説明

塗膜平滑化方法および塗膜平滑化装置

【課題】自動化が容易な塗膜平滑化方法および塗膜平滑化装置を、提供する。
【解決手段】塗膜40の表面42に入射することで熱を発生させるエネルギビームを、塗膜40の表面42に形成されている凹凸領域44に照射するため照射手段130と、照射手段130を制御し、エネルギビームによって発生する熱によって、塗膜40を溶融かつ流動させることにより、凹凸領域44を平滑化するための制御手段160と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、塗膜平滑化方法および塗膜平滑化装置に関する。
【背景技術】
【0002】
例えば、自動車ボディの塗装面は、高い外観品質が要求されるため、塗膜表面に異物が発見されると、手直し補修が行われる。手直し補修においては、例えば、サンディングペーパを用いて異物を除去した後、バフ研磨機によって凹凸領域(異物除去跡)を平滑化している。
【0003】
バフ研磨による補修は、自動化が困難であるため、レーザビームを利用する平滑化が試みられている(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−329271号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、塗膜表面の凹凸領域は、多様な凹凸形状を有するが、前記レーザビームは、凹凸領域における凸部を除去するものであり、適用範囲が狭い問題を有する。そのため、結局、バフ研磨機による仕上げ作業を要する場合があり、自動化が困難である。
【0006】
本発明は、上記従来技術に伴う課題を解決するためになされたものであり、自動化が容易な塗膜平滑化方法および塗膜平滑化装置を、提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するための本発明の一様相は、塗膜平滑化方法である。本塗膜平滑化方法は、塗膜の表面に入射することで熱を発生させるエネルギビームを、前記塗膜の表面に形成されている凹凸領域に照射し、発生する熱によって、前記塗膜を溶融かつ流動させることにより、前記凹凸領域を平滑化する工程を有する。
【0008】
上記目的を達成するための本発明の別の一様相は、照射手段と制御手段とを有する塗膜平滑化装置である。前記照射手段は、塗膜の表面に入射することで熱を発生させるエネルギビームを、前記塗膜の表面に形成されている凹凸領域に照射する。前記制御手段は、前記照射手段を制御し、前記エネルギビームによって発生する熱によって、前記塗膜を溶融かつ流動させることにより、前記凹凸領域を平滑化する。
【発明の効果】
【0009】
本発明の一様相に係る塗膜平滑化方法および別の一様相に係る塗膜平滑化装置によれば、塗膜の表面の凹凸領域は、エネルギビームによって非接触で平滑化されるため、バフ研磨のような接触式に比較し、自動化が容易である。また、凹凸領域の平滑化は、溶融した塗膜の流動によって引き起こされるため、凹凸領域における凸部のみならず凹部に対しても有効であり、多様な凹凸形状に適用可能であるため、平滑化不良部の発生を抑制し、後工程においてバフ研磨のような自動化が困難な仕上げ作業を避けることが可能である。つまり、自動化が容易な塗膜平滑化方法および塗膜平滑化装置を、提供することができる。
【図面の簡単な説明】
【0010】
【図1】実施の形態1に係る塗膜平滑化装置を説明するための概略図である。
【図2】実施の形態1に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャートである。
【図3】図2に示される上塗り工程後における塗膜表面を説明するための断面図である。
【図4】図2に示される異物除去工程後における塗膜表面を説明するための断面図である。
【図5】図2に示される平滑化工程後における塗膜表面形状を説明するための図表である。
【図6】実施の形態2に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャートである。
【図7】実施の形態2に係る塗膜平滑化装置を説明するための概略図である。
【図8】実施の形態3に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャートである。
