説明

容積形ポンプ及びこれを備えた容積形流体機械

【課題】容積形ポンプにおいて、ポンプ動作を滑らかに継続可能としつつ、小容量に適し、製造コストを低減すること。
【解決手段】容積形ポンプ30は、ポンプ溝30b1を有して回転運動可能なローリングシリンダ30bと、ポンプ溝30b1に隙間嵌合されて2つのポンプ室を形成する旋回ピストン30aとを備える。ローリングシリンダ30bは偏心量Esのシリンダ回転軸γを中心に回転運動可能に配置され、ポンプ溝30b1はシリンダ回転軸γに交差して直線状に延び、旋回ピストン30aは旋回半径Epで旋回運動する自転運動可能に配置され、旋回半径Epと偏心量Esとは概略等しい。ローリングシリンダ30bに嵌合する旋回ピストン30aの数は1個とされ、旋回ピストン30aの旋回及びローリングシリンダ30bの回転を維持すると共に、旋回ピストン30aの旋回速度をローリングシリンダ30bの回転速度の2倍に規定する回動規定手段を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、旋回する旋回ピストンとともにローリングシリンダが回転するローリングシリンダ式の容積形ポンプ及びこれを備えた容積形流体機械に係わり、特に、小容量で製造コストの低いポンプ動作を滑らかに継続可能とする容積形ポンプ及びこれを備えた容積形流体機械に関する。
【背景技術】
【0002】
ローリングシリンダ式の容積形ポンプとしては、特開平11−125191号公報(特許文献1)で示される密閉型圧縮機のように、1つのローリングシリンダに旋回位相の異なる2個以上のピストンを設ける構成となっていた。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平11−125191号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
このローリングシリンダ式の容積形ポンプは、各部の隙間が0であり、さらに、旋回ピストン自転軸の旋回半径Epとシリンダ回転軸の偏心量Esが一致する場合に、任意の時間における旋回ピストンの旋回量ΔΦpとローリングシリンダの回転量Φsの間に、次の式(1)の関係が常に成立する。なお、ローリングシリンダの回転量は、以下、静止体の自転量を主に回転量と呼称することにする。ただし、場合によっては、回転量を自転量と言換える。また、速度や中心軸に対しても同様に、回転速度を自転速度、回転軸を自転軸と適宜言換える。
【0005】
Φs=Φp/2‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(1)
この式(1)の両辺を時間tで割ることにより、式(1)を次の式(2)と表現できる。
【0006】
Φs/t=(Φp/t)/2‥‥‥‥‥‥‥‥‥‥‥‥(2)
また、旋回ピストン旋回速度をΩp、ローリングシリンダ回転速度をΩsと表せば、式(1)を次の式(3)と表現できる。
【0007】
Ωs=Ωp/2‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(3)
この式(1)または式(3)の関係が、なんらかの理由で成立しなくなった場合、正常な関係に回復することが困難となり、この結果、ポンプ動作は継続できず、容積形ポンプはロックしてしまう。
【0008】
ところで、通常の場合、旋回ピストンの旋回運動は、旋回半径を偏心量とするクランクシャフトの回転で実現している。これより、ローリングシリンダ式の容積形ポンプには、次の特徴がある。
【0009】
第1に、クランクシャフトの偏心ピン部とローリングシリンダとは、前記の式(1)または式(3)の関係を満たす必要があるため、相対回転を可能(相対回転速度はΩp/2)にする構成が必須となる。具体的には、旋回ピストンの外形を円筒形状として旋回ピストン外周面とローリングシリンダのポンプ溝との間で回転を可能とする構成や、旋回ピストン内周面とクランクシャフト偏心ピン部との間で回転を可能とする構成が必要である。
【0010】
第2に、ローリングシリンダ式の容積形ポンプでは、旋回ピストンの旋回半径Epとローリングシリンダの偏心量Es(旋回ピストンの旋回中心からの偏心量)が同一であるため、旋回ピストンの一旋回中に一回だけ、旋回ピストン自転軸とローリングシリンダの回転軸が一致する。
【0011】
ローリングシリンダ式の容積形ポンプでは、これらの特徴があるため、原理的に前記の式(1)または式(3)が成立しない状況が後述するようなメカニズムによって生じる。この場合の発生頻度は低いと思われ、簡便な対応で対策が可能と考えられてきた。ところが、実機では、要素間に設ける隙間や要素配置(組立て)の誤差により、前記の式(1)または式(3)が成立しない状況が頻繁に起こり、ポンプ動作のロックを回避するための抜本的な対策が不可欠であることが実験で明らかになった。
【0012】
以下に、前記の式(1)または式(3)が成立しなくなる原理的なメカニズムを最初に説明し、その後、実機におけるメカニズムを説明する。
【0013】
まず、前記の式(1)または式(3)が原理的に成立しない発生メカニズムを、原理的なポンプ動作を示す図17を用いて説明する。この図17は、偏心ピン部が時計周りに一旋回するときの45度毎における旋回ピストン及びローリングシリンダの位置を示したものである。ここで、図中に記載する外側の角度(太字)は、偏心ピン部の旋回量であるが、偏心ピン部と旋回ピストン間の隙間が無い理想的な場合を考えているため、Φpと等しくなる。また、内側の角度(細字)は、ローリングシリンダの回転軸からみた旋回ピストン自転軸(偏心ピン部中心軸)の旋回量であるが、旋回ピストンとポンプ溝間の隙間が無い理想的な場合を考えているため、Φsと等しくなる。これら各々のタイミングでは、後述する唯一の例外を除き、幾何学的な関係から、旋回ピストンの旋回量Φpに対するローリングシリンダの回転量Φsは、図17で示す角度に定まるため、前記の式(1)または式(3)が成立する。
【0014】
その例外とは、ローリングシリンダ式の容積形ポンプの第2の特徴として前述したシリンダ回転軸(自転軸)と旋回ピストン自転軸とが一致するタイミング(図17の(I5))である。両ポンプ部品の自転軸が一致するため、前述した第1の特徴から、旋回ピストンが旋回せず(Ωp=0)に、ローリングシリンダが回転(Ωs≠0)可能となる。これより、次の(I)の状況を介して、(II)の不都合が生じうる
(I)ローリングシリンダの回転軸と旋回ピストンの自転軸が一致するタイミングでポンプが停止する。
(II)ローリングシリンダに何らかの自転トルクがかかり、前記(I)の状況下で、旋回ピストンが旋回せずにローリングシリンダだけが回転する。
【0015】
このメカニズムに沿って状態が変化すると、前記の式(1)または式(3)が成立しない図18のような状況に陥る。また、この状況に一旦陥ると、旋回ピストンが旋回しようとしても、ローリングシリンダに与える力は、図19の矢印のように、(前記(II)で発生したローリングシリンダの回転が如何なる回転角度であろうとも)ローリングシリンダの回転軸を通る向きに発生する。このため、ローリングシリンダを回すトルクは発生せず、ローリングシリンダが自転して前記の式(1)または式(3)が成立する正規の姿勢へ自然に復帰できない。この結果、容積形ポンプはロックする。このポンプロックを回避するためには、前記(I)を回避することが効果的で簡便であることが分かった。例えば、駆動源であるモータのコギングを用いて、前記(I)の状態でポンプが停止しないように、モータの設定角を決めればよい。
【0016】
次に、実機の場合の、前記の式(1)または式(3)の不成立を起こすメカニズムを説明する。前記の原理的なメカニズムによれば、ロックは前記(I)の発生が不可欠であったが、実際には、前記(I)の発生がなくても、ロックが頻繁に発生する。つまり、原理的な考察では導き出せないロック発生メカニズムがある。このため、実機でのロック発生メカニズムを改めて考察する。すなわち、ポンプ動作中に、ローリングシリンダが前記の式(1)または式(3)から外れた回転を起こすメカニズムを考察する。
