説明

廃水処理システム

【課題】廃水を短時間に処理することができる廃水処理システムを提供する。
【解決手段】廃水処理システムは、前処理工程100、生物処理工程101、微生物培養工程102、濾過処理工程103、膜処理工程104、検査工程105とから構成されている。生物処理工程101では、1ミリリットル当たり10〜1010個の微生物を含む混合液と微生物の増殖を促進させる栄養源とが廃水とともに第1曝気槽に投入され、微生物が活性炭の表面に生物膜を形成しつつ廃水中の有機物を分解する。微生物培養工程102では、微生物の種菌と微生物の増殖を促進させる栄養源とが廃水とともに第2曝気槽に投入され、微生物が第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖する。膜処理工程104では、第1曝気槽を介して浄化された処理水を濾過するとともに、廃水に含まれる放射性物質を除去する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、好気性微生物の増殖と代謝活性とを利用して廃水に含まれる有機物を分解する廃水処理システムに関する。
【背景技術】
【0002】
廃水が順次流入する調整槽、反応槽、分離槽と、分離槽から抽水された廃水の一部が流入するとともに廃水を腐植物質に接触させる培養槽と、腐植物質を含む混合水を培養槽に供給する腐植物質供給槽とから構成され、土壌細菌を利用して廃水に含まれる有機物を分解する廃水処理システムがある(特許文献1参照)。
【0003】
調整槽に供給された廃水は、調整槽から反応槽に流入し、さらに反応槽から分離槽に流入する。分離槽では、浄化された処理水を外部に排出する他、処理水を調整槽や反応槽に環流させる。処理水の一部は、分離槽から培養槽に流入する。培養槽には、腐植物質供給槽が配水管を介して連結され、腐植物質供給槽から腐植物質を含む混合水が供給されている。培養槽では、処理水と混合水とが腐植物質とともに混合攪拌され、処理水に含まれる土壌細菌が増殖する。培養槽で混合攪拌された処理水と混合水とは、調整槽と反応槽とに環流する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2002−233888号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に開示のシステムは、土壌細菌の種類、土壌細菌の有機物に対する分解能力や分解時間、土壌細菌の廃水中における増殖時間、土壌細菌の増殖に適する廃水温度等の条件によってそれら槽における土壌細菌の量的増加が異なるので、処理水に含まれる土壌細菌の量が安定せず、調整槽と反応槽とに環流させる処理水や混合水に常時一定量の土壌細菌を存在させることが難しい。このシステムでは、処理水や混合水に含まれる土壌細菌の量が少ないと、処理水や混合水を調整槽と反応槽とに環流させたとしても、調整槽や反応槽、分離槽における有機物の分解に時間がかかり、短時間に廃水を処理することができない。
【0006】
また、このシステムは、廃水に放射性物質が含まれていたとしても、廃水中の放射性物質を除去することができないので、原子力関連施設で排出される微量の放射性物質を含有した廃水(放射性物質に高度に汚染された水は除く)の処理には適さない。なお、ウラン鉱石を精錬、濃縮して核燃料に加工する転換工場や濃縮工場、原子力発電所、使用済み核燃料をプルトニウムに転換する再処理工場等の原子力関連施設で排出される廃水は、微量の放射性物質を含有する特殊廃水であり、廃水に水を混入して希釈化したり、または、廃水を貯水槽に長期間貯留して放射能の減少を確認した後に処理しなければならず、廃水の処理に時間と手間とを要する。
【0007】
本発明の目的は、廃水を短時間に処理することができる廃水処理システムを提供することにある。本発明の他の目的は、廃水に含まれる放射性物質を除去することができ、原子力関連施設において使用するのに好適な廃水処理システムを提供することにある。
【課題を解決するための手段】
【0008】
