導電性液体ノズル}
導電性液体ノズル7は、図示しない導電性液体7Lの供給源(図示略)から送られた導電性液体7Lを加工工具-陰極間に供給する。導電性液体7Lは、加工工具-陰極間の間に供給されることで、両者間の通電を可能にする電気伝導性を有することが必要である。具体的には、電気伝導度が2mS/cm以上の液体が好適である。また、弱アルカリ性(pH11程度)の水溶性液体であれば、腐食性の高い電解液ではないため、加工工具2や熱処理成形体100に過度の腐食が生じることもない。この導電性液体7Lは、所定の導電性やアルカリ性を備える液体であれば、市販の研削液を利用してもよい。
【0055】
{研削液ノズル}
研削液ノズル8は、図示しない研削液の供給源から送られた研削液8Lを加工工具-熱処理成形体間に供給する。この研削液8Lは、基本的に加工工具2と熱処理成形体100との摩擦を低減できるものであれば良く、導電性であることが好ましい。
【0056】
この研削液8Lは導電性液体7Lと異なる液体であってもよいが、同じ液体であっても構わない。導電性液体7Lと研削液8Lとを同じ液体とした場合、単一の液体供給源から導電性液体兼研削液を供給し、必要に応じて複数のノズルから導電性液体兼研削液を熱処理成形体-第一対極間や加工工具-熱処理成形体間に供給するようにしてもよい。本例では研削液8Lを導電性液体7Lと同じ液体としている。
【0057】
〔圧粉磁心の製造方法〕
上記の装置を用いて圧粉磁心を製造する方法は、熱処理成形体の準備工程と、熱処理成形体の加工工程とを有する。準備工程は、まず絶縁被覆を有する軟磁性粒子を圧縮成形した圧粉成形体を作製し、次いでこの圧粉成形体を熱処理して得られた熱処理成形体を用意する。加工工程は、熱処理成形体を陽極とし、第一対極を陰極として、陽極と陰極間に導電性液体を介在させて通電しながら加工工具で熱処理成形体の一部を除去する。
【0058】
{準備工程}
《軟磁性粒子》
軟磁性粒子としては、鉄を50質量%以上含有する金属が好ましく、例えば、純鉄(Fe)が挙げられる。その他、鉄合金、例えば、Fe-Si系合金、Fe-Al系合金、Fe-N系合金、Fe-Ni系合金、Fe-C系合金、Fe-B系合金、Fe-Si-B系合金、Fe-Co系合金、Fe-P系合金、Fe-Ni-Co系合金、及びFe-Al-Si系合金から選択される1種からなるものが利用できる。特に、透磁率及び磁束密度の点から、99質量%以上がFeである純鉄が好ましい。
【0059】
軟磁性粒子の平均粒径は、30μm以上500μm以下とすることが好ましい。軟磁性粒子の平均粒径を30μm以上とすることによって、軟磁性材料の流動性を落とすことがなく、軟磁性材料を用いて製作された圧粉磁心の保磁力およびヒステリシス損の増加を抑制できる。逆に、軟磁性粒子の平均粒径を500μm以下とすることによって、1kHz以上の高周波域において発生する渦電流損を効果的に低減できる。より好ましい軟磁性粒子の平均粒径は、40μm以上300μm以下である。この平均粒径の下限が40μm以上であれば、渦電流損の低減効果が得られると共に、軟磁性材料の取り扱いが容易になり、より高い密度の成形体とすることができる。なお、この平均粒径とは、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径をいう。
【0060】
《絶縁被覆》
軟磁性粒子の表面に被覆される絶縁被覆は、軟磁性粒子同士の接触を抑制し、成形体の比透磁率を抑えることができる。また、絶縁被覆の存在により、軟磁性粒子間に渦電流が流れるのを抑制して、圧粉磁心の渦電流損を低減させることができる。
【0061】
絶縁被覆は、絶縁性に優れるものであれば特に限定されない。例えば、リン酸塩やチタン酸塩、ケイ酸塩、マグネシアなどが好適に利用できる。特に、リン酸塩からなる絶縁被覆は変形性に優れるので、軟磁性粒子を加圧して圧粉磁心を作製する際に軟磁性粒子が変形しても、この変形に追従して変形することができる。また、リン酸塩被膜は鉄系の軟磁性粒子に対する密着性が高く、軟磁性粒子表面から脱落し難い。リン酸塩としては、リン酸鉄やリン酸マンガン、リン酸亜鉛、リン酸カルシウムなどのリン酸金属塩化合物を利用することができる。
【0062】
その他の絶縁被覆としては、シリコーン被膜が挙げられる。シリコーン被膜は、軟磁性粒子の外周に直接形成してもよいし、リン酸塩などの内側絶縁被覆の上に外側絶縁被覆として形成してもよい。特に、シリコーン被膜には、加水分解・縮重合反応により硬化するシリコーンが好適に利用できる。代表的には、Sim(OR)n(m、nは自然数)で表される化合物を利用することができる。ORは、加水分解基であり、例えば、アルコキシ基やアセトキシ基、ハロゲン基、イソシアネート基、ヒドロキシル基などを挙げることができる。アルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、sec-ブトキシ、tert-ブトキシを挙げることができる。
【0063】
樹脂材料が加水分解・縮重合して形成されるシリコーン被膜は、変形性に優れるので、軟磁性材料を加圧する際に割れや亀裂が生じ難く、絶縁被覆の表面から剥離することも殆どない。しかも、シリコーン被膜は、耐熱性に優れるので、軟磁性材料を加圧成形した後の熱処理温度を高温にしても、優れた絶縁性を維持することができる。さらに、シリコーン被膜は、軟磁性粒子の表面にリン酸塩などの内側絶縁被覆が形成されている場合、その内側絶縁被覆を熱などから保護する役目も果たす。