【0017】
偏心ピン部と旋回ピストンと間の隙間を原因とする主要メカニズムについて、図19、図20を用いて説明する。図19は偏心ピン部と旋回ピストンとの間の隙間がポンプ動作に及ぼす影響を説明する図である。図19では、その隙間を誇張して表してある。図19(R3)〜(R5)は図17(I3)〜(I5)と同じタイミングを示す。
【0018】
旋回ピストンは、吸込側ポンプ室と吐出側ポンプ室とを仕切っているため、作動流体から図19の矢印の向きに力を受ける。このため、旋回ピストンは、偏心ピン部と旋回ピストンとの間の隙間により、その力の方向に変位する。図19は、その変位を誇張して示したものであり、その場合の旋回ピストン自転軸を黒丸で示す。また、各々の場合での偏心ピン部中心軸も四角形でプロットした。図19(R5)以降、偏心ピン部は下方左側へ移動することから、これ以降の黒丸は、必ず左に移動する。この結果、旋回ピストンの自転軸軌跡は、ローリングシリンダの回転軸を通らずに、その左側を通る。この旋回ピストン自転軸の軌跡を拡大したものを図20に示す。
【0019】
さらには、旋回ピストンに作用する力として、前記した作動流体からの力とともに、ローリングシリンダを回転させるためにローリングシリンダに与える力の反力がポンプ溝に直角な方向に作用する。よって、図20には、この反力による変位も加えた旋回ピストンの自転軸位置を白丸でプロットした。このローリングシリンダからの反力により、旋回ピストンの自転軸軌跡は、一層左側へずれることがわかる。旋回ピストン自転軸とシリンダ回転軸を繋ぐ直線方向がポンプ溝の方向(すなわち、ローリングシリンダの回転位相)となることから、ローリングシリンダは、この付近(シリンダ回転軸と旋回ピストンの自転軸が一致する位置付近)で、前記の式(1)または式(3)から外れた回転が起きる(具体的には、回転方向が時計回りから反時計回りに急に反転する)可能性のあることがわかる。すなわち、偏心ピン部と旋回ピストンとの間の隙間により、ポンプ動作中に、前記の式(1)または式(3)から外れた回転が起きて、ロックする可能性のあることがわかる。
【0020】
反対に、この考察から、ローリングシリンダの回転軸と旋回ピストンの自転軸が原理的に一致する位置付近で、両者が一致しなくても、ロックせずに正規のポンプ動作となる可能性も以下のように説明できる。すなわち、ローリングシリンダの回転軸と旋回ピストンの自転軸軌跡のずれが、旋回ピストンとローリングシリンダのポンプ溝の隙間よりも小さければ、ポンプ溝の方向を変えずに、ポンプ溝の中心軸から外れた位置を旋回ピストンの自転軸が通過できることになり、ポンプ動作の継続が可能となる。
【0021】
ここで述べているシリンダ回転軸や旋回ピストンの自転軸とは、ポンプ溝の中心軸から外れた位置を旋回ピストンの自転軸が通過する瞬間の瞬間軸を意味している。
【0022】
以上説明したように、ポンプ構成要素間に隙間があるような実機の場合、原理的な考察時には省略していた隙間を原因として前記の式(1)または式(3)が成立しない状況が発生すると同時に、隙間によって前記の式(1)または式(3)が成立しない状況を修正する効果も生じる。同様の状況は、前記で説明しなかった他の要素間隙間や、要素の配置誤差(旋回ピストン自転軸の旋回半径Epとシリンダ回転軸の偏心量Esが一致しない等)によっても発生する。このように、前記の式(1)または式(3)が成立せずに、ポンプの動作ロックが如何なる要素間隙間や要素配置の条件下で発生するかは、いろいろな状況の組合せで決まるため、ロック発生の状況毎に対策を講ずることは極めて困難である。
【0023】
よって、ローリングシリンダ式の容積形ポンプの動作ロックを回避して、滑らかな動作を継続するためには、ローリングシリンダと旋回ピストン間に前記の式(1)または式(3)の関係を常に成立させる回動規定手段を設けることが不可欠である。そして、同時に、前記の式(1)または式(3)の関係を拘束し過ぎることも避けねばならず、以下の(A)、(B)ような条件の回動規定手段が必要となる。
【0024】
(A)ローリングシリンダと旋回ピストンを前記の式(1)または式(3)の関係に規定する現回動機構以外の機構を設ける。
(B)ローリングシリンダの回転軸と旋回ピストンの自転軸が一致するタイミング付近で、両者の配置を前記の式(1)または式(3)の関係に規定する規制作用が最も強く、そのタイミングから外れるにつれて、その規制作用が緩和される。
【0025】
前記特許文献1は、動作ロック回避のために、旋回位相が180度異なる2個の旋回ピストンを1つのローリングシリンダに設けるという対策をとっている。これは、一方の旋回ピストンの自転軸がローリングシリンダの回転軸に近づくに連れて、他方の旋回ピストンの自転軸がローリングシリンダの回転軸から最も離れるようになっており、旋回ピストンとポンプ溝の組合せが互いに前記条件(A)、(B)を満たす回動規定手段の役割を果たしており、抜本策の一つとなっている。
【0026】
しかし、この技術は、旋回ピストンが2個必要であるため小容量化には不向きな構成となっている。さらに、部品点数が増えるため、加工コストの増大を招く。そして、さらに、以下に述べる組立て性の大幅な低下がある。クランクシャフトは、180度異なる方向に偏心する2箇所の偏心ピン部を有するが、それを90度異なる方向に2本のポンプ溝が設定されたローリングシリンダへ挿入することはほぼ不可能である。例えば、偏心ピン部の偏心量や直径をポンプ溝幅に対して極端に小さく設計すれば幾何学的には可能となるが、押除け量確保のために旋回ピストンの外径や高さを大きくしなければならなくなり、偏心ピン部の負荷増大で信頼性や性能の大幅な低下が生じる。このため、ローリングシリンダを分割したうえで、それらをクランクシャフトの偏心ピン部へ各々挿入した後、高い位置精度で一体化するという煩雑な組立て工程が必要となり、製造コストの上昇という問題があった。
【0027】
本発明の目的は、ポンプ動作を滑らかに継続可能としつつ、小容量に適し、製造コストを低減できる容積形ポンプ及びこれを用いた容積形流体機械を提供することにある。
【課題を解決するための手段】
【0028】
前述の目的を達成するための本発明の第1の態様では、ケーシング室を有するポンプケーシングと、ポンプ溝を有して前記ケーシング室に回転運動可能に配置されローリングシリンダと、前記ポンプ溝に隙間嵌合されて当該ポンプ溝を仕切ることにより2つのポンプ室を形成する旋回ピストンと、を備え、前記旋回ピストンまたは前記ローリングシリンダは駆動源により旋回運動または回転運動され、ローリングシリンダは、旋回ピストンの旋回運動の中心軸であるピストン旋回軸に対して、偏心量がEsであるシリンダ回転軸を中心に回転運動可能に配置され、前記ポンプ溝は、前記ローリングシリンダの回転運動の中心軸であるシリンダ回転軸に交差して直線状に延びており、前記旋回ピストンは、前記ポンプ溝内を往復運動すると共に、前記ポンプケーシングに対して旋回半径がEpで旋回運動する自転運動可能に配置され、前記旋回ピストンの旋回半径Epと前記ローリングシリンダの偏心量Esとは概略等しい容積形ポンプにおいて、前記ローリングシリンダに嵌合する前記旋回ピストンの数を1個とし、前記旋回ピストンの旋回及び前記ローリングシリンダの回転を維持すると共に当該旋回ピストンの旋回速度を当該ローリングシリンダの回転速度の2倍に規定する回動規定手段を設けたことにある。
【0029】
係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記回動規定手段の規定作用度は、前記ピストン旋回軸が前記シリンダ回転軸と一致する旋回角度時よりも当該ピストン旋回軸が180度旋回した旋回角度時の場合を小さくしたこと。
(2)前記旋回ピストンの旋回運動を偏心量がEcであるクランクシャフトで実現し、
前記ローリングシリンダの回転軸を偏心量がEbである軸受部で実現し、
前記旋回ピストンと前記ポンプ溝との隙間は、前記クランクシャフトの偏心量Ecと前記軸受部の偏心量Ebとの差の2倍以下としたこと。