前記課題を解決するための本発明の前提は、表面に好気性微生物を付着させる濾材を収容した通気通水性の容器と、所定量の廃水を貯水可能かつ容器を収容可能な第1曝気槽と、第1曝気槽内の廃水に空気を供給する第1散気器とを有し、微生物の増殖と代謝活性とを利用して廃水に含まれる有機物を分解する廃水処理システムである。
【0009】
前記前提における本発明の特徴は、濾材が1.3〜2.0mmの平均粒径を有して有機物を吸着する多数の粒状活性炭から形成され、1ミリリットル当たり10〜1010個の微生物を含む種菌溶液と該微生物の増殖を促進させる栄養源とが廃水とともに第1曝気槽に投入され、微生物が時間の経過にともなって活性炭の表面に生物膜を形成しつつ有機物を分解することにある。
【0010】
本発明は、以下の実施態様を有する。
(1)本発明の実施態様の一例は、廃水処理システムが好気性微生物を培養して種菌溶液を生産する培養装置を備えている。培養装置は、所定量の廃水を貯水可能な第2曝気槽と、第2曝気槽内の廃水に空気を供給する第2散気器とから形成されている。培養装置では、微生物の種菌と該微生物の増殖を促進させる栄養源とが廃水とともに第2曝気槽に投入され、微生物が時間の経過にともなって第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖する。
(2)本発明の実施態様の他の一例は、廃水処理システムが第1曝気槽の下流に配置されて該第1曝気槽を介して浄化された処理水を濾過する膜装置を備えている。膜装置は、処理水の流入口と、処理水を濾過した濾過水を排出する排出口と、濾過水を除く残余の濃縮水を第1曝気槽に環流させる環流口とを有する。濃縮水は、第1曝気槽に流入し、それに含まれる有機物が廃水とともに第1曝気槽内で分解される。
(3)本発明の実施態様の他の一例は、容器の容積に対する活性炭の充填密度が400〜450g/リットルの範囲にある。
(4)本発明の実施態様の他の一例は、第1および第2散気器の空気供給量が廃水1リットル当たり0.05〜0.1リットル/minの範囲にある。
(5)本発明の実施態様の他の一例は、第1および第2曝気槽がそれら槽内の廃水を加熱するヒータを備え、それら槽内の廃水温度がヒータによって20〜37℃に保持される。
(6)本発明の実施態様の他の一例は、第1および第2曝気槽がそれら槽内の廃水を循環させるポンプを備え、それら槽内における廃水の流速が1.2〜3.2cm/secの範囲にある。
(7)本発明の実施態様の他の一例は、第1曝気槽に投入される種菌溶液の割合が該第1曝気槽内の廃水の単位体積に対して0.05%以上である。
(8)本発明の実施態様の他の一例は、第1曝気槽の廃水貯水量が200〜1000リットルの範囲にある。
(9)本発明の実施態様の他の一例は、システムが原子力関連施設に設置され、廃水に含まれる放射性物質が、膜装置によって濾過される。
【発明の効果】
【0011】
本発明に係る廃水処理システムによれば、1ミリリットル当たり10〜1010個の好気性微生物を含む種菌溶液と微生物の増殖を促進させる栄養源とが廃水とともに第1曝気槽に投入されるので、第1曝気槽内における廃水中の微生物の量が安定し、常時一定量の微生物を第1曝気槽において増殖、活性化させることができ、微生物を利用して短時間に廃水に含まれる有機物を分解することができる。このシステムは、有機物が濾材を形成する粒状活性炭に吸着され、微生物が活性炭の表面に生物膜を作るので、廃水中の有機物と微生物とが活性炭に集中し、活性炭と微生物とによる生物再生を利用しつつ、活性炭の有機物吸着作用と有機物に対する微生物の生分解との相乗効果によって短時間に効率よく有機物を分解することができる。
【0012】