【0064】
このようなシリコーン被膜は、例えば、軟磁性粒子又はリン酸塩被膜を有する軟磁性粒子と樹脂材料を80〜160℃の加熱雰囲気で混合することにより形成できる。この混合により、各軟磁性粒子の表面に樹脂材料がまぶされた状態になる。そして、混合雰囲気中に含まれる水分子或いはリン酸塩被膜が水和水を含む場合は、その水和水が樹脂材料を加水分解・縮重合させ、シリコーン被膜を形成させる。
【0065】
絶縁被覆の厚みは、10nm以上1μm以下であることが好ましい。絶縁被覆の厚みを10nm以上とすることによって、軟磁性粒子同士の接触の抑制や渦電流によるエネルギー損失を効果的に抑制することができる。また、絶縁被覆の厚みを1μm以下とすることによって、複合磁性粒子に占める絶縁被覆の割合が大きくなりすぎない。このため、この複合磁性粒子の磁束密度が著しく低下することを防止できる。
【0066】
《圧縮成形》
上述のような絶縁被覆を有する軟磁性粒子は、代表的には、所定の形状の成形金型内に投入され、圧力をかけて押し固めることで圧粉成形体に成形される。このときの圧力は、適宜選択することができるが、例えば、電磁弁、モータ、又は電源回路などを有する電気機器に利用する圧粉磁心を製造するのであれば、約600〜1400MPa(好ましくは、800〜1000MPa)程度とすることが好ましい。
【0067】
《熱処理》
圧粉成形体は、熱処理工程に供される。熱処理工程は、圧縮成形の過程で軟磁性粒子に導入された歪みや転位などを除去すると共に、絶縁被覆による軟磁性粒子同士の密着性の強化を行う。熱処理温度が高いほど、歪みや転位の除去を十分に行うことができることから、熱処理温度は、300℃以上、特に400℃以上、さらに450℃以上が好ましい。絶縁被覆の耐熱性を考慮して、熱処理温度の上限は約900℃程度とする。このような熱処理温度であれば、歪みの除去と共に、加圧時に軟磁性粒子に導入される転位などの格子欠陥も除去できる。それにより、得られる圧粉磁心の磁壁の移動を容易にして保磁力Hcを小さくし、ヒステリシス損を低減させることに寄与する。
【0068】
{加工工程}
加工工程では、図2(A)に示すように、砥石などの加工工具2によって熱処理成形体100を部分的に除去する機械加工を行い、同成形体100を所定の形状とする。この加工により、同成形体100を構成する複合磁性粒子100Pの軟磁性粒子110に具える絶縁被覆120の一部は、砥石によって削り取られて加工面100Fが形成され、その加工面100Fに絶縁被覆120で覆われていない軟磁性粒子110が露出される。図2(A)の破線部を拡大して図2(B)〜(D)に示す。単に砥石で熱処理成形体を研削しただけでは、図2(D)に示すように、加工面100Fに面して隣り合う軟磁性粒子110同士は、研削時の塑性変形により互いにブリッジ部110Bを介して連結されることがある。そこで、この加工の際、熱処理成形体を陽極とし、第一対極を陰極として、陽極と陰極間に導電性液体を介在させて通電し、ブリッジ部110Bを除去する。
【0069】
《除去過程》
加工工程において、ブリッジ部110Bが除去できる理由は、次のように推定できる。加工工具2は加工対象である熱処理成形体100に接触するが、その接触界面を微視的に見れば、一部の砥粒が熱処理成形体100に接触すると共に、熱処理成形体100と他の砥粒又は結合剤との間に微細な間隔が形成され、その間隔に導電性液体7Lでもある研削液8Lが介在されることになる(図1)。そのため、電源3からパルス電流を熱処理成形体100に通電すると、加工面において軟磁性粒子の構成元素(例えばFe)が電気分解されて溶出する。また、加工工具2と熱処理成形体100との間で放電が発生する。上述したブリッジ部110Bは、極僅かな厚みしか有しないため、この電気分解及び放電による発熱の少なくとも一方により選択的に除去されることになる。この除去過程を経ることで、熱処理成形体の加工面は、図2(B)に示すように、隣り合う軟磁性粒子110が絶縁被覆120で隔離された状態を実現できる。通電条件は、例えば、パルス電圧:40〜200V程度、平均電流:0.5〜20A程度とすることが好ましい。
【0070】
{被覆工程}
この除去過程の後に、電気分解により溶出した元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を形成する被覆工程を行うことが好ましい。この被覆過程は、上記通電を続けたまま、加工工程における加工工具2と熱処理成形体100との相対位置を移動させ、両者の間に所定の間隔を設けるだけで加工工程に連続して行える。この被覆工程では、熱処理成形体100の研削は行われず、加工面における軟磁性粒子が電気分解により溶出される。軟磁性粒子から溶出した元素は、酸化又は水酸化されて加工面の表面に酸化膜又は水酸化膜を形成する。この酸化膜又は水酸化膜は、図2(C)に示すように、絶縁被覆120が除去された加工面100Fの軟磁性粒子110を覆う絶縁層130となるため、熱処理成形体の表面において、軟磁性粒子110が露出する箇所をなくすことができる。このように、絶縁層130は軟磁性粒子から溶出した元素の酸化物及び水酸化物の少なくとも一方を含んで形成されるため、通常、軟磁性粒子110を覆う絶縁被覆120とは異なる材質で構成される。