【図9】実施の形態4に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャートである。
【図10】図9に示される平滑化工程を説明するための断面図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態を、図面を参照しつつ説明する。
【0012】
図1は、実施の形態1に係る塗膜平滑化装置を説明するための概略図である。
【0013】
実施の形態1に係る塗膜平滑化装置100は、真空チャンバ110、テーブル部120、電子銃(照射手段)130、真空装置140およびコントローラ(制御手段)160を有しており、被塗装物10の塗膜40の表面42に形成されている凹凸領域44を電子ビーム(エネルギビーム)によって非接触で平滑化するために使用される。被塗装物10は、例えば、自動車のボディである。
【0014】
凹凸領域44は、例えば、塗膜40に残留した微細な気泡や塗膜40に混入あるいは付着した異物による塗膜表面の微小な盛り上がりや、くぼみからなる。異物は、空気中の浮遊塵埃、作業者からの落下塵埃、塗料中の微細な固形物等である。
【0015】
真空チャンバ110は、被塗装物10を搬入するための開放自在の扉を有し、テーブル部120および電子銃130が配置される。テーブル部120は、被塗装物10が載置されるホルダ122と、ホルダ122を駆動するための駆動部124を有する。駆動部124は、例えば、リニアモータを有しており、ホルダ122を水平2軸に移動可能に構成されている。
【0016】
電子銃130は、ホルダ122に載置される被塗装物10の塗膜表面42に、電子ビームを照射するために使用され、電子ビーム発生部132、電子ビーム加速部134および電子レンズ系136を有する。電子ビーム発生部132は、熱電子を発生させるフィラメントや陰極を有する。電子ビーム加速部134は、電子ビーム発生部132の陰極との間に高電圧を印加し、強力な電磁場を生成するための陽極を有する。電子レンズ系136は、収束角を調整するレンズ、収束用レンズ、偏向レンズ等を有する。電子ビームの照射回数は、特に限定されず、必要に応じて、例えば、10s程度以内の間隔で、数回から数10回繰り返される。
【0017】
なお、電子銃130は、上記構成に特に限定されず、例えば、低圧の電離ガスが充填されプラズマ化されるプラズマ電子銃を適用することも可能である。
【0018】
真空装置140は、真空ポンプなどを有し、電子ビームを照射する際における真空チャンバ110の真空度を制御するために使用される。
【0019】
コントローラ160は、制御部162および記憶部164を有するプログラマブルコントローラからなる。制御部162は、マイクロプロセッサ等から構成される制御回路であり、制御プログラムに従って、真空チャンバ110、テーブル部120、電子銃130および真空装置140を一体的に制御する。
【0020】
記憶部164は、ROMなどの読取り専用の記憶装置、不揮発性RAMなどの高速のランダムアクセス記憶装置、ハードディスクドライブなどの大容量のランダムアクセス記憶装置からなり、制御プログラムおよび各種設定データが記憶されていると共に、制御プログラムを実行するための作業領域等を有する。制御プログラムには、塗膜表面42に照射される電子ビームによって発生する熱によって、上塗り塗膜40を溶融かつ流動させることにより、塗膜表面42の凹凸領域44を平滑化するように、電子銃130を制御するプログラムが含まれている。
【0021】
塗膜平滑化装置100においては、上記のように、塗膜表面42に形成されている凹凸領域44は、電子ビームによって非接触で平滑化されるため、バフ研磨のような接触式に比較し、自動化が容易である。また、凹凸領域44の平滑化は、溶融した上塗り塗膜40の流動によって引き起こされるため、凹凸領域44における凸部のみならず凹部に対しても有効であり、多様な凹凸形状に適用可能であるため、平滑化不良部の発生を抑制し、後工程においてバフ研磨のような自動化が困難な仕上げ作業を避けることが可能である。
【0022】
電子ビームは、生成、伝播、集中分散および偏向が簡単であり、多様な照射条件に対応することが容易であり、好ましい。なお、符号20および30は、下塗り塗膜および中塗り塗膜を示している。
【0023】
次に、実施の形態1に係る塗膜平滑化方法(平滑化工程)が適用される塗装プロセスを説明する。
【0024】