好気性微生物を培養して種菌溶液を生産する培養装置を有し、培養装置において微生物を第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖させるシステムでは、一定量の微生物を含む種菌溶液を安定して生産することができ、一定量の微生物を第1曝気槽内の廃水に混入することができるので、微生物の量的不安定によるシステムの廃水処理能力の低下を防ぐことができる。このシステムでは、培養装置を利用して、微生物の有機物に対する分解能力や分解時間、微生物の増殖時間、微生物の増殖に適する廃水温度等を試験することができ、廃水の種類による微生物の選別や微生物の最適な増殖条件を決定してそれを第1曝気槽の運転条件に適用することができる。このシステムは、選別した微生物を第1曝気槽に投入することができ、第1曝気槽を微生物の増殖に最適な条件で運転することができるので、第1曝気槽における廃水処理能力を常時一定に保持することができる。
【0013】
第1曝気槽を介して浄化された処理水を濾過する膜装置を有するシステムは、膜装置を介して処理水に含まれる微細な不純物を除去することができる。このシステムは、膜装置を介して分離された濃縮水を第1曝気槽に戻し、濃縮水に含まれる有機物が廃水とともに第1曝気槽において分解されるので、濃縮水に含まれる微量の有機物をさらに減少させることができる。
【0014】
容器の容積に対する活性炭の充填密度が400〜450g/リットルの範囲にあるシステムは、第1容器内において活性炭が稠密に重なり合うことがなく、容器内の活性炭すべてに空気中の酸素が十分に供給され、活性炭表面における微生物の増殖と活性化とを促進させることができ、微生物が活性炭の表面に短時間に生物膜を形成する。
【0015】
第1および第2散気器の空気供給量が廃水1リットル当たり0.05〜0.1リットル/minの範囲にあるシステムは、第1および第2容器内の活性炭すべてに空気中の酸素を十分に供給することができ、活性炭表面における微生物の増殖と活性化とを促進させることができるので、微生物が活性炭の表面に短時間に生物膜を形成する。このシステムは、廃水中における空気の浮上によって容器内の廃水に旋回流が生じたとしても、活性炭どうしが第1および第2容器内で激しく衝突することがないので、活性炭が損壊することはなく、活性炭の表面に形成された生物膜が剥離することがない。
【0016】
第1および第2曝気槽がそれら槽内の廃水温度を20〜37℃に保持するヒータを備えたシステムは、それら曝気槽における微生物の増殖に最適な温度環境を作ることができるので、第1および第2曝気槽内における微生物の増殖と活性化とを確実に促進することができ、微生物を利用して一層短時間に廃水を処理することができる。
【0017】
第1および第2曝気槽がそれら槽内の廃水を循環させるポンプを備え、それら槽内における廃水の流速が1.2〜3.2cm/secの範囲にあるシステムは、第1および第2曝気槽内における廃水の停滞を防ぐことができ、第1および第2曝気槽に貯水された廃水すべてを活性炭に確実に接触させ、活性炭に有機物を効率よく吸着させることができる。このシステムは、廃水の流速が1.2〜3.2cm/secの範囲にあるので、活性炭どうしが第1および第2容器内で衝突したとしても、その衝撃が小さく、活性炭が損壊することはなく、活性炭の表面に形成された生物膜が剥離することはない。
【0018】
第1曝気槽に投入される種菌溶液の割合が該第1曝気槽内の廃水の単位体積に対して0.05%以上であるシステムは、第1曝気槽内における廃水中の微生物の量が安定し、常時一定量の微生物を第1曝気槽において確実に増殖、活性化させることができる。
【0019】
第1曝気槽の廃水貯水量が200〜1000リットルの範囲にあるシステムは、システム自体の小型化を図ることができ、システムを限られた施設内に容易に設置することができる。このシステムは、第1曝気槽の廃水貯水量が大容量の場合と異なり、廃水処理の必要性に応じてシステムの運転と停止とを自由に行うことができ、施設の廃水排出量に適応しつつ廃水を短時間に処理することができる。
【0020】
システムが原子力関連施設に設置され、膜装置が廃水に含まれる放射性物質を濾過するシステムは、原子力関連施設から排出される廃水に含まれる放射性物質を早期に除去しつつ、廃水を短時間に処理して外部に排出することができる。このシステムは、廃水に水を混入して希釈化することや廃水を貯水槽に長期間貯留して放射能の減少を確認する手間を省くことができ、システムを利用して廃水を直ちに処理することができるので、原子力関連施設での廃水の処理にかかる時間と費用とを節約することができる。