【0071】
この絶縁層130の形成は、除去過程の間にも並行して行われていると考えられるが、除去過程の間は生成された絶縁層130が加工工具により除去されることが多い。そのため、被覆工程は、除去過程の後に加工工具2と熱処理成形体100との間に間隔を形成した状態として行うことが好ましい。通常、研削や切削加工では、加工の終了間際に、切り込み量がゼロとなるゼロカット(スパークアウト)が行われる。その際、加工工具2と熱処理成形体100とがほぼ非接触となって熱処理成形体の加工が実質的に進行しないため、その間に絶縁層130を形成しやすく、加工面をより確実に絶縁層130で覆うことができる。特に、加工工具2と熱処理成形体100とが非接触となったときの両者の間隔は、0.000〜0.3mm程度とすることが好ましい。この間隔を維持することにより、軟磁性粒子110の構成元素を溶出できると共に、適正に絶縁層を形成することができる。通常、この間隔の下限は0.005mm程度が選択されることが多い。この間隔の規定は、後述する他の実施形態においても共通する。なお、この被覆工程においても、加工工具2と熱処理成形体100との間で放電も生じる。そのため、除去過程においてブリッジ部110Bの取り残しがあったとしても、被覆工程において上記放電や電気分解により、ブリッジ部110Bのより確実な除去が可能となる。
【0072】
〔圧粉磁心〕
以上の工程により本発明の圧粉磁心が得られる。この圧粉磁心は、絶縁被覆を有する軟磁性粒子を圧縮成形してなる圧粉磁心で、この磁心の外周面の少なくとも一部に、当該磁心の一部を加工工具により除去した加工面を備える。そして、この加工面における隣り合う軟磁性粒子は、当該加工面における絶縁被覆により隔離されている。上述したように、除去過程においてブリッジ部を除去することができるため、図2(B)又は図2(C)に示したように、いずれにおいても加工面100Fに面して隣り合う軟磁性粒子110は互いに独立して電気的に絶縁されることになる。その結果、この圧粉磁心を用いて各種コイル部材を構成した場合、渦電流損失を低減することができる。
【0073】
〔コイル部材〕
上述した圧粉磁心は、電磁弁、又は電源回路などを有する電気機器などのコイル部材に利用することができる。例えば、図3に示すように、トロイダル形状に成形した環状コア200と、その環状コア200の外周に巻線300wを巻回して形成したコイル300とを備えるチョークコイルである。この環状コア200が上述した圧粉磁心から構成される。そのため、環状コア200を構成する軟磁性粒子同士が十分に絶縁され、コイル300に励磁した際に生じる渦電流損失を低減することができる。
【0074】
[実施形態2]
実施形態1では加工工具に対向する第一対極を陰極とした場合について説明したが、第一対極をなくし、加工工具を直接陰極とした圧粉磁心の製造装置と圧粉磁心の製造方法を図4に基づいて説明する。本例では、加工工具を陰極とした点が実施形態1との主たる相違点であるため、以下の説明は、この相違点を中心に行う。他の装置構成は、特に記載しない限り、実施形態1の装置と共通である。
【0075】
図4に示すように、本例の陰極用電線6は加工工具2に接続されている。同図では、陰極用電線6は、円盤状の砥石の外周につながっているように見えるが、実際にはブラシ電極などを介して砥石の回転軸を通じて砥石に電気的に接続されている。本例の加工工具2は陰極として用いるため導電性である。
【0076】
また、本例では、加工工具2と熱処理成形体100との間に導電性液体7Lを供給するように導電性液体ノズル7が配置されている。この導電性液体7Lは、加工工具2と熱処理成形体100との摩擦を低減し、熱処理成形体100を冷却する研削液としても機能する。
【0077】
このような装置において、陽極-陰極間、すなわち熱処理成形体-加工工具間に通電しながら加工を行う。研削時、加工工具2と熱処理成形体100は接触し、実施形態1と同様に、接触界面において電気分解と放電とが生じる。そのため、図2(D)に示したブリッジ部110Bが電気分解と放電の発熱により除去されると考えられる。その結果、加工面100Fの隣り合う軟磁性粒子は、互いに絶縁被覆120で隔絶された状態とできる(図2(B))。
【0078】
一方、研削後、加工工具2と熱処理成形体100との間に間隔をあけて両者を非接触とし、その間隔に導電性液体7Lを供給しながら通電を続ける。この通電により、熱処理成形体100の加工面における軟磁性粒子が電気分解され、溶出した軟磁性粒子の元素を含む絶縁層が加工面の上に形成される。その結果、加工面に絶縁層130が形成され、加工面の軟磁性粒子を絶縁層で覆った状態とすることができる(図2(C))。
【0079】
加えて、本例では、実施形態1で用いた第一対極5が不要で、加工工具2と熱処理成形体100との間に導電性液体7L(研削液)を供給すれば良い。
【0080】
[実施形態3]
実施形態1では陰極を加工工具に対向する第一対極とし、実施形態2では陰極を加工工具とした場合について説明したが、陰極を熱処理成形体に対向する第二対極とした圧粉磁心の製造装置と圧粉磁心の製造方法を図5に基づいて説明する。本例では、陰極を第二対極9とした点が実施形態1との主たる相違点であるため、以下の説明は、この相違点を中心に行う。他の装置構成は、特に記載しない限り、実施形態1の装置と共通である。
【0081】