図2は、実施の形態1に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャート、図3は、図2に示される上塗り工程後における塗膜表面を説明するための断面図、図4は、図2に示される異物除去工程後における塗膜表面を説明するための断面図である。
【0025】
実施の形態1に係る塗装プロセスは、図2に示されるように、前処理工程、下塗り工程、中塗り工程、上塗り工程、異物除去工程、搬入工程、平滑化工程および取出し工程を有する。
【0026】
前処理工程においては、自動車のボディからなる被塗装物10に、ディップ方式や連続スプレー方式によって脱脂および化成処理を施す。脱脂剤は、例えば、エマルジョン系やアルカリ系の脱脂剤である。化成処理においては、鉄や亜鉛との相性が良いリン酸亜鉛処理液が適用され、防錆性および被塗装物10と下塗り塗膜20との付着性を向上させるせる機能を有する化成被膜を形成する。リン酸亜鉛処理液は、例えば、リン酸、第1リン酸亜鉛を主体として、促進剤として酸化剤(硝酸、亜硝酸塩、塩素酸塩など)、還元剤、金属塩などを含んでいる。
【0027】
下塗り工程においては、電着塗装や粉体塗装によって下塗り塗膜20を形成する。下塗り塗膜20は、被塗装物10と塗膜との密着性を向上させる機能を有する。下塗り塗料は、例えば、カチオン型電着用塗料や、エポキシ系やポリエステル系を主要樹脂とする粉体塗料である。
【0028】
中塗り工程においては、エアスプレーやエアレススプレーや静電塗装によって中塗り塗膜30を形成する。中塗り塗膜30は、下塗り塗膜の欠陥を補うと共に上塗り仕上がりの外観向上のための表面調整の機能を有する。中塗り塗料は、例えば、溶剤型、水系、非水系、ハイソリッド型などの塗料である。
【0029】
上塗り工程においては、エアスプレーやエアレススプレーや静電塗装によって上塗り塗膜40を形成する。上塗り塗膜40は、美観の付与と環境に対する耐久性(耐候性、耐薬品性、耐磨耗性など)を付与する機能を有する。実施の形態1に係る上塗り塗料は、耐傷付き性を向上させた柔らかい塗料からなり、住友スリーエム社製自己治癒性クリヤー#200が挙げられる。上塗り塗料は、ソリッドカラー塗料、メタリック塗料、通常のクリヤー塗料、これらの組み合わせを、使用することも可能である。また、塗膜は3層構造に限定されない。
【0030】
異物除去工程においては、塗装完了後の塗膜表面42に付着した異物50(図3参照)を、サンディングペーパを用いて除去する。これにより、図4に示されるように、異物の除去跡を有する凹凸領域(補修部位)44が残ることになる。サンディングペーパの粒度は、例えば、#1500〜#2500である。異物50は、例えば、ナイフによって除去することも可能であり、この場合、異物除去跡は、ナイフによって形成された傷となる。
【0031】
搬入工程においては、大気下にある真空チャンバ110の扉を開放し、被塗装物10をホルダ122に載置する。扉が閉められ密閉されると、制御プログラムに従って塗膜平滑化装置100が制御される。これにより、真空装置140が作動し、真空チャンバ110の内部が減圧される。テーブル部120の駆動部124が作動され、ホルダ122が移動する。これにより、ホルダ122に載置される被塗装物10の塗膜表面42に位置する凹凸領域44が、電子ビームの照射位置に位置決めされる。
【0032】
平滑化工程においては、電子ビームを、塗膜表面42に形成されている凹凸領域44に照射し、発生する熱によって、上塗り塗膜40を溶融かつ流動させることにより、凹凸領域44を平滑化する。この際、制御プログラムに従って電子銃130が作動し、電子ビーム発生部132および電子ビーム加速部134において発生および加速された電子ビームは、電子レンズ系136を経由し、塗膜表面42に照射される。電子ビームの照射回数は、必要に応じて、例えば、10s程度以内の間隔で、数回から数10回繰り返される。
【0033】
電子ビームは、塗膜表面42に入射することで熱を発生させ、当該熱によって、上塗り塗膜40を溶融かつ流動させることにより、上塗り塗膜40の塗装欠陥である凹凸領域44を平滑化する。これにより、上塗り塗膜40の塗装欠陥が補修される。
【0034】