【図面の簡単な説明】
【0021】
【図1】廃水処理システムの工程ブロック図。
【図2】一例として示すシステムの構成図。
【図3】曝気槽の斜視図。
【図4】曝気槽と容器とを分離して示すそれらの斜視図。
【図5】培養装置の斜視図。
【図6】曝気槽と容器とを分離して示す培養装置の斜視図。
【図7】微生物による有機物の処理を示す概念図。
【図8】生物再生の原理を示す模式図。
【発明を実施するための形態】
【0022】
添付の図面を参照し、本発明に係る廃水処理システムの詳細を説明すると、以下のとおりである。
【0023】
図1,2は、廃水処理システムの工程ブロック図と、一例として示すシステムの構成図とである。図2では、システムにおける廃水や処理水、濾過水、濃縮水の流れを矢印で示す。図3,4は、第1曝気槽5の斜視図と、第1容器4(容器)と曝気槽5とを分離して示すそれらの斜視図とであり、図5,6は、一例として示す培養装置25の斜視図と、第2容器26と第2曝気槽27とを分離して示す培養装置25の斜視図とである。図3,5では、曝気槽5,27内に貯水された廃水の流れを矢印で示す。なお、この実施の形態では、システムが原子力関連施設のうちの原子力発電所に設置された場合を例として説明する。このシステムを利用可能な原子力関連施設には、原子力発電所の他に、転換工場や濃縮工場、再処理工場、原子力研究所がある。ただし、このシステムは、それを利用可能な施設を原子力関連施設に限定するものではない。
【0024】
このシステムは、好気性微生物の増殖と代謝活性とを利用して原子力発電所で排出される廃水中の有機物を分解するとともに、廃水に含まれる放射性物質を除去する。有機物の分解と放射性物質の除去とが行われた処理水は、海洋や河川に放水される。このシステムは、前処理工程100、生物処理工程101、微生物培養工程102、濾過処理工程103、膜処理工程104、検査工程105とから構成されている。原子力発電所における処理対象の廃水は、原子力発電所内で排出される機材の洗浄廃水や作業衣類等の洗濯廃水、厨房廃水、浴室廃水等の雑廃水(放射性物質に高度に汚染された水は除く)であり、それら廃水には微量の放射性物質が含まれている。雑廃水に含まれる有機物には、生分解性有機物と難分解性有機物とがある。このシステムを使用しない原子力発電所では、通常、雑廃水に水を混入して希釈化したり、廃水を貯水槽に長期間貯留して放射能が規定値以下に減少したことを確認した後に処理しなければならない。
【0025】
前処理工程100では、廃水に含まれる懸濁浮遊物質や油脂等の粗大なフロックが除去される。前処理工程100は、廃水受けタンク1と、タンク1内に設置された濾過器2とから形成されている。廃水は、廃水管3から濾過器2に通水され、濾過器2によって粗大なフロックが除去された後、タンク1内に貯水される。タンク1内の廃水は、必要に応じてBOD(生物化学的酸素消費量)やCOD(化学的酸素要求量)、SS(浮遊物質)、放射能量が検査される。濾過器2内には、順に並ぶ金網、フィルタメッシュ0.1〜0.2mmのバグフィルタが設置されている(図示せず)。金網やバグフィルタは、汚れに応じて洗浄または交換される。廃水は、処理の必要性に応じてタンク1から生物処理工程101に送水される。
【0026】
生物処理工程101では、好気性微生物の増殖と代謝活性とを利用して廃水に含まれる有機物が分解される。生物処理工程101は、図3に示すように、濾材を収容する通気通水性の第1容器4(容器)と、容器4を収容する第1曝気槽5と、曝気槽5内に配置された第1散気器6およびヒータ7と、廃水を曝気槽5内において循環させるポンプ8とから形成されている。曝気槽5は、配水管9を介して廃水受けタンク1に連結されている。配水管9には、廃水を曝気槽5に流したり廃水の流れを止めるバルブ10が取り付けられている。タンク1から流入した廃水は、曝気槽5内に貯水され、それに含まれる有機物が微生物によって分解された後、処理水として濾過処理工程103に送水される。