本例では加工工具2とは別に第二対極9を設け、その対極9を熱処理成形体100との間に所定の間隔をあけて保持し、加工工具2による熱処理成形体100の加工を行うと共に、陽極となる熱処理成形体100と、陰極となる対極9と間に導電性液体7Lを供給しながら通電する。
【0082】
第二対極9は、実施形態1の第一対極と同様の材質が利用される。対極9の形状は、陽極となる熱処理成形体100の形状に応じて、陽極-対極間の間隔を均一にできる形状が好ましい。本例ではブロック片で対極9を構成している。対極9と陽極(熱処理成形体100)との間の間隔は、0.000〜0.3mm程度とすることが好ましい。通常、この間隔の下限は0.005mm程度が選択されることが多い。この間隔の規定は、後述する他の実施形態においても共通する。この間隔は、対極9と熱処理成形体100の相対位置を移動させる移動機構(図示略)を設けて、除去過程や被覆工程の間、一定に保持するようにすることが好適である。
【0083】
また、本例で用いる装置では、加工工具-熱処理成形体の対向箇所と、第二対極-熱処理成形体の対向箇所とが異なるため、加工工具2には通電しなくても良いし、実施形態1や2と同様にして通電をしてもよい。本例では、加工工具2には通電を行っていない。但し、本例の場合、加工面に絶縁層を形成するには、研削後に加工面と第二対極9を、間隔をあけて対向させ、両者の間に通電することが必要である。
【0084】
本例の場合、加工工具2への通電を行っていないため、熱処理成形体100の加工面には、隣り合う軟磁性粒子同士を導通するブリッジ部が形成される。しかし、研削後に第二対極9と熱処理成形体100を相対的に移動させ、加工面と第二対極9を間隔をあけて対向させて、両者の間に通電することで、放電と電気分解の少なくとも一方によりブリッジ部を除去することができる。さらに、対極9に対向する熱処理成形体100の加工面に、軟磁性粒子から溶出した元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を形成することもできる。それにより、加工面に面した軟磁性粒子同士を絶縁し、かつ軟磁性粒子が露出した箇所がないようにすることができる。
【0085】
なお、本例の場合、熱処理成形体100における加工面以外の面であっても、絶縁被覆に損傷箇所がある場合、その損傷箇所に絶縁層を形成して、絶縁被覆の補修を行うこともできる。熱処理成形体100は軟磁性粒子の圧縮時や成形金型から抜き出す際などに、絶縁被覆が損傷することがある。この損傷箇所からは軟磁性粒子が露出しているため、この損傷箇所に対極9を対向させて、熱処理成形体-第二対極間にパルス電流を通電することで、損傷箇所に絶縁層を形成することができる。特に、対極9と熱処理成形体100との間隔を保持しながら、両者の相対的位置を変動させて通電を行うと、熱処理成形体100の表面の広範囲にわたって絶縁被覆の補修を容易に行うことができる。
【0086】
以上の圧粉磁心の製造方法により、隣り合う軟磁性粒子の導通を抑制できることは勿論、加工面だけでなく、加工面以外の面においても、軟磁性粒子の露出箇所を低減し、より渦電流損失の低いコイル部材を構成することができる。
【0087】
[実施形態4]
次に、実施形態3における第二対極を導電性液体用ノズルとした本発明の圧粉磁心の製造方法を図6に基づいて説明する。本例の実施形態3との相違点は、導電性液体ノズル7が第二対極9の機能を兼ねている点であり、その他の点は基本的に実施形態3と共通である。
【0088】
即ち、本例では、熱処理成形体100を陽極とし、導電性液体ノズル7自体を第二対極9(陰極)として、両電極間にパルス電流を通電する。このとき、導電性液体ノズル7の構成材料は、導電性であることが必要になる。また、導電性液体ノズル7の形状は、ノズルの外周面に平面を有する扁平な形状とし、導電性液体ノズル7と熱処理成形体100との対向面積をより広く確保できるようにすることが好ましい。図6では簡略化してノズル7を示しているが、導電性液体ノズル7の左端に導電性液体7Lの噴出口があり、さらに熱処理成形体100との対向面にも導電性液体7Lの噴出口がある。
【0089】
本例の場合も実施形態3と同様に、ブリッジ部の除去と絶縁層の形成が行えることに加え、さらに対極9に導電性液体ノズル7を利用することで、このノズル7とは別に第二対極を用いる必要がなく、装置構成を簡略化することができる。
【0090】
[実施形態5]
次に、円筒研削盤で本発明方法を利用する形態を図7に基づいて説明する。実施形態1では平面研削盤を用いたのに対し、本例では円筒研削盤を用いた点が相違点であるため、この相違点を主に以下の説明を行う。
【0091】
本例では、加工工具2である円盤状の砥石に対して所定の間隔をあけて対向配置した第一対極5を陰極とし、棒状の熱処理成形体100Bを陽極としている。第一対極5は、実施形態1の第一対極5と同様に、円筒状の加工工具の外周面に対応した円弧状の湾曲凹面を備え、電源3のマイナス極に陰極用電線6を介して接続されている。一方、熱処理成形体100Bは、その一端が絶縁治具11に同軸状に保持され、その治具11の軸を回転軸として回転自在に保持されている。砥石の回転軸と熱処理成形体100Bの回転軸とは平行に配置され、ここでの両者の回転方向は、図示上は同じ向きであるが、反対向きであっても良い。この砥石と熱処理成形体100Bとを接触状態で回転させることで、熱処理成形体100Bの中央部の外周が研削される。熱処理成形体100Bの他端は、図示しない支持部材に保持され、その支持部材に電源3のプラス極が陽極用電線4を介して接続されている。支持部材と熱処理成形体100Bとの電気的接続は、ブラシなどの摺動接点を利用して行うことができる。加工工具2と第一対極5との間には導電性液体ノズル7から導電性液体7Lが供給され、加工工具2と熱処理成形体100Bとの間には研削液ノズル8から研削液8Lが供給される。