(3)前記回動規定手段は、前記旋回ピストンの自転と前記ローリングシリンダの回転とを同期させる回転同期手段と、前記旋回ピストンの旋回速度を自転速度の2倍に規定するピストン回動規定手段とを備えたこと。
(4)前記回転同期手段は、前記旋回ピストンに前記ポンプ溝の2側面と各々摺接する側面平坦部を設けて構成したこと。
(5)前記ピストン回動規定手段は、前記旋回ピストン自転軸の旋回運動軌跡上で、前記シリンダ回転軸とは異なる位置の静止点が前記旋回ピストン自転軸を通る前記旋回ピストン上に固定する直線に常時載るように、前記旋回ピストンの運動を規定するスライダ機構を備えたこと。
(6)前記静止点を前記旋回運動軌跡上で前記シリンダ回転軸の位置から180度回転した位置に設けたこと。
(7)前記スライダ機構は不動スライダ及び回動ガイドを備え、
前記不動スライダは前記ポンプケーシングの前記静止点に対応する位置に固定配置する位置固定円柱により実現し、
回転ガイドは前記旋回ピストンに前記直線を中心線とし前記位置固定円柱と滑り対偶を構成すべく前記位置固定円柱の直径と同等の幅を有するガイド溝を設けて実現したこと。
(8)前記不動スライダは、固定中心軸と、この固定中心軸に回転自在に挿入されたスライダ部材とを備えたこと。
(9)前記ガイド溝を作動流体の通路としたこと。
(10)前記ガイド溝を前記側面平坦部まで延在させたこと。
(11)容積形流体機械の各部への油供給源として前記容積形流体機械へ搭載するものであること。
【0030】
また、本発明の第2の態様では、駆動源と、前記駆動源で駆動されるクランクシャフトと、前記クランクシャフトで駆動される容積形ポンプとを備え、前記容積形ポンプは、ケーシング室を有するポンプケーシングと、ポンプ溝を有して前記ケーシング室に回転運動可能に配置されローリングシリンダと、前記ポンプ溝に隙間嵌合されて当該ポンプ溝を仕切ることにより2つのポンプ室を形成する旋回ピストンと、を備え、前記旋回ピストンまたは前記ローリングシリンダは前記駆動源により旋回運動または回転運動され、ローリングシリンダは、旋回ピストンの旋回運動の中心軸であるピストン旋回軸に対して、偏心量がEsであるシリンダ回転軸を中心に回転運動可能に配置され、前記ポンプ溝は、前記ローリングシリンダの回転運動の中心軸であるシリンダ回転軸に交差して直線状に延びており、前記旋回ピストンは、前記ポンプ溝内を往復運動すると共に、前記ポンプケーシングに対して旋回半径がEpで旋回運動する自転運動可能に配置され、前記旋回ピストンの旋回半径Epと前記ローリングシリンダの偏心量Esとは概略等しい容積形流体機械において、前記ローリングシリンダに嵌合する前記旋回ピストンの数を1個とし、前記旋回ピストンの旋回及び前記ローリングシリンダの回転を維持すると共に当該旋回ピストンの旋回速度を当該ローリングシリンダの回転速度の2倍に規定する回動規定手段を設けたことにある。
【発明の効果】
【0031】
本発明によれば、ポンプ動作を滑らかに継続可能としつつ、小容量に適し、製造コストを低減できる容積形ポンプ及びこれを用いた容積形流体機械を提供することができる。
【図面の簡単な説明】
【0032】
【図1】本発明の第1実施形態に係わるスクロール圧縮機の縦断面図。
【図2】図1のスクロール圧縮機の背圧室付近の詳細拡大図。
【図3】図1のスクロール圧縮機の給油ポンプの拡大縦断面図。
【図4】図3のK−K断面拡大図。
【図5】図4のV−V断面図。
【図6A】図1のスクロール圧縮機の給油ポンプの位置固定円柱付近の変形例1の拡大縦断面図。
【図6B】図1のスクロール圧縮機の給油ポンプの位置固定円柱付近の変形例2の拡大縦断面図。
【図7】図1のスクロール圧縮機の給油ポンプのベースプレートの平面図。
【図8】図1のスクロール圧縮機の給油ポンプの位置固定円柱の設置位置と旋回ピストン側面形状を変更した場合の横断面図。
【図9】図1のスクロール圧縮機の給油ポンプの部品展開斜視図。
【図10】図1のスクロール圧縮機の給油ポンプの動作説明図。
【図11】図1のスクロール圧縮機の給油ポンプの回転同期手段とピストン回動規定手段の説明図。
【図12】本発明の第2実施形態に係るスクロール圧縮機の給油ポンプの位置固定円柱の拡大縦断面図。
【図13】図12のL−L断面拡大図。
【図14】本発明の第3実施形態に係るスクロール圧縮機の給油ポンプの位置固定円柱の拡大横断面図。
【図15】本発明の第4実施形態に係るスクロール圧縮機の背圧室付近の詳細拡大図。
【図16】本発明の第4実施形態に係るスクロール圧縮機の給油ポンプの拡大縦断面図。
【図17】ローリングシリンダ式の容積形ポンプの原理的なポンプ動作の説明図。
【図18】ローリングシリンダ式の容積形ポンプで、原理から外れたポンプ動作の説明図。
【図19】ローリングシリンダ式の容積形ポンプで、実際におこる原理から外れたポンプ動作の一例を示す説明図。
【図20】ローリングシリンダ式の容積形ポンプで、実際におこる原理から外れたポンプ動作時の旋回ピストン中心軌跡を示す図。
【図21】図1のスクロール圧縮機の給油ポンプのローリングシリンダ回転角の規制作用度の説明図
【図22】図1のスクロール圧縮機の給油ポンプのポンプ溝と旋回ピストンの隙間がEbとEcの差の2倍ある場合の旋回ピストンの軌道を示す図。
【発明を実施するための形態】
【0033】
以下、本発明の容積形ポンプを、容積形流体機械であるスクロール圧縮機の軸受や圧縮室への給油ポンプ(作動流体を油とする)として搭載した場合の、複数の実施形態について、図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。なお、本発明は、それぞれの実施形態を必要に応じて適宜に組合せることにより、さらに効果的なものとすることを含む。また、以後、本発明の容積形ポンプにおける作動流体は、油に限定されるため、油と称することとし、作動流体の呼称は、スクロール圧縮機にとっての作動流体をさすことにする。
(第1実施形態)
ケーシング内に貯油部を設け、ケーシング内が吸込圧力となるスクロール圧縮機に、本発明に係る容積形ポンプを給油ポンプとして搭載した第1実施形態を、図1〜図11を用いて説明する。このような、ケーシング内が吸込圧力となるいわゆる低圧チャンバタイプを採用する場合としては、可燃性ガスを作動流体とする場合があげられる。例えば、プロパンやブタン等の炭化水素系流体がそれに該当する。これは、安全性の観点から、圧縮機を含む装置全体に封入される作動流体の総量を少なくするために効果的な手段である。
【0034】
まず、本実施形態のスクロール圧縮機の全体構成と動作、図1の本発明の第1実施形態に係わるスクロール圧縮機の縦断面図、図2の背圧室付近(図1のN部)の拡大図を用いて説明する。なお、本実施形態の給油ポンプの詳細は図3〜図11を用いて後で説明する。
【0035】
ケーシング8の側面に吸込パイプ53が貫通して設けられ、吸込圧力の作動流体がこの吸込パイプ53を通してケーシング8内へ導入される。そして、この作動流体は、固定スクロール2の側面に開口した吸込口2eより、固定スクロール2と旋回スクロール3との間に形成される圧縮室100へ導かれる。この圧縮室100は、旋回スクロール3の旋回運動により、外周部から内周部へ移動しながら容積を縮小するため、圧縮室100内の作動流体は圧縮される。ここで、旋回スクロール3の旋回運動は、旋回スクロール3が繋がるクランクシャフト6をモータ7で回転させ、オルダムリング5で自転を防止することにより実現される。
【0036】
固定スクロール2には、上面に過圧縮や液圧縮を回避するためのバイパス弁22が設けられると共に、圧縮された作動流体が吐出される吐出口2dが設けられている。固定スクロール2はフレーム4にねじ止めされる。旋回スクロール3の背面とフレーム4との間には、中間圧力(吸込圧力と吐出圧力との中間の圧力で、以下では背圧と称する)となる背圧室110が形成されている。
【0037】