また、塗膜表面42の凹凸領域44は、電子ビームによって非接触で平滑化されるため、バフ研磨のような接触式に比較し、自動化が容易である。また、凹凸領域44の平滑化は、溶融した上塗り塗膜40の流動によって引き起こされるため、凹凸領域44における凸部のみならず凹部に対しても有効であり、多様な凹凸形状に適用可能であるため、平滑化不良部の発生を抑制し、後工程においてバフ研磨のような自動化が困難な仕上げ作業を避けることが可能である。
【0035】
さらに、上塗り塗膜40は、耐傷付き性を向上させた柔らかい塗料からなるため、バフ研磨によって凹凸領域44を平滑化する場合、摩擦熱によって塗膜表面温度が50〜60℃まで上昇し、塗膜が軟化することで、研磨性(磨き性)が低下し、平滑化に要する時間が長くなる。一方、実施の形態1においては、電子ビームによって塗膜表面42が非接触で平滑化されるため、平滑化に要する時間は、影響が及ぼされない。
【0036】
取出し工程においては、電子ビームの照射による平滑化が完了すると、制御プログラムに従って、真空チャンバ110は大気下に開放され、被塗装物10が、真空チャンバ110の扉から取り出される。
【0037】
図5は、図2に示される平滑化工程後における塗膜表面形状を説明するための図表である。
【0038】
表面条件が異なる3種類の塗膜1〜3に対して、平滑化工程後における塗膜表面形状を測定した。なお、平滑化工程前における凹凸領域の高低差[μm]および表面粗度(Ra)[μm]に関し、塗膜1は、0.02〜0.05および0.005〜0.010、塗膜2は、0.65〜0.90および0.1〜0.3、塗膜3は、1.0〜1.5および0.3〜0.5である。なお、塗膜1が、塗膜2および塗膜3に比較し、高低差および表面粗度が小さいのは、異物除去工程後において、荒研磨を施しているためである。
【0039】
図5に示されるように、塗膜表面形状が異なる3種類の塗膜1〜3のいずれにおいても、0.01以下の高低差および0.005以下の表面粗度が得られた。
【0040】
以上のように、実施の形態1に係る塗膜平滑化方法および塗膜平滑化装置によれば、塗膜表面に形成されている凹凸領域は、エネルギビームによって非接触で平滑化されるため、バフ研磨のような接触式に比較し、自動化が容易である。また、凹凸領域の平滑化は、溶融した上塗り塗膜の流動によって引き起こされるため、凹凸領域における凸部のみならず凹部に対しても有効であり、多様な凹凸形状に適用可能であるため、平滑化不良部の発生を抑制し、後工程においてバフ研磨のような自動化が困難な仕上げ作業を避けることが可能である。つまり、実施の形態1は、自動化が容易な塗膜平滑化方法よび塗膜平滑化装置を、提供することができる。
【0041】
また、エネルギビームは、電子ビームであり、生成、伝播、集中分散および偏向が簡単であるため、多様な照射条件に対応することが容易である。
【0042】
さらに、平滑化される塗膜表面の凹凸領域は、上塗り塗膜の異物除去跡であるため、これにより、上塗り塗膜40の塗装欠陥が補修される。
【0043】
次に、実施の形態2を説明する。
【0044】
図6は、実施の形態2に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャート、図7は、実施の形態2に係る塗膜平滑化装置を説明するための概略図である。
【0045】
実施の形態2は、凹凸領域の構成に応じて電子ビームの照射条件を調整する点で、実施の形態1と異なり、図6に示されるように、搬入工程と平滑化工程との間に、3次元形状検出工程および照射条件設定工程をさらに有する。
【0046】
なお、実施の形態2に係る塗膜平滑化装置200は、図7に示されるように、凹凸領域44の3次元形状を非接触式に測定するための計測装置250を有する。計測装置250は、凹凸領域44に対して計測用の照明を当てるための光源、凹凸領域44からの反射光を走査する撮像センサを有する。
【0047】
また、塗膜平滑化装置200のコントローラ260の記憶部264に記憶されている制御プログラムには、計測装置250からの画像信号を処理して、凹凸領域44の3次元形状(位置を含む)を検出するためのプログラム、検出された3次元形状に基づいて、電子ビームの照射条件を決定するためのプログラムが含まれている。電子ビームの照射条件は、例えば、照射範囲、照射回数、照射出力である。なお、符号262は、コントローラ260の制御部を示している。
【0048】
次に、3次元形状検出工程および照射条件設定工程を説明する。
【0049】