【0092】
この構成の装置において、第一対極5と熱処理成形体100Bに通電すると、熱処理成形体100Bを構成する軟磁性粒子の構成元素を電気分解により溶出させ、或いは軟磁性粒子の一部を放電により除去させることができる。また、研削加工の終了間際又は終了後に加工工具2と熱処理成形体100Bとの間隔を適切に保持して両電極への通電を続けることで、電気分解で溶出された軟磁性粒子の構成元素は、酸化又は水酸化されて研削面に絶縁層を形成する。それにより、軟磁性粒子同士の絶縁を確保することができる。熱処理成形体100Bの研削面以外に絶縁層を形成する場合、加工工具2と熱処理成形体100Bとの間に所定の間隔を保持しつつ、両者を軸方向に相対的に移動させることで容易に実現できる。
【0093】
[実施形態6]
次に、内面研削盤で本発明方法を利用する形態を図8に基づいて説明する。実施形態1では平面研削盤を用いたのに対し、本例では内面研削盤を用いた点が主な相違点であるため、この相違点について以下の説明を行う。
【0094】
本例では、加工工具2として丸棒状の軸付き砥石を用い、加工対象の熱処理成形体100Cには中空の円筒体を用いる。加工工具2と熱処理成形体100Cは上下に配置されると共に、各々独立して回転自在の支持機構(図示略)に保持されている。加工工具2の外径は熱処理成形体100Cの内径よりも小さく、加工工具2を熱処理成形体100Cの内周に挿入し、同工具2の外周面を熱処理成形体100Cの内周面に圧接することで研削を行う。研削時、加工工具2と熱処理成形体100Cとの接触面に導電性液体ノズル7から導電性液体7Lが供給される。本例での導電性液体7Lは研削液である。
【0095】
このような装置において、加工工具2が陰極用電線6を介して電源3のマイナス極に接続され、熱処理成形体100Cが陽極用電線4を介して電源3のプラス極に接続されている。つまり本例は、実施形態2と同様に、加工工具2自体を陰極としている。
【0096】
本例の場合も、加工工具2と熱処理成形体100Cとの間に通電しながら研削を行うことで、熱処理成形体100Cを構成する軟磁性粒子の構成元素を電気分解により溶出させ、或いは軟磁性粒子の一部を放電により除去させることができる。また、研削加工の終了間際又は終了後に加工工具2と熱処理成形体100Cとの間隔を適切に保持して両電極への通電を続けることで、電気分解で溶出された軟磁性粒子の構成元素は、酸化又は水酸化されて研削面に絶縁層を形成する。
【0097】
[実施形態7]
次に、内面研削盤で本発明方法を利用する形態を図9に基づいて説明する。本例は、実施形態6の変形例であり、熱処理成形体100Cの外周に第二対極9を設けて被覆補完工程を行う点が実施形態6と相違する。以下の説明は、この相違点を中心に行う。
【0098】
本例では、陰極用電線6が途中で分岐され、その一方の分岐線6Aが加工工具2に接続される点は実施形態6と同じであるが、他方の分岐線6Bは熱処理成形体100Cの外周に所定の間隔をあけて配置した第二対極9に接続されている。つまり、本例では、熱処理成形体100Cが陽極で、加工工具2と第二対極9とが陰極となる。第二対極9は、熱処理成形体100Cの外周面に対応した湾曲凹面を有する円弧片で構成される。
【0099】
熱処理成形体100Cの外周面は研削面ではないが、その熱処理前の圧粉成形体を金型から抜き出す際、金型との摺接などにより軟磁性粒子の絶縁被覆を損傷することが多い。そのため、本例の装置により通電を行えば、熱処理成形体100Cの外周面に絶縁被覆を損傷した箇所があっても、その箇所に軟磁性粒子を構成する元素の酸化物及び水酸化物の少なくとも一方の層を形成することで絶縁被覆の補修を行うことができる。それにより、軟磁性粒子同士の絶縁を十分に確保できる。特に、本例のように、熱処理成形体100Cの高さ方向(軸方向)の全長に及ぶ大きさの第二対極9を用いれば、熱処理成形体100Cの回転により、その成形体100Cの外周面の全面に亘って絶縁被覆の補修を行うことができる。勿論、熱処理成形体100Cの内周面は、研削時にブリッジ部の除去が行われ、研削終了間際又は終了後に加工工具2と熱処理成形体100Cの内周面とを所定の間隔を保持して通電を続けることで、研削面にも軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方の層を形成できることは実施形態6と同様である。
【0100】
(実施例1)
実施例として、実施形態1の平面研削盤を用いて熱処理成形体の平面研削を行い、比較例として、パルス電流の通電を行うことなく熱処理成形体の平面研削を行って、研削後の加工面の薄膜XRDによる分析と、加工面の表面抵抗の測定を行った。表面抵抗(電気抵抗値)の測定は、研削を行っていない熱処理成形体についても行った。研削条件は、次の通りである。この研削の終了間際に、砥石と熱処理成形体との間隔を0.01mmに保持したまま120秒間通電を続けた。