クランクシャフト6は、シャフトつば部6hがフレームシャフトスラスト突起6pに載ることで軸方向位置を規定されるとともに、上部が主軸受24で支持され、その下部が副軸受25で支持されている。クランクシャフト6の上端に設けられた偏心ピン部6aが旋回スクロール3の旋回軸受23に挿入されている。ここで、副軸受25は、ボール25aとボールホルダ25bとからなっている。ボールホルダ25bはケーシング8に固定された副軸支え50へ溶接されている。このボール25aとボールホルダ25bとからなる構成により、副軸支え50の傾斜をある程度許容することができる。
【0038】
これらの軸受には、ケーシング8下部の貯油部125から給油ポンプ30で汲上げた油がクランクシャフト6の給油穴6bを通して供給される。旋回軸受23と主軸受24へ供給された油は、背圧室110へ入り、その後、フレーム4を貫通する背圧室流出路135を通ってフレーム4の側面へ流出し、最終的に貯油部125へ戻る。ここで、背圧室流出路135の途中には、背圧制御弁26が設けられている。この背圧制御弁26は背圧室110の圧力を所望の背圧に保つ。この背圧により、圧縮時に旋回スクロール3を固定スクロール2へ付勢する。
【0039】
一方、圧縮室100のシール性を向上させるために、旋回軸受室115から圧縮室100へ、圧縮室給油路130を通して少量の油が供給される。この油は、吐出油となって、作動流体とともに吐出口2dやバイパス弁22から固定スクロール2上部へ吐出される。
【0040】
固定スクロール2の上部には、吐出油分離返油シリンダ55がねじ固定されて吐出室120を形成している。吐出油分離返油シリンダ55の上部には、さらに突出した吐出パイプ52を有する吐出カバー51がねじ固定され、油分離室90及び返油室95を形成している。
【0041】
吐出室120へ流入した作動流体は、油分離室90へ導かれて、その作動流体に混入する油を分離した後、吐出パイプ52を通して圧縮機1外へ流出される。油分離室90で分離された油は返油室95に流入する。そして、返油室95に流入した油は、返油室95と貯油部125とを繋ぐ返油路80と、その途中に設置する返油量調整弁70とを経由して貯油部125へ戻る。返油量調整弁70は、返油路80の両側の吐出側と吸込側とをシールするために、少量の油を返油室95に常時確保しつつ、返油室95に流入する油量と同量を貯油部125へ戻す役割を担う弁である。この返油量調整弁70は、フロート弁や分離油量の情報を含むセンサー信号で開度を制御する電磁弁等により実現される。
【0042】
本実施形態の給油ポンプ30は、貯油部125にある油を、副軸受25、主軸受24、旋回軸受23で構成されるクランクシャフト6の各軸受部へ供給することや、圧縮室のシール性向上のための圧縮室100へ供給すること等の本来の役割以外に、背圧発生のために背圧室110へ供給することの役割も担う。このため、給油ポンプ30は、流量だけではなく、昇圧も担っている。
【0043】
本実施形態では、返油室95に流入した分離油の一部を背圧室110へ導入する分離油背圧室導入路500を備えている。そして、この分離油背圧室導入路500へ油を流す流量を調整する分離油分岐手段501を設けている。給油ポンプ30による背圧昇圧量が不足した場合でも、吐出圧の分離油を背圧室110へ入れることで背圧上昇を可能にすることができ、背圧不足による圧縮機性能の低下を回避できるという効果がある。この分離油分岐手段501の最も単純な実現手段として、配管径が異なる分岐管がある。
【0044】
なお、分離油分岐手段501と背圧制御弁26を一体化して、背圧が上昇しない場合に分離油を背圧室110へ導入するような動作をする分離油導入背圧制御弁としてもよい。この場合には、給油ポンプによる背圧上昇が行なわれないときのみ分離油を背圧室110へ入れることになる。これより、高温の分離油を常に背圧室110へ入れる必要が無くなり、圧縮室100の加熱が抑制され、圧縮機性能が向上するという効果がある。
【0045】
次に、給油ポンプ30の詳細な構成及び動作について、図3乃至図11、図21、22を用いて詳細に説明する。この給油ポンプ30は、スクロール圧縮機1の動力源であるモータ7を駆動源とし、旋回ピストン30aを駆動側、ローリングシリンダ30bを受動側とするローリングシリンダ式の容積形ポンプである。
【0046】
まず、図3乃至図9を用いて給油ポンプ30の構成を説明する。図3は給油ポンプ30の縦断面図(図1のM部拡大詳細図で、図4のH−H断面図)、図4は給油ポンプ30の横断面図(図3のK−K断面図)、図5は給油ポンプ30の図3と異なる縦断面図(図4のV−V断面図)、図6Aはベースプレート30c1と別体の位置固定円柱30pとの固定部の拡大縦断面図、図6Bは図6Aと異なる形態のベースプレート30c1と別体の位置固定円柱30pとの固定部の拡大縦断面図、図7はベースプレート30c1の平面図、図8は位置固定円柱30pの設置位置と旋回ピストン30aの側面形状とを変更した場合の給油ポンプ30の横断面図、図9は給油ポンプ30の部品展開斜視図である。
【0047】
クランクシャフト6の下端部に細径のポンプ軸部6fが設けられ、このポンプ軸部6fの下部にポンプ偏心部6f1が設けられている。このポンプ偏心部6f1は、旋回ピストン30aの中央部に形成されたピストン軸受穴30a6に隙間嵌合されている。旋回ピストン30aは、クランクシャフト6のポンプ偏心部6f1の偏心回転によって、旋回半径Epで旋回運動される。ポンプ偏心部6f1の下端面には、給油穴6bが開口されている。
【0048】
旋回ピストン30aの旋回軸αに対して旋回半径Epとほぼ等しい偏心量Esだけ偏心した軸を回転軸γとする回転フリーのローリングシリンダ30bが設けられている。このローリングシリンダ30bは、ポンプ溝30b1を有して、ポンプケーシング30cのケーシング室30c4に回転運動可能に配置されている。ポンプ溝30b1は、ローリングシリンダ30bの回転運動の中心軸であるシリンダ回転軸γに交差して、直線状に延びている。旋回ピストン30aは、ポンプ溝30b1に隙間嵌合されて往復動可能に配置され、当該ポンプ溝30b1を仕切ることにより旋回ピストン30aの両側の空間を2つのポンプ室140として形成している。ローリングシリンダ30bに嵌合される旋回ピストン30aの数は1個である。
【0049】
ここで、ポンプ偏心部6f1の中心軸βとクランクシャフト6の回転軸αとの間隔は、旋回ピストン30aの旋回半径Epを概略規定する。ところで、ポンプ偏心部6f1とピストン軸受穴30a6との間に隙間があるために、一般的に旋回ピストン30aにかかる径方向の力(前記の発明が解決しようとする課題で述べたような力であり、図19、20を参照)によって旋回ピストン30aが変位する。このため、ポンプ偏心部6f1の中心軸βとクランクシャフト回転軸αとの間隔Ec(Ecの表記省略)は、ピストン軸受穴30a6の中心軸(これは旋回ピストンの自転軸とみなすことができβ’と表記する)とクランクシャフト回転軸αとの距離である旋回半径Epからずれる。
【0050】
この旋回ピストン30aは、図9からも明らかなように、平面端部30a5をその一端面(下端面)に有すると共に、平行な2つの側面平坦部30h及びこれらの2つの側面平坦部30hを繋ぐ2つの側面円筒面30a4を側面に有している。2つの側面円筒面30a4は、図8からも明らかなように、互いの軸心ずらして、シリンダ室30c4を形成する円筒面と一致させてある。これにより、形成されるポンプ室140の容積が原理的に0まで縮小するため、デッドボリュームが無くなって、性能が向上するという効果がある。
【0051】
平面端部30a5には、下面下方空間とピストン軸受穴30a6とを連通させると共に、2つの側面平坦部30hにまたがって延びるガイド溝30gを有している。このガイド溝30gの幅は一定である。上述したように、旋回ピストン30aの旋回半径Epと概略同一の偏心量Esだけピストン旋回軸αから偏心した軸を回転軸γとする回転フリーのローリングシリンダ30bが設けられている。これによって、図8に示すように、旋回ピストン自転軸β’の旋回軌跡上にシリンダ回転軸γが来る。この結果、旋回ピストン30aが1旋回する間に、1回だけ、旋回ピストン自転軸β’とシリンダ回転軸γが一致するタイミングが生じる。