【0027】
濾材には、廃水中の有機物を吸着する粒状活性炭11が使用されている。活性炭11は、容器4内に収容されている。容器4は、底壁12と、底壁12の周縁から上方へ延びる円筒型の周壁13と、周壁13の頂縁に囲繞された頂部開口14とを有する。容器4では、底壁12が開口14へ向かって凹む上げ底半球状を呈する。底壁12と周壁13とは、それら壁12,13を貫通する多数の貫通孔15が形成されたメッシュ状を呈する。貫通孔15は、活性炭11が壁12,13を通過して容器4の外側に漏れ出すことがないように、活性炭11の最小粒径よりも小さな開口径を有する。容器4では、廃水や空気がそれら壁12,13の貫通孔15を通過することはできるが、活性炭11がそれら壁12,13の貫通孔15を通過することはできない。
【0028】
曝気槽5は、底壁16と、底壁16の周縁から上方へ延びる円筒型の周壁17と、周壁17の頂縁に囲繞された頂部開口18とを有する。曝気槽5は、容器4全体を収容可能である。曝気槽5の周壁17には、廃水および後記する濃縮水の流入口19,20と、処理水を排出する排出口21とが形成されている。曝気槽5に容器4を収容すると、容器4が曝気槽5の略中央に位置するとともに、容器4の底壁12が曝気槽5の底壁16から上方へ所定寸法離間し、容器4の開口14が曝気槽5の開口18の下方に位置する。周壁13と周壁17との間には、スペース22が形成されている。曝気槽5に廃水が流入すると、容器4全体が廃水に漬かる。散気器6は、容器4の底壁12と曝気槽5の底壁16との間に配置されている。散気器6には、送風機(図示せず)が連結されている。ヒータ7は、曝気槽5の底壁16に配置されている。ポンプ8から延びる給水管23は、曝気槽5の底壁16と周壁17とに連結されている。
【0029】
生物処理工程101では、1ミリリットル当たり10〜1010個の微生物を含む種菌溶液と微生物の増殖を促進させる栄養源とが曝気槽5に投入される。生物処理工程101では、散気器6から曝気槽5内の廃水に空気24が供給され、曝気槽5内の廃水がヒータ7によって所定温度に加熱されるとともに、ポンプ8によって曝気槽5内の廃水が循環する。空気24は、散気器6から気泡となって廃水内に放出され、容器4の底壁12から開口14へ向かって廃水中を浮上する。曝気槽5内の廃水は、散気器6から放出される空気24とポンプ8による廃水の吸入、排出とによって、容器4の底壁12から開口14へ向かって流動するとともに、開口14から周壁13と周壁17との間のスペース22を通って曝気槽5の底壁16へ向かって流動する。容器4内では、廃水の流動と廃水中における空気24の浮上とによって活性炭11が静かに浮上と沈降とを繰り返す。
【0030】
廃水に含まれる有機物は、曝気槽5内を循環する間に活性炭11に吸着される。微生物は、廃水中の有機物と栄養源とを捕捉しながら廃水中で次第に増殖、活性化し、時間の経過にともなって活性炭11の表面に生物膜を形成する。活性炭11に吸着された有機物は、生物膜中の微生物によって分解される。廃水は、それに含まれる有機物が微生物に分解された後、処理水となって濾過処理工程103に送水される。活性炭11は、それの有機物吸着能力が飽和したときに交換または再生処理が行われる。
【0031】
微生物培養工程102では、微生物を培養する培養装置25を介して曝気槽5に投入する種菌溶液が生産される。培養装置25は、図5に示すように、濾材を収容する通気通水性の第2容器26と、容器26を収容する第2曝気槽27と、曝気槽27内に配置された第2散気器28およびヒータ29と、廃水を曝気槽27内において循環させるポンプ30とから形成されている。曝気槽27は、配水管31を介して廃水受けタンク1に連結されている。配水管31には、バルブ32が取り付けられている。タンク1から流入した廃水は、曝気槽27内に貯水される。廃水には、曝気槽5で処理される廃水と同一のそれが使用される。培養装置25では、微生物が所定量に増殖する。培養工程102では、培養装置25を利用して、微生物の有機物に対する分解能力や分解時間、微生物の増殖時間、微生物の増殖に適する廃水温度等を試験する。さらに、所定時間経過後の廃水のBODやCOD、SSを検査する。