平面研削条件
切込:5μm 総加工量:0.5mm
砥石
砥粒 :材質:ダイヤモンド 粒度:♯325番
結合剤:鋳鉄
添加元素:Si 0.1質量%、P 0.1質量%
熱処理成形体
軟磁性粒子:純鉄(平均粒径200μm)
絶縁被覆:リン酸塩被膜
通電条件
パルス電圧:100V
平均電流:5A
【0101】
(XRD分析)
薄膜XRDによる分析では、X´pert(Cu-Kα、ミラー/平行ビーム法、薄膜法/θ固定-2θ走査)を使用装置とした。実施例の分析結果を図10に、比較例の分析結果を図11に示す。
【0102】
各図における上段の測定パターンのピークとそれ以外の段の標準パターンのピークとの対比から、実施例にはα-Fe(軟磁性粒子の素材)、極微量のFe3O4の類似相及びFe2O3の類似相が認められたのに対し、比較例ではα-Fe(軟磁性粒子の素材)が認められただけであった。つまり、実施例の加工面は比較例の加工面とは異なり、絶縁層が形成されているものと推測される。また、実施例のピークにはFe3O4、Fe2O3、のピークと完全に一致しないピークも存在し、これらは鉄の水酸化物である、FeOOHやFe5O3(OH)9と考えられる。さらに、ガンマ線を用いたメスバウアー法による分析でも水酸化物の存在が確認された。
【0103】
(表面抵抗測定)
表面抵抗の測定は、株式会社ダイアインスツルメンツ社製抵抗率計ロレスタGPにより四端子四探針法により測定を行った。その結果を図12のグラフに示す。
【0104】
このグラフから明らかなように、実施例による加工面の表面抵抗は研削を行わない参照例と比べて殆ど同等の抵抗値であることがわかる。そのため、実施例により得られた圧粉磁心は、研削を行わない参照例と同等程度に軟磁性粒子同士の絶縁が確保されているものと考えられる。これに対し、比較例による加工面の表面抵抗は参照例に比べて抵抗値が約1/5未満と大幅に落ちており、軟磁性粒子同士の絶縁が不十分になっていると考えられる。
【0105】
(実施例2)
次に、実施形態1の装置を用いて上記実施例1と同様に、パルス電流の通電を行って熱処理成形体の研削を行った実施例、この通電を行わずに熱処理成形体を研削した比較例、研削を行わない参照例の3つの圧粉磁心を作製した。そして、各磁心でリング状の試験片を構成し、その試験片に巻線を施すことで測定部材を作製して、その磁気特性を測定した。
【0106】
圧粉磁心の加工条件は、次の通りである。さらに、この研削後、熱処理成形体と砥石との間を0.005mmあけて30秒間通電を行った。
平面研削条件
切込:10μm 総加工量:1.0mm
砥石
砥粒 :材質:cBN 粒度:♯200番
結合剤:鋳鉄
添加元素:Al 0.1質量%、B 0.1質量%
熱処理成形体
軟磁性粒子:純鉄(平均粒径200μm)
絶縁被覆:リン酸塩被膜(内側絶縁被膜)+シリコーン被膜(外側絶縁被膜)
通電条件
パルス電圧:200V
平均電流:10A
【0107】
磁気特性の測定は、測定部材について、AC-BHカーブトレーサ(メトロン技研株式会社製)を用いて、励起磁束密度Bm:1kG(=0.1T)、測定周波数f:10kHzにおける鉄損W1/10kを測定した。また、鉄損の周波数曲線を下記の3つの式で最小二乗法によりフィッティングし、上記励起磁束密度Bmにおけるヒステリシス損係数Kh(mWs/kg)および渦電流損係数Ke(mWs2/kg)を算出した。その結果を表1に示す。表1中に記載の数値は参照例を100%とした際の相対評価値として記す。この数値が小さいほど損失が小さく好適である。
(鉄損)=(ヒステリシス損)+(渦電流損)
(ヒステリシス損)=(ヒステリシス損係数)×(周波数)
(渦電流損)=(渦電流損係数)×(周波数)
【0108】
【表1】

【0109】
表1の結果から明らかなように、実施例では比較例に比べて大幅に鉄損、特に渦電流損失が低減されていることがわかる。つまり、各軟磁性粒子の絶縁が十分に確保されていると考えられる。
【0110】
(実施例3)
実施例として、実施形態5の円筒研削盤を用いて円柱状の熱処理成形体の外周研削を行い、比較例として、パルス電流の通電を行うことなく同様の熱処理成形体に同様の条件で研削を行って、研削後の加工面の表面抵抗の測定と、加工面の深さ方向にESCA分析(Electron Spectroscopy for Chemical Analysis)を行った。表面抵抗の測定は、実施例1と同様の装置にて同様の方法で行い、研削を行っていない熱処理成形体(参照例)についても行った。ESCA分析は、アルバック・ファイ社製Quantum2000を使用し、加工面から深さ方向に500nmの範囲にわたって元素濃度の分析を行った。研削条件は、次の通りである。この研削の終了後、砥石と熱処理成形体との間隔を0.000mmとゼロカットの状態に保持したまま60秒間通電を続けた。
【0111】
外周研削条件
切込速度:10mm/min
加工量:1.0mm(直径で2.0mm、加工後の外径φ18mm)
砥石
砥粒 :材質:cBN 粒度:♯120番
結合剤:ブロンズ
添加元素:なし
熱処理成形体
寸法・形状:φ20mmの丸棒
軟磁性粒子:純鉄(平均粒径120μm)
絶縁被覆:リン酸塩被膜
通電条件
パルス電圧:90V
平均電流:6A
【0112】