【0052】
ローリングシリンダ30bは、軸方向上部に端板部30b4を有すると共に、軸方向下部にポンプ溝30b1を有している。旋回ピストン30aの側面平坦部30hとポンプ溝30b1の側面とが摺接して往復動するように、ポンプ溝30b1に旋回ピストン30aが装着される。これにより、ポンプ溝30b1が二つの空間に仕切られ、各々の空間がポンプ室140となる。このポンプ室140は、ポンプケーシング30cにより、ケーシング8の内部空間と隔成する。
【0053】
このポンプケーシング30cは、ローリングシリンダ30bの下面及び上面側に各々設けるベースプレート30c1及びカバー30c2と、それらの連結部であるとともにローリングシリンダを回転支持するポンプシリンダ30c3とからなる。ベースプレート30c1は、図7で示すように、上面に設けられた吸込掘込み30s1とベースプレート30c1を貫通するポンプ吸込穴30s2とを有し、これらにより貯油部125から油を吸い上げるポンプ吸込流路30sを構成している。さらに、ベースプレート30c1は、上面に設けられたポンプ吐出掘込み30d1及びポンプ吐出溝30d2を有し、これらによりクランクシャフト6の下端に開口する給油穴6bへ油を送出するポンプ吐出流路30dを構成している。
【0054】
ベースプレート30c1の中央部には、上方へ突出する位置固定円柱30pがベースプレート30c1と一体に設けられている。この位置固定円柱30pは、旋回ピストン30aの自転軸β’の旋回軌跡上で、シリンダ回転軸γから180゜回転した位置に設けられている。なお、図6A及び図6Bに示すように、ベースプレート30c1と別体の位置固定円柱30p−1、30p−2を設けるようにしても良い。位置固定円柱30p−1は、同一径の円柱で構成され、ベースプレート30c1の穴に上方から圧入して固定されている。位置固定円柱30p−1は、下端にフランジを有する円柱で構成され、ベースプレート30c1の穴に下方から圧入して固定されている。
【0055】
本実施形態のポンプケーシング30cでは、図3、図5からわかるように、カバー30c2とポンプシリンダ30c3とを一体化した上部ポンプケーシング30c23としている。これにより、部品数が低減し、組立て性の向上が図れるという効果がある。そして、上部ポンプケーシング30c23には、ポンプ偏心部6f1を通す必要最小限の穴が設けられている。
【0056】
給油ポンプ30の実際の組立ては、図9で示す如く、まず、上部ポンプケーシング部材30c23の穴にポンプ偏心部6f1を通し、その後、ローリングシリンダ30b、旋回ピストン30aを組み込み、上部ポンプケーシング30c23をボールホルダ25b(副軸受支持板50でもよい)へ仮止め固定する。
【0057】
この状態で、位置固定円柱30pがガイド溝30gへ挿入されるようにしつつ、ベースプレート30c1を上部ポンプケーシング30c23にベースプレート固定ねじ30mを介して固定する。このとき、ベースプレート30c1の位置決め穴30i2と上部ポンプケーシング30c23の位置決め穴30i2とが合うようにノックピンを挿入して、ポンプ吸込流路30sとポンプ吐出流路30dの設定位置精度を高める。
【0058】
この後、クランクシャフト6を回しながら、ポンプシリンダ固定ねじ30kを本締めして、ポンプシリンダ30c3をボールホルダ25bに固定する。これにより、ポンプシリンダ30c3の位置精度を高くできるため、シリンダ回転軸γの位置精度が向上して、給油ポンプ30の動作を滑らかにでき、給油ポンプの性能を向上する効果がある。ここで、クランクシャフト6を回転させる方法としては、モータ7を低速で回転させるか、吸込口2eから真空ポンプで空気を吸って旋回スクロール部材3を旋回運動させること等が利用できる。
【0059】
次に、図10、図11、図21及び図22を用いて給油ポンプ30の動作を説明する。図10は給油ポンプ30の動作説明図であり、ポンプ室140が一行程進む間のポンプ動作を図4と同一の断面で示したものである。図11は旋回ピストン30aとローリングシリンダ30bの自転中心が一致する場合の動作説明図、図21はローリングシリンダ回転角の規制作用度の説明図、図22はポンプ溝30b1と旋回ピストン30aとの隙間がEbとEcの差の2倍ある場合の旋回ピストン30aの軌道である。
【0060】
図10に示すように、ポンプ室140の一行程の間に、クランクシャフト6は2回転(円状の矢印の向きに回転)する。なお、図10では、クランクシャフト6が22.5度回転する毎の断面変化を示しており、各構成要素の断面を表すハッチングは省略してある。
【0061】
ポンプ室140は、上述したように、同時に2個形成される。これら2個のポンプ室140は、互いに位相がずれているため、一方のポンプ室が吸込行程の場合、他方のポンプ室は吐出行程となるが、その動作変化は同一である。このため、一個のポンプ室に注目(図10のクロスハッチングしたポンプ室)して、ポンプ動作を説明する。なお、ポンプ室140が吸込行程にある場合は吸込ポンプ室140s、吐出行程にある場合は吐出ポンプ室140dと呼称する。
【0062】
図10(図中の○付数字を、明細書では括弧付数字で表す。)の(1)から(10)が吸込行程であり、貯油部125の油を吸込流路30sを通して吸込ポンプ室140sへ吸上げる工程である。そして、図10の(11)から(16)までが吐出行程であり、吐出ポンプ室140dの油を吐出流路30d及びガイド溝30gによって給油穴6bへ吐出する工程である。従来構成(本実施形態で新たに設置した位置固定円柱30p、ガイド溝30g及び側面平坦部30hが無い構成)の、原理的(各部の隙間が極限まで小さく組立て誤差も無い場合の)ポンプ動作及び問題点は、発明が解決しようとする課題(図17、18参照)で説明済みであり、さらに、各部の隙間や組立て時の誤差がある実機のポンプ動作及び問題点も図19、20で説明済みである。
【0063】
このため、これ以降は、図11を中心として図10や図21も用いながら、本実施形態で新たに設置した位置固定円柱30p、ガイド溝30g及び側面平坦部30hに絞って説明する。すなわち、位置固定円柱30p、ガイド溝30g及び側面平坦部30hが前記条件(A)及び(B)を満たす回動規定手段になることを説明する。最初に、本実施形態で新たに設置した要素によって前記条件(A)(B)を満たす機構が構成できることを説明し、次に、それら要素の設置場所を適正化することによって前記条件(B)を一層良好に満足することを説明する。
【0064】
条件(A)「旋回ピストン30aの旋回速度をローリングシリンダ30bの回転速度の2倍に常時規定する」を満たすために、まず、ローリングシリンダ30bの回転速度を旋回ピストン30aの自転速度と同期させる回転同期手段を備えることにより、条件(A)を旋回ピストン30aだけの規定条件に変換するようにしている。具体的には、旋回ピストン30aの旋回速度を自転速度の2倍に規定するピストン回動規定手段を設けるという内容に変更する。
【0065】
本実施形態の回転同期手段は、旋回ピストン30aの側面に2つの側面平坦部30hを設け、ローリングシリンダ30bのポンプ溝30b1と摺接するように挿入して実現している。この回転同期手段は、吸込ポンプ室140sと吐出ポンプ室140dとを仕切るシール部となっており、従来の線シールから面シールとなったため、シール性を改善する効果もある。
【0066】
もう一つの構成手段であるピストン回動規定手段は、旋回ピストン30aの自転軸β’の旋回軌道上に配置した位置固定円柱30pを旋回ピストン自転軸β’を通るガイド溝(ガイド溝の設置角度は、固定ピンの位置で変わる)30gに挿入するスライダ機構で実現している。このスライダ機構がピストン回動規定手段となることは、このスライダ機構と前記同期回転手段を組合せて構成する回動規定手段を設定しても、図10に示す通り、給油ポンプの動作を行いうることから明らかである。
【0067】