3次元形状検出工程においては、制御プログラムに従って制御される計測装置250によって、被塗装物10の塗膜表面42の凹凸領域44の3次元形状を非接触式に検出する。この際、計測装置250は、計測用の照明を塗膜表面42の凹凸領域44に当て、凹凸領域44からの反射光を走査する。
【0050】
照射条件設定工程においては、検出された3次元形状に基づいて、電子ビームの照射条件を決定する。したがって、後続の平滑化工程における電子ビームの照射条件が最適化されるため、平滑化を効率的に実施できる。また、3次元形状は、凹凸領域44の高低差および表面粗度(Ra)を少なくとも含んでいることが好ましい。この場合、電子ビームの照射条件を効率的に最適化することができる。
【0051】
以上のように、実施の形態2によれば、凹凸領域の3次元形状に基づいて、電子ビームの照射条件が決定されるため、電子ビームの照射条件が最適化される。したがって、平滑化を効率的に実施できる。また、凹凸領域の3次元形状に、凹凸領域の高低差および表面粗度(Ra)を少なくとも含んでいる場合、電子ビームの照射条件を効率的に最適化することができる。なお、電子ビームの照射条件の決定は、塗膜組成を考慮することも好ましい。
【0052】
次に、実施の形態3を説明する。
【0053】
図8は、実施の形態3に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャートである。
【0054】
実施の形態3は、平滑化の品質を判定する点で、実施の形態2と異なり、図8に示されるように、平滑化工程と取出し工程の間に、3次元形状検出工程および品質判定工程が配置されている。実施の形態3に係る塗膜平滑化装置は、品質判定プログラムが制御プログラムに含まれる点を除けば、実施の形態2に係る塗膜平滑化装置200と略一致しているため、その説明は、重複を避けるため、省略する。品質判定プログラムは、平滑化された凹凸領域の3次元形状が、品質を満たしているか否かを判定するためのものである。
【0055】
3次元形状検出工程においては、制御プログラムに従って制御される計測装置250によって、平滑化された後の凹凸領域44の3次元形状を非接触式に検出する。この際、計測装置250は、計測用の照明を塗膜表面42の凹凸領域44に当て、凹凸領域44からの反射光を走査する。
【0056】
品質判定工程においては、検出された3次元形状が、品質を満たしているか否かを判定する。これにより、最終的な品質チェックを自動化することが容易であり、工数を削減することが可能である。品質は、例えば、凹凸領域44の高低差および表面粗度(Ra)によって評価される。なお、品質を満たしていない場合、平滑化工程に戻り、凹凸領域を再度平滑化することも好ましい。
【0057】
以上のように、実施の形態3によれば、最終的な品質チェックを自動化することが容易でありで、工数を削減することが可能である。
【0058】
次に、実施の形態4を説明する。
【0059】
図9は、実施の形態4に係る塗膜平滑化方法が適用される塗装プロセスを説明するためのフローチャート、図10は、図9に示される平滑化工程を説明するための断面図である。
【0060】
実施の形態4は、平滑化の対象が中塗り塗膜である点で、実施の形態1と異なり、図9に示されるように、中塗り工程と上塗り工程との間に、搬入工程、平滑化工程および取出し工程が配置されている。なお、実施の形態4に係る塗膜平滑化装置は、実施の形態1に係る塗膜平滑化装置100が適用されるため、その説明は、重複を避けるため、省略する。
【0061】
搬入工程においては、大気下にある真空チャンバ110の扉を開放し、中塗り塗膜30が形成された被塗装物10をホルダ122に載置する。扉が閉められ密閉されると、制御プログラムに従って塗膜平滑化装置100が制御される。これにより、真空装置140が作動し、真空チャンバ110の内部が減圧される。テーブル部120の駆動部124が作動され、ホルダ122が移動する。これにより、中塗り塗膜30の塗膜表面32に形成されている凹凸領域34が、電子ビームの照射位置に位置決めされる。凹凸領域34は、中塗り塗膜30に残留した微細な気泡や中塗り塗膜30に混入あるいは付着した異物による塗膜表面32の微小な盛り上がりや、くぼみからなる。
【0062】
平滑化工程においては、図10に示されるように、制御プログラムに従って電子銃130が作動され、電子ビームを、中塗り塗膜30の塗膜表面32に照射し、発生する熱によって、塗膜を溶融かつ流動させることにより、塗膜表面32の凹凸領域34を平滑化する。