その結果、表面抵抗は、未加工の熱処理成形体である参照例が平均750μΩmであったのに対し、実施例は平均7000μΩmであった。一方、比較例は平均120μΩmであった。この結果から、実施例では未加工の参照例を上回る表面抵抗を実現できていることがわかる。これに対し、比較例では参照例の1/5未満の表面抵抗しか得られず、圧粉成形体を構成する複合磁性粒子の絶縁被覆が損傷していると推測される。
【0113】
次に、実施例におけるESCA分析の測定結果を図13に示す。このグラフから明らかなように、加工面より深さ方向に約200nm、特に約100nmの範囲にわたり酸素が検出されており、軟磁性粒子の素材の鉄及びその酸化物の存在が確認された。また、図示しないFeのピークのエネルギー状態から、Feは酸化物又は水酸化物の形態で存在していると考えられる。このグラフで認められるカーボンは測定時の不可避的不純物と考えられる。一方、比較例のグラフは図示していないが、鉄及び不可避的不純物以外の元素のピークは検出されなかった。そのため、比較例の加工面の表面には酸化物又は水酸化物の膜が形成されていないと考えられる。
【0114】
(実施例4)
実施例として、実施形態7の内面研削盤を用いて円筒状の熱処理成形体(被削材)の内面研削を行い、比較例として、パルス電流の通電を行うことなく同様の熱処理成形体に同様の条件で研削を行って、被削材の外周面の表面抵抗の測定と、鉄損の測定とを行った。熱処理成形体の外周面は非研削面であるが、熱処理前の圧粉成形体を金型から抜き出す際に軟磁性粒子を覆う絶縁被覆に損傷が生じるため、熱処理成形体の外周に第二対極を対向させて通電することで酸化物及び水酸化物の少なくとも一方の層を形成する被覆補完工程を行った。表面抵抗の測定は、実施例1と同様の装置にて同様の方法で行った。この表面抵抗の測定は、被覆補完工程を行う前の熱処理成形体の外周面についても行った。鉄損の測定は、実施例2と同様の方法により行った。研削条件は、次の通りである。この研削の終了後、砥石及び第二対極の各々と熱処理成形体との間隔を0.001mmに保持したまま180秒間通電を続けた。
【0115】
内面研削条件
切込速度:1mm/min
加工量:1.0mm(直径で2.0mm、加工後の内径35mm)
砥石
砥粒 :材質:cBN 粒度:♯400番
結合剤:スチール
添加元素:なし
熱処理成形体
寸法・形状:φ50mm、内径33mm、高さ60mmの中空円筒材
軟磁性粒子:純鉄(平均粒径50μm)
絶縁被覆:チタン酸塩被膜
通電条件
パルス電圧:150V
平均電流:3A
【0116】
その結果、表面抵抗は、被覆補完工程を行う前の熱処理成形体では平均2100μΩmであったのに対し、被覆補完工程を行った後の熱処理成形体では10000μΩm以上であった。この結果から、被覆補完工程を行うことで、絶縁被覆の脱落箇所に軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層が形成され、同工程を行う前の熱処理成形体を上回る表面抵抗を実現できていることがわかる。
【0117】
次に、鉄損の測定結果を表2に示す。この表から明らかなように、砥石に通電することなく通常の内面研削を行い、かつ第二対極の配置も行わなかった比較例に比べ、実施例は大幅に損失を低減できていることがわかる。特に、渦電流損の低減が顕著である。また、この実施例の損失は、内面研削(被覆補完工程)を行わず、かつ外周面に金型からの抜き出しによる焼き付きが生じないように潤滑剤を塗布して成形を行った参照例に比べても遜色ない結果であることがわかる。
【0118】
【表2】

【0119】
(実施例5〜14)
実施例として、表3〜6中に示す各実施の形態の加工装置を用いて熱処理成形体の研削又は切削を行い、その加工後に続けて工具と被削材とを所定の間隔に保持して所定の通電を行い、通電処理後の被削材の加工面の表面抵抗を測定した。表面抵抗の測定は、実施例1と同様の装置にて同様の方法で行い、加工前の表面抵抗(参照例)に対する加工後の表面抵抗の比で結果を示す。この比率が100%を超えれば、加工前よりも表面抵抗が向上したことを意味し、20%(加工前の表面抵抗に対して1/5)以上が好ましく、100%以上であるとより好ましい。研削(切削)後における工具と熱処理成形体との間隔、及び通電条件も表中に記載する。なお、実施形態6では、円柱砥石による内面研削について説明したが、表5、6の実施例13、14で用いた加工装置は、この円柱砥石を各切削工具に置換したものである。
【0120】
【表3】

【0121】
【表4】

【0122】
【表5】

【0123】
【表6】

【0124】
以上の結果から、実施例では未加工の参照例を上回る表面抵抗又は加工前の1/5以上(20%以上)の表面抵抗を実現できていることがわかる。特に、通電条件として、電流:4A以上、時間:60sec以上とすると、表面抵抗の比率が100%を超えやすい。
【0125】
なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明の範囲は上述した実施形態に限定されるものではない。例えば、各実施形態に示した研削盤の他、センタレス研削盤、プロファイル研削盤、工具研削盤、ねじ研削盤、歯車研削盤、自由曲面研削盤、ジグ研削盤等の各種研削盤に本発明を適用することができる。
【産業上の利用可能性】
【0126】
本発明の圧粉磁心は、電磁弁、モータ、又は電源回路などを有する電気機器などの圧粉磁心として好適に利用できる。また、本発明の圧粉磁心の製造方法は、同様の圧粉磁心の製造分野に好適に利用できる。