このように、回転同期手段を実現する側面平坦部30hと、ピストン回動規定手段を実現する位置固定円柱30p及びガイド溝30gで構成するスライダ機構とを組合せた機構は、前記条件(A)を満たす。
【0068】
次に、条件(B)を満たすことを述べるが、その前に、回動規定手段の規定作用度の定義を行う。規定作用度とは、目標の規定に対してどの程度精度良く規定できるかという指標であり、目標値と実設定値の差の逆数と定義する。本実施形態の目標値は、前記式(1)が示しており、旋回ピストンの旋回量Φpに対応したローリングシリンダの目標回転量と実回転量の誤差(回転がた)の逆数が、規定作用度となる。つまり、以下の式(4)となる。
【0069】
規定作用度≡1/回転がた‥‥‥‥‥‥‥‥‥‥‥‥‥(4)
ローリングシリンダ回転量誤差(回転がた)の主因は、位置固定円柱30pとガイド溝30gの隙間(がた)と考えられる。そこで、この回転がたをΔとして、規定作用度の式を求める。規定作用度のパラメータとしては、図21で示すように、位置固定円柱30pの設定角(旋回ピストン自転軸β’の軌跡上の角度でθとする)と、旋回ピストン30aの旋回量(Φp、図17と同様の定義とする)とがある。図21では、説明のため、回転がたΔを拡大し、位置固定円柱30pの直径を、縮小してある。図21より、回転がたΔは、半径Lでの円周方向のがたΔsから、次の式(5)と求まる。
【0070】
回転がたΔ=Arctan(abs(Δs/L))‥‥‥‥‥‥‥‥‥‥(5)
ここで、absは絶対値を示す。
【0071】
この式(5)中のL、Δsは、以下の式(6)、(7)となる。
L=2・Es・cos(θ/2)‥‥‥‥‥‥‥‥‥‥‥‥‥(6)
Δs=Δ/cos(χ)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(7)
ここで、χは、図21に示すように、シリンダ回転軸γと位置固定円柱30pを繋ぐ線とガイド溝30gのなす角でもある。
【0072】
ガイド溝30gは旋回ピストン自転軸β’がシリンダ回転軸γの位置へ来た時にシリンダ回転軸γを通ること、ガイド溝30gの回転速度はローリングシリンダ30bと同期すること、さらに、ローリングシリンダ30bの回転速度は旋回ピストン30aの旋回速度の半分であることより、χは、以下の式(8)で与えられることが分かる。
χ=abs(π−Φp)/2‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(8)
式(8)を式(7)に代入した上で、式(6)とともに式(5)へ代入し、回転がたΔを求め、最後に式(4)へ代入して、規定作用度を求めると、以下の式(9)となる。
規定作用度=1/(Arctan(Δ/(2Ep・abs(cos(θ/2)・sin(Φp/2)))))‥‥(9)
旋回ピストン自転軸β’がシリンダ回転軸γと一致するΦp=πradと、それよりもπrad(180度)旋回したΦp=0radでの規定作用度を式(9)により計算すると、次の式(10)、(11)となる。
規定作用度(Φp=π)=1/(Arctan(Δ/(2Ep・abs(cos(θ/2)))))‥‥(10)
規定作用度(Φp=0)=1/(Arctan(∞))=2/π‥‥‥(11)
θ=πredの場合を除いて次の式(12)の不等式が成立する。
規定作用度(Φp=π)>規定作用度(Φp=0)‥‥‥(12)
これより、新たに設定した回動規定手段の規定作用度は、位置固定円柱30pがシリンダ回転軸γと一致する場合(θ=πrad)を除いて、駆動系による規定作用度が低い(旋回ピストン自転軸β’がシリンダ回転軸γと一致する)時に高くなり、駆動系による規定作用度が高い(旋回ピストン自転軸β’がシリンダ回転軸γと一致する位置から180度旋回した)時に低くなることがわかる。これより、条件(B)を満たすことがわかる。
【0073】
以上より、位置固定円柱30pがシリンダ回転軸γと異なる如何なる位置に設定されていても、新たに設けたピストンシリンダ間回動規制手段は、駆動系と協同して、一方の規定作用度が低い場合に補い、逆に規定作用度が高い場合には過拘束にならないように、規定作用度が低下し、滑らかなポンプ動作を実現する効果を奏する。
【0074】
また、式(9)から明らかな通り、設定角θをπradから0radへ変化させるにつれ、規定作用度の絶対値が大きく(旋回量Φpが同じ場合)なり、0radで最大になることがわかる。つまり、位置固定円柱30pを、シリンダ回転軸γの位置から旋回ピストン自転軸β’の軌跡上で180度回転した位置に設けると、規定作用度が最も高くなり、回転がたΔを抑制でき、ポンプ動作を一層滑らかにできるという効果を奏する。
【0075】
位置固定円柱30pは、図7、図9から明らかな通り、ポンプ吐出流路30dの中に立設している。さらに、ガイド溝30gは、ポンプ吐出流路30dと給油穴6bを繋ぐ吐出経路となっている。よって、位置固定円柱30pとガイド溝30gの摺動部は、常時油通路の中心に位置していることになるため、潤滑性が向上し、信頼性が向上するという効果を奏する。
【0076】
本実施形態では、ガイド溝30gを側面平坦部30hまで延在させている。前記したように、ガイド溝30gは油の流路となっているため、油がガイド溝30gに潤沢に存在している。よって、側面平坦部30hまで延在するガイド溝30gは、側面平坦部30hへの給油流路となり、側面平坦部30hとポンプ溝30gの間の潤滑性向上による信頼性向上効果とともに、シール性の向上で、吐出ポンプ室140dから吸込ポンプ室140sへの漏れ低減による性能向上効果を奏する。さらに、ガイド溝30gを側面平坦部30hまで延在させることにより、溝加工時の刃具の動きが一様になって、溝の形状精度が向上するという効果がある。
【0077】
なお、旋回ピストン30a、ローリングシリンダ30bまたはポンプケーシング30cの表面に、燐酸マンガンのようななじみ皮膜を設けてもよい。この場合、なじみ効果により、運転とともに各隙間が小さくなり、シール性が向上してポンプ性能が向上するという効果がある。
【0078】
また、本実施形態では、旋回ピストン30aを駆動側、ローリングシリンダ30bを受動側としたが、反対に、ローリングシリンダ30bを駆動側、旋回ピストン30aを受動側としても良い。この場合、旋回ピストン30aは、旋回運動を行えるようなクランク支持を行う。
【0079】
また、本実施形態では、ポンプ溝30b1がローリングシリンダ30bの外周まで延在されている。これにより、溝加工時の刃具の動きが一様になるために、溝の形状精度が向上するという効果がある。また、ローリングシリンダ外周隙間への給油をおこなうことになるため、外周隙間のシール性を向上できるため、ポンプ性能が向上するという効果がある。さらに、この突き抜けるポンプ溝30b1のために、端板30b4が必要となり、それによって、サイド隙間を押付けにより抑制できる後述する第4実施形態の構成を実現できる形態となっているが、本発明は、それに限定されるものではなく、外周まで突き抜けず、従来(特許文献1)の長穴形状のポンプ溝タイプのものでももちろんよい。
【0080】
また、本実施形態では、旋回ピストン30aの側面に設ける2つの円筒面30a4の軸心をずらしているが、図8の一点鎖線で示す同一円筒面のように、軸心が一致した円筒面としても良い。その理由は、本実施形態の作動流体は油という非圧縮性流体であるため、デッドボリュームによる性能低下は少ない上に、円筒面を形成した上で側面平坦部30hをカットすることで側面形状が加工できるため、加工コストが低減するという効果がある。また、昇圧を行わずに、油の移送のみを行う用途の場合には、さらにデッドボリュームによる性能低下は無視できるほど小さくなるため、図8の一点鎖線で示す同一円筒面の旋回ピストン30aが適している。
【0081】