【0032】
濾材には、有機物を吸着する粒状活性炭11が使用されている。活性炭11は、容器26内に収容されている。容器26は、底壁33と、底壁33の周縁から上方へ延びる円筒型の周壁34と、周壁34の頂縁に囲繞された頂部開口35とを有する。容器26では、底壁33が開口35へ向かって凹む上げ底半球状を呈する。底壁33と周壁34とは、それら壁33,34を貫通する多数の貫通孔36が形成されたメッシュ状を呈する。貫通孔36は、活性炭11が壁33,34を通過して容器26の外側に漏れ出すことがないように、活性炭11の最小粒径よりも小さな開口径を有する。容器26では、廃水や空気がそれら壁33,34の貫通孔36を通過することはできるが、活性炭11がそれら壁33,34の貫通孔36を通過することはできない。
【0033】
曝気槽27は、底壁37と、底壁37の周縁から上方へ延びる円筒型の周壁38と、周壁38の頂縁に囲繞された頂部開口39とを有する。曝気槽27は、容器26全体を収容可能である。曝気槽27の周壁38には、廃水の流入口40が形成されている。曝気槽27に容器26を収容すると、容器26が曝気槽27の略中央に位置するとともに、容器26の底壁33が曝気槽27の底壁37から上方へ所定寸法離間し、容器26の開口35が曝気槽27の開口39の下方に位置する。周壁34と周壁38との間には、スペース41が形成されている。曝気槽27に廃水が流入すると、容器26全体が廃水に漬かる。散気器28は、容器26の底壁33と曝気槽27の底壁37との間に配置されている。散気器28には、送風機(図示せず)が連結されている。ヒータ29は、曝気槽27の底壁37に配置されている。ポンプ30から延びる給水管42は、曝気槽27の底壁37と周壁38とに連結されている。
【0034】
培養工程102では、微生物の種菌と微生物の増殖を促進させる栄養源とが曝気槽27に投入される。培養工程102では、散気器28から曝気槽27内の廃水に気泡状の空気24が供給され、曝気槽27内の廃水がヒータ29によって所定温度に加熱されるとともに、ポンプ30によって曝気槽27内の廃水が循環する。曝気槽27内の廃水は、散気器28から放出される空気24とポンプ30による廃水の吸入、排出とによって、容器26の底壁33から開口35へ向かって流動するとともに、開口35から周壁34と周壁38との間のスペース41を通って曝気槽27の底壁37へ向かって流動する。容器26内では、廃水の流動と廃水中における空気24の浮上とによって活性炭11が静かに浮上と沈降とを繰り返す。
【0035】
廃水に含まれる有機物は、曝気槽27内を循環する間に活性炭11に吸着される。種菌から成長した微生物は、廃水中の有機物と栄養源とを捕捉しながら廃水中で次第に増殖、活性化し、時間の経過にともなって活性炭11の表面に生物膜を形成する。活性炭11に吸着された有機物は、生物膜中の微生物によって分解される。培養工程102では、微生物が曝気槽27内の廃水1ミリリットル当たり10〜1010個に増殖し、一定量の微生物を含む種菌溶液が生産される。培養工程102で生産された種菌溶液は、曝気槽5に投入され、廃水中の有機物の分解に利用される。
【0036】
なお、培養装置25は、第2容器26およびポンプ30と容器26に収容される活性炭11とを除く、第2曝気槽27と第2散気器28とから形成されていてもよい。この場合は、微生物の種菌と微生物の増殖を促進させる栄養源とを曝気槽27に投入し、散気器28から曝気槽27内の廃水に気泡状の空気24を供給して微生物を培養する。また、培養工程102では、廃水ではなく脱塩水を使用することもできる。
【0037】
容器4,26や曝気槽5,27は、合成樹脂や金属から作られている。散気器6,28には、散気板や円形式散気板、多孔性散気筒、ディスクディフューザを使用することができる。微生物には、チューリージェンシス・サブチルスやプルミス等のバチルス・ズブチルス(バチルス菌)が使用される。栄養源には、ブドウ糖、アミノ酸、核酸、窒素、カリ、ビタミン、キトサン、ミネラル等が使用される。ミネラルには、カリウム、カルシウム、マグネシウム、ナトリウム、ケイ素、リン、ホウ素、硫黄、マンガン、鉄、亜鉛、ゲルマニウム等が使用される。曝気槽5に投入される栄養源の種類と量とは、培養装置25における試験の結果にしたがって適宜決定される。