【符号の説明】
【0127】
1 テーブル
1A 絶縁シート
2 加工工具
3 電源
4 陽極用電線
5 第一対極
6 陰極用電線
6A,6B 分岐線
7 導電性液体ノズル
7L 導電性液体
8 研削液ノズル
8L 研削液
9 第二対極
11 絶縁治具
100、100B、100C 熱処理成形体
100P 複合磁性粒子 100F 加工面
110 軟磁性粒子 120 絶縁被覆 130 絶縁層 110B ブリッジ部
200 環状コア
300 コイル
300w 巻線

【特許請求の範囲】
【請求項1】
絶縁被覆を有する軟磁性粒子を圧縮成形してなる圧粉磁心であって、
この磁心の外周面の少なくとも一部に、当該磁心の一部を加工工具により除去した加工面を備え、
この加工面における隣り合う軟磁性粒子は、当該加工面における絶縁被覆により隔離されていることを特徴とする圧粉磁心。
【請求項2】
前記加工面は、加工対象を陽極とする通電を伴った加工により形成された面であることを特徴とする請求項1に記載の圧粉磁心。
【請求項3】
前記加工面は、軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を有し、その絶縁層は、前記通電に伴って形成されたことを特徴とする請求項2に記載の圧粉磁心。
【請求項4】
前記圧粉磁心の外周面のうち、加工面以外の面であって絶縁被覆の脱落した箇所に前記軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を有し、その絶縁層は、前記通電に伴って形成されたことを特徴とする請求項2又は3に記載の圧粉磁心。
【請求項5】
前記絶縁層の表面の電気抵抗値が加工前の熱処理成形体の表面の電気抵抗値の1/5以上であることを特徴とする請求項3又は4に記載の圧粉磁心。
【請求項6】
前記絶縁層の表面の電気抵抗値が加工前の熱処理成形体の表面の電気抵抗値以上であることを特徴とする請求項5に記載の圧粉磁心。
【請求項7】
前記絶縁層の表面の電気抵抗値が150μΩm以上であることを特徴とする請求項3〜6のいずれか1項に記載の圧粉磁心。
【請求項8】
請求項1〜7のいずれか1項に記載の圧粉磁心と、
この圧粉磁心の外周に配置したコイルとを備えることを特徴とするコイル部材。
【請求項9】
絶縁被覆を有する軟磁性粒子を圧縮成形し、得られた圧粉成形体を所定の温度に加熱した熱処理成形体を用意する準備工程と、
この熱処理成形体を陽極とし、その熱処理成形体を機械加工する加工工具又は加工工具と間隔をあけて対向される第一対極を陰極として、陽極と陰極間に導電性液体を介在させて通電しながら加工工具で熱処理成形体の一部を除去する加工工程とを備え、
前記加工工程は、熱処理成形体の加工面において、隣り合う軟磁性粒子同士をつなぐブリッジ部を除去する除去過程を含むことを特徴とする圧粉磁心の製造方法。
【請求項10】
前記加工工具が、研削砥石、切削工具、研磨工具又は切断工具であることを特徴とする請求項9に記載の圧粉磁心の製造方法。
【請求項11】
さらに、前記加工工程の後、加工工具と熱処理成形体との間に間隔をあけて、その間隔に導電性液体を介在させながら通電し、軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を加工面に形成する被覆工程を備えることを特徴とする請求項9又は10に記載の圧粉磁心の製造方法。
【請求項12】
前記被覆工程は、前記加工工具と熱処理成形体とを相対的に移動させることで、両者の間隔を一定に保持しながら行うことを特徴とする請求項11に記載の圧粉磁心の製造方法。
【請求項13】
さらに、熱処理成形体の外周面のうち、加工面以外の面であって絶縁被覆の脱落箇所に間隔をあけて第二対極を対向させ、熱処理成形体を陽極、第二対極を陰極として両電極間に導電性液体を介在させながら通電し、軟磁性粒子の構成元素の酸化物及び水酸化物の少なくとも一方を含む絶縁層を絶縁被覆の脱落箇所に形成する被覆補完工程を備えることを特徴とする請求項9〜12のいずれか1項に記載の圧粉磁心の製造方法。
【請求項14】
前記被覆補完工程は、前記熱処理成形体と第二対極とを相対的に移動させることで、両者の間隔を一定に保持しながら行うことを特徴とする請求項13に記載の圧粉磁心の製造方法。
【請求項15】
前記被覆補完工程は、導電性液体の供給をノズルから行い、このノズルを第二対極としたことを特徴とする請求項13又は14に記載の圧粉磁心の製造方法。
【請求項16】
前記加工工具は、Al、Si、Ti、Mg、Ca、Cr、Zr、P、及びBから選択される少なくとも一種の元素を含むことを特徴とする請求項9〜15のいずれか1項に記載の圧粉磁心の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2012−4551(P2012−4551A)
【公開日】平成24年1月5日(2012.1.5)
【国際特許分類】
【出願番号】特願2011−109774(P2011−109774)
【出願日】平成23年5月16日(2011.5.16)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【出願人】(593016411)住友電工焼結合金株式会社 (214)
【Fターム(参考)】