また、本実施形態では、位置固定円柱30pの設定位置を、旋回ピストン自転軸β’の旋回軌跡上でシリンダ回転軸γの位置から180度回転した位置に設けたスライド機構としているが、規定作用度の説明時に述べたように、旋回ピストン自転軸β’の旋回軌跡上で、それ以外の位置へ移動させた移動位置固定円柱30p’と、移動位置固定円柱30p’の移動角度の半分だけ設定角度を回転させた移動ガイド溝30g’を設けても、前記ピストン回動規定手段となる前記スライダ機構を構成できる(図10参照)。例えば、図8で示すように位置固定円柱30pを45度回転した位置に設定した場合、ガイド溝は22.5度回転する。この場合、前述した規制作用度の説明から分かる通り、規制作用度が最大になるタイミングは、位置固定円柱の移動前と同じ(図10の(5))になる。但し、その規制作用度は、式(9)から分かるとおり、位置固定円柱30pの移動前よりも小さくなる。これより、摺動部の荷重低減などの理由で規制作用度を小さくしたい場合や、部品配置の制約等で位置固定円柱30pを旋回ピストン自転軸β’の旋回軌跡上でシリンダ回転軸γの位置から180度回転した位置に設置できない場合に、移動位置固定円柱30p’と移動ガイド溝30g’を設ければよい。
【0082】
これまで説明してきた実施形態は、ロックを誘発するローリングシリンダ30bの異常回転が生じやすい旋回ピストン自転軸β’とシリンダ回転軸γが最接近する付近で、旋回ピストン30aの旋回半径Epとローリングシリンダ30bの偏心量Esが概略等しい場合(旋回ピストン自転軸β’がシリンダ回転軸γを通る場合)を前提としていた。つまり、旋回半径Epと偏心量Esが異なる場合については考えてこなかった。これは以下の理由による。
【0083】
旋回半径Epはポンプ偏心部6f1の偏心量Ecとピストン軸受穴30a6での軸受隙間偏心量とで決まり、偏心量Esはシリンダケーシング30c3に設けるローリングシリンダ30bを配置する穴の偏心量Ebとシリンダケーシング30c3の外周部軸受隙間偏心量とで決まる。本実施形態の回動規定手段は、シリンダ回転軸γへ接近する付近での旋回ピストン自転軸β’の軌跡がシリンダ回転軸γを通るように、両者における軸受偏心量を強制的に変更する手段と言換えることができる。つまり、回動規定手段を設けた結果、旋回ピストン自転軸β’とシリンダ回転軸γが最接近する付近で、旋回半径Epと偏心量Esが等しい場合だけとなるためである。
【0084】
前段落で述べた、回動規定手段による軸受偏心量の変更は、偏心量Ecと偏心量Ebとの差が大きいと、大きくなり、規定手段やポンプ偏心部6f1にかかる荷重が増大して、信頼性が低下する。このため、本実施形態では、旋回ピストン30aとポンプ溝30gの隙間を、偏心量Ecと偏心量Ebとの差の2倍とした。これにより、旋回ピストン自転軸β’とシリンダ回転軸γが最接近する付近で、旋回半径Epと偏心量Esが異なっても、図22で示すように、旋回ピストン30aはポンプ溝30b1内の中心軸からずれるが、ローリングシリンダ30bを異常回転させることが無い。これより、前記した軸受偏心量の変更は不要となり、規定手段やポンプ偏心部6f1にかかる荷重は増大せず、信頼性を確保できるという効果がある。
【0085】
旋回ピストン30aとポンプ溝30gの隙間を、偏心量Ecと偏心量Ebとの差の2倍以上とした場合、旋回ピストン30aとポンプ溝30b1の間の隙間が拡大するため、シール性が低下して性能が低下する。これより、旋回ピストン30aとポンプ溝30gの隙間を、偏心量Ecと偏心量Ebとの差の2倍以下とすれば良いことがわかる。
【0086】
本実施形態によれば、単純な要素形状で加工コストを低く抑えつつ、密閉性の高いポンプ室を構成できるため、低コストで高性能なローリングシリンダ式の容積形ポンプにおいて、動作ロックの危険性を、1シリンダにつき1ピストンの構成で回避可能となる。この結果、小容量に適した容積形ポンプを実現できる。また、従来例のようなシリンダ複数化に比べて、構成も単純であり、組立て性も向上するため、加工コストを低減した容積形ポンプを実現できる。
【0087】
(第2実施形態)
次に、本発明第2の実施形態である容積形ポンプを給油ポンプ30として搭載するスクロール圧縮機1について、位置固定円柱30pの拡大縦断面図である図12とそのL−Lでの横断面図である図13を用いて説明する。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
【0088】
この第2実施形態では、圧入や接着や電着によりベースプレート30c1へ固定配置する中心ピン30P3と円筒状のローラ30p4とから位置固定円柱30pを構成している。中心ピン30p3の上端にはフランジ部30p31が設けられている。ローラ30p4は中心ピン30P3の本体突出部分30p32に嵌合されており、フランジ部30p31により中心ピン30p3から抜けないようになっている。図12、図13では、ローラ30p4と中心ピン30p3の径隙間が大きく描かれているが、実際には、100μm以下となっている。これより、ローラ30p4とガイド溝30gが強く摺動する箇所の相対速度が小さくなるように、ローラ30p4が自転するため、位置固定円柱30pとガイド溝30gの間の摺動状態が良好となり、びびり等の不良な動きが抑制され、給油ポンプ30のポンプ動作をより滑らかにする効果という効果を奏する。さらに、位置固定円柱30pとガイド溝30gの磨耗や、こじりによる位置固定円柱30pの脱落等が回避でき、給油ポンプ30の信頼性を向上するという効果を奏する。
【0089】
(第3実施形態)
次に、本発明第3の実施形態である容積形ポンプを給油ポンプ30として搭載するスクロール圧縮機1について、図12のL−L断面相当図である図14を用いて説明する。
【0090】
この第3実施形態では、外周面にローラ平坦面30p51を設けたスライダーローラ30p5とする以外は、第2の実施形態と同様なので、それ以外の説明は省略する。この第3実施形態によれば、ガイド溝30gとの摺動部面積が増大するので、磨耗の危険性が低下し、信頼性の高い給油ポンプ30を提供できるという効果を奏する。
【0091】
(第4実施形態)
次に、本発明第4の実施形態である容積形ポンプを給油ポンプ30として搭載するスクロール圧縮機1について、図15、図16を用いて説明する。
【0092】
この第4実施形態は、クランクシャフト6の軸方向位置をフレーム4に代わって、給油ポンプ30側で受けるタイプであり、背圧室110付近と給油ポンプ30以外は、第1乃至第3の実施形態と同様である。このため、背圧室付近(図1のN部に相当)の詳細拡大図である図15と給油ポンプ(図1のM部に相当)の拡大縦断面図である図16を主に用いて説明し、それ以外の説明は省略する。
【0093】
この第4本実施形態では、クランクシャフトつば部6hがフレーム4から離れ(図15参照)、第1乃至第3の実施形態にあった給油ポンプ30上部のカバー(図5の30c2)が無くなって(図16参照)、クランクシャフト6の端部であるシャフト下端面6zがローリングシリンダ30bの端版30b4で支持されている。クランクシャフト6は、上部の全域が背圧室110に臨み、一方、下部にはケーシング8の内部空間圧力である吸込圧力に臨む領域があるため、必ず、下方へ押す力が作用する。よって、クランクシャフト6は、端版30b4を下方へ押付ける。よって、給油ポンプ30のサイド隙間である旋回ピストン30aの上面とポンプ溝30b1の底面との隙間、平面端部30a5(旋回ピストンの下面)とベースプレート30c1上面の隙間、ローリングシリンダ30bとベースプレート30c1上面の隙間を低減することができる。このうちで、最も小さい隙間はほぼ0となって摺動することになる。どの隙間で摺動するかは、ポンプ溝30b1の深さと旋回ピストン30aの厚さの大小関係で決定される。
【0094】
旋回ピストン30aの厚さをポンプ溝30b1の深さよりも小さくした場合、ローリングシリンダ30bとベースプレート30c1上面の隙間が摺動することになる。この場合、旋回運動する旋回ピストン30aの動きが滑らかとなるため、給油ポンプ30全体のポンプ動作がより一層滑らかになるという効果がある。反対に、旋回ピストン30aの厚さをポンプ溝30b1の深さよりも大きくした場合、旋回ピストン30aの上面とポンプ溝30b1の底面との隙間、平面端部30a5(旋回ピストンの下面)とベースプレート30c1上面の隙間が摺動面となる。この場合、2箇所の隙間を極小値まで抑制できることから、シール性を一層向上できるので、高性能な給油ポンプを提供するという効果を奏する。