【0063】
取出し工程においては、電子ビームの照射による平滑化が完了すると、制御プログラムに従って、真空チャンバ110は大気下に開放され、被塗装物10が、真空チャンバ110の扉から取り出される。被塗装物10は、後続の上塗り工程において、上塗り塗膜40が形成される。この際、中塗り塗膜30の塗膜表面32が平滑化されているため、上塗り塗装後の鮮映性が向上する。
【0064】
なお、平滑化工程の前に、実施の形態2に係る3次元形状検出工程および照射条件設定工程を配置したり、平滑化工程の後に、実施の形態3に係る3次元形状検出工程および品質判定工程を配置することも可能である。
【0065】
以上のように、実施の形態4によれば、中塗り塗膜の表面が平滑化されるため、上塗り塗装後の鮮映性が向上する。
【0066】
本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲で種々改変することができる。例えば、実施の形態4を、実施の形態1〜3に付加的に組み込むことも可能である。被塗装物は、自動車のボディに限定されない。塗膜は、熱硬化型や熱可塑型を適用することが可能である。エネルギビームは、電子ビームに限定されない。
【符号の説明】
【0067】
10 被塗装物
20 下塗り塗膜、
30 中塗り塗膜、
32 塗膜表面、
34 凹凸領域、
40 上塗り塗膜、
42 塗膜表面、
44 凹凸領域、
50 異物、
100 塗膜平滑化装置、
110 真空チャンバ、
120 テーブル部、
122 ホルダ、
124 駆動部、
130 電子銃(照射手段)、
132 電子ビーム発生部、
134 電子ビーム加速部、
136 電子レンズ系、
140 真空装置、
160 コントローラ、
162 制御部、
164 記憶部、
200 塗膜平滑化装置、
250 計測装置、
260 コントローラ(制御手段)、
262 制御部、
264 記憶部。

【特許請求の範囲】
【請求項1】
塗膜の表面に入射することで熱を発生させるエネルギビームを、前記塗膜の表面に形成されている凹凸領域に照射し、発生する熱によって、前記塗膜を溶融かつ流動させることにより、前記凹凸領域を平滑化する工程を有する
ことを特徴とする塗膜平滑化方法。
【請求項2】
前記エネルギビームは、電子ビームであることを特徴とする請求項1に記載の塗膜平滑化方法。
【請求項3】
前記塗膜は、上塗り塗膜であり、
前記凹凸領域は、前記上塗り塗膜に混入あるいは付着した異物の除去跡を有する補修部位である
ことを特徴とする請求項1又は請求項2に記載の塗膜平滑化方法。
【請求項4】
前記塗膜は、中塗り塗膜であることを特徴とする請求項1又は請求項2に記載の塗膜平滑化方法。
【請求項5】
前記凹凸領域の3次元形状を非接触式に検出する工程と、
検出された3次元形状に基づいて、前記エネルギビームの照射条件を決定する工程と、
をさらに有することを特徴とする請求項1〜4のいずれか1項に記載の塗膜平滑化方法。
【請求項6】
前記凹凸領域の3次元形状は、前記凹凸領域の高低差および表面粗度(Ra)を少なくとも含んでいることを特徴とする請求項5に記載の塗膜平滑化方法。
【請求項7】
平滑化された前記凹凸領域の3次元形状を非接触式に検出する工程と、
検出された3次元形状が、品質を満たしているか否かを判定する工程と、
をさらに有することを特徴とする請求項1〜6のいずれか1項に記載の塗膜平滑化方法。
【請求項8】
塗膜の表面に入射することで熱を発生させるエネルギビームを、前記塗膜の表面に形成されている凹凸領域に照射するため照射手段と、
前記照射手段を制御し、前記エネルギビームによって発生する熱によって、前記塗膜を溶融かつ流動させることにより、前記凹凸領域を平滑化するための制御手段と、
を有することを特徴とする塗膜平滑化装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−201391(P2010−201391A)
【公開日】平成22年9月16日(2010.9.16)
【国際特許分類】
【出願番号】特願2009−52088(P2009−52088)
【出願日】平成21年3月5日(2009.3.5)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】