【0095】
さらに、図16より、給油ポンプ30は、全体が、副軸受25を構成するボール25aの下面にポンプ固定ねじ30nで固定される。ここで、ボール25aの下面は軸受面である内周面に対して直角度が出ている。また、シャフト下端面6zはクランクシャフト6の中心軸に対して直角度が出ているものとする。これにより、クランクシャフト6の搭載姿勢にかかわらず、シャフト下端面6zは、全面で端板30b4に当接するため、シャフト下端面6zと端板30b4間のシール性が向上し、高性能な給油ポンプを提供するという効果を奏する。また、シャフト下端面6zと端版30b4間の片当りが抑制されるため、信頼性の高い給油ポンプを提供できるという効果を奏する。
【符号の説明】
【0096】
1…スクロール圧縮機、2…固定スクロール部材、3…旋回スクロール部材、4…フレーム、5…オルダムリング、6…クランクシャフト、6b…給油穴、6f…ポンプ軸部、6f1…ポンプ偏心部、7…モータ、22…バイパス弁、26…背圧制御弁、30…給油ポンプ、30a…旋回ピストン、30a5…平面端部、30a6…ピストン軸受穴、30b…ローリングシリンダ、30b1…ポンプ溝、30b4…端版、30c…ポンプケーシング、30c4…ケーシング室、30d…ポンプ吐出流路、30g…ガイド溝、30h…側面平坦部、30p…位置固定円柱、30p4…ローラ、30p5…スライダーローラ、30s…ポンプ吸込流路、100…圧縮室、105…吸込室、110…背圧室、120…吐出室、125…貯油部、140…ポンプ室、140s…吸込ポンプ室、140d…吐出ポンプ室、α…ピストン旋回軸(クランクシャフト回転軸)、β…ポンプ偏心部中心軸、β’ …旋回ピストン自転軸、γ…シリンダ回転軸(シリンダ自転軸)。

【特許請求の範囲】
【請求項1】
ケーシング室を有するポンプケーシングと、
ポンプ溝を有して前記ケーシング室に回転運動可能に配置されたローリングシリンダと、
前記ポンプ溝に隙間嵌合されて当該ポンプ溝を仕切ることにより2つのポンプ室を形成する旋回ピストンと、を備え、
前記旋回ピストンまたは前記ローリングシリンダは駆動源により旋回運動または回転運動され、
ローリングシリンダは、旋回ピストンの旋回運動の中心軸であるピストン旋回軸に対して、偏心量がEsであるシリンダ回転軸を中心に回転運動可能に配置され、
前記ポンプ溝は、前記ローリングシリンダの回転運動の中心軸であるシリンダ回転軸に交差して直線状に延びており、
前記旋回ピストンは、前記ポンプ溝内を往復運動すると共に、前記ポンプケーシングに対して旋回半径がEpで旋回運動する自転運動可能に配置され、
前記旋回ピストンの旋回半径Epと前記ローリングシリンダの偏心量Esとは概略等しい容積形ポンプにおいて、
前記ローリングシリンダに嵌合する前記旋回ピストンの数を1個とし、
前記旋回ピストンの旋回及び前記ローリングシリンダの回転を維持すると共に当該旋回ピストンの旋回速度を当該ローリングシリンダの回転速度の2倍に規定する回動規定手段を設けたこと、
を特徴とする容積形ポンプ。
【請求項2】
請求項1において、
前記回動規定手段の規定作用度は、前記ピストン旋回軸が前記シリンダ回転軸と一致する旋回角度時よりも当該ピストン旋回軸が180度旋回した旋回角度時の場合を小さくしたこと、
を特徴とする容積形ポンプ。
【請求項3】
請求項1または2において、
前記旋回ピストンの旋回運動を偏心量がEcであるクランクシャフトで実現し、
前記ローリングシリンダの回転軸を偏心量がEbである軸受部で実現し、
前記旋回ピストンと前記ポンプ溝との隙間は、前記クランクシャフトの偏心量Ecと前記軸受部の偏心量Ebとの差の2倍以下としたこと、
を特徴とする容積形ポンプ。
【請求項4】
請求項1乃至3の何れかにおいて、
前記回動規定手段は、前記旋回ピストンの自転と前記ローリングシリンダの回転とを同期させる回転同期手段と、前記旋回ピストンの旋回速度を自転速度の2倍に規定するピストン回動規定手段とを備えたこと、
を特徴とする容積形ポンプ。
【請求項5】
請求項4において、
前記回転同期手段は、前記旋回ピストンに前記ポンプ溝の2側面と各々摺接する側面平坦部を設けて構成したこと、
を特徴とする容積形ポンプ。
【請求項6】
請求項4または5において、
前記ピストン回動規定手段は、前記旋回ピストン自転軸の旋回運動軌跡上で、前記シリンダ回転軸とは異なる位置の静止点が前記旋回ピストン自転軸を通る前記旋回ピストン上に固定する直線に常時載るように、前記旋回ピストンの運動を規定するスライダ機構を備えたこと、
を特徴とする容積形ポンプ。
【請求項7】
請求項6において、
前記静止点を前記旋回運動軌跡上で前記シリンダ回転軸の位置から180度回転した位置に設けたこと、
を特徴とする容積形ポンプ。
【請求項8】
請求項6または7において、
前記スライダ機構は不動スライダ及び回動ガイドを備え、
前記不動スライダは前記ポンプケーシングの前記静止点に対応する位置に固定配置する位置固定円柱により実現し、
回転ガイドは前記旋回ピストンに前記直線を中心線とし前記位置固定円柱と滑り対偶を構成すべく前記位置固定円柱の直径と同等の幅を有するガイド溝を設けて実現したこと、
を特徴とする容積形ポンプ。
【請求項9】
請求項8において、前記不動スライダは、固定中心軸と、この固定中心軸に回転自在に挿入されたスライダ部材とを備えたこと、
を特徴とする容積形ポンプ。
【請求項10】
請求項8または9において、
前記ガイド溝を作動流体の通路としたこと、
を特徴とする容積形ポンプ。
【請求項11】
請求項10において、
前記ガイド溝を前記側面平坦部まで延在させたこと、
を特徴とする容積形ポンプ。
【請求項12】
請求項1乃至11の何れかにおいて、
容積形流体機械の各部への油供給源として前記容積形流体機械へ搭載するものであること、
を特徴とする容積形ポンプ。
【請求項13】
駆動源と、前記駆動源で駆動されるクランクシャフトと、前記クランクシャフトで駆動される容積形ポンプとを備え、
前記容積形ポンプは、ケーシング室を有するポンプケーシングと、ポンプ溝を有して前記ケーシング室に回転運動可能に配置されたローリングシリンダと、前記ポンプ溝に隙間嵌合されて当該ポンプ溝を仕切ることにより2つのポンプ室を形成する旋回ピストンと、を備え、
前記旋回ピストンまたは前記ローリングシリンダは前記駆動源により旋回運動または回転運動され、
ローリングシリンダは、旋回ピストンの旋回運動の中心軸であるピストン旋回軸に対して、偏心量がEsであるシリンダ回転軸を中心に回転運動可能に配置され、
前記ポンプ溝は、前記ローリングシリンダの回転運動の中心軸であるシリンダ回転軸に交差して直線状に延びており、
前記旋回ピストンは、前記ポンプ溝内を往復運動すると共に、前記ポンプケーシングに対して旋回半径がEpで旋回運動する自転運動可能に配置され、
前記旋回ピストンの旋回半径Epと前記ローリングシリンダの偏心量Esとは概略等しい容積形流体機械において、
前記ローリングシリンダに嵌合する前記旋回ピストンの数を1個とし、
前記旋回ピストンの旋回及び前記ローリングシリンダの回転を維持すると共に当該旋回ピストンの旋回速度を当該ローリングシリンダの回転速度の2倍に規定する回動規定手段を設けたこと、
を特徴とする容積形流体機械。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2010−185358(P2010−185358A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【出願番号】特願2009−29809(P2009−29809)
【出願日】平成21年2月12日(2009.2.12)
【出願人】(399048917)日立アプライアンス株式会社 (3,043)
【Fターム(参考)】