【0038】
活性炭11は、その平均粒径が1.3〜2.0mmの範囲にある。活性炭11の平均粒径が1.3mm未満では、活性炭11の比重にもよるが、廃水の流動によって活性炭11が容器4,26の開口14,35へ向かって容易に上昇し、活性炭11が容器4,26の開口14,35から曝気槽5,27へ漏れ出してしまう場合がある。活性炭11の平均粒径が2.0mmを超過すると、活性炭11が容器4,26内で静止してそれら活性炭11どうしが当接し、微生物が活性炭11の表面に生物膜を形成したときに、活性炭11どうしが生物膜で連結されてその自由度が一層失われる結果、活性炭11の有機物吸着能力が低下し、曝気槽5,27における廃水処理機能が低下する。
【0039】
活性炭11の容器4,26に対する充填密度は、400〜450g/リットルの範囲にある。活性炭11の充填密度が400g/リットル未満では、活性炭11の量が少なく、廃水内の有機物の大部分を活性炭11に吸着させることができず、有機物が廃水内に高い濃度で残存し、活性炭11と微生物との生物再生による有機物の分解が不十分となる。活性炭11の充填密度が450g/リットルを超過すると、活性炭11が容器4,26の底壁12,33に沈殿して容器4,26内で稠密に重なり合うので、容器4,26内の活性炭11すべてに空気中の酸素を十分に供給することができず、活性炭11表面における微生物の増殖と活性化とが不十分となる。活性炭11を前記充填密度で容器4,26に収容した曝気槽5,27では、容器4,26内の活性炭11すべてに酸素が十分に供給され、活性炭11表面における微生物の増殖と活性化とを促進させることができ、微生物が活性炭11の表面に短時間に生物膜を形成する。
【0040】
散気器6,28の空気供給量は、廃水1リットル当たり0.05〜0.1リットル/minの範囲にある。空気供給量が廃水1リットル当たり0.05リットル/min未満では、廃水中の微生物に十分な酸素が供給されず、微生物の増殖と活性化とが不十分となり、有機物の分解に長時間を要する。空気供給量が廃水1リットル当たり0.1リットル/minを超過すると、廃水中における空気24の浮上によって容器4,26内の廃水に必要以上の旋回流が生じ、容器4,26の底壁12,33に位置する活性炭11どうしが激しく衝突し、活性炭11が損壊したり、活性炭11の表面に形成された生物膜が剥離してしまう場合がある。空気供給量が前記範囲にある曝気槽5,27では、容器4,26内の活性炭11すべてに酸素を十分に供給することができ、活性炭11表面における微生物の増殖と活性化とを促進させることができるので、微生物が活性炭11の表面に短時間に生物膜を形成する。さらに、活性炭11どうしが容器4,26内で激しく衝突することがないので、活性炭11が損壊することはなく、活性炭11の表面に形成された生物膜が剥離することがない。
【0041】
曝気槽5,27内の廃水温度は、ヒータ7,29によって20〜37℃に保持されている。廃水温度が20℃未満または廃水温度が37℃を超過すると、微生物の増殖と活性化とが不十分となり、有機物の分解に長時間を要する。廃水温度が前記範囲に保持された曝気槽5,27では、最適な温度環境下に微生物の増殖と活性化とが促進され、微生物を利用して短時間に廃水を処理することができる。
【0042】
曝気槽5,27内における廃水の流速は、1.2〜3.2cm/secの範囲にある。廃水の流速が1.2cm/sec未満では、曝気槽5,27内において廃水が停滞し、曝気槽5,27に貯水された廃水を活性炭11に十分に接触させることができず、廃水に含まれる有機物を活性炭11に効率よく吸着させることができない。廃水の流速が3.2cm/secを超過すると、容器4,26内に生じる旋回流によって活性炭11どうしが激しく衝突し、活性炭11が損壊したり、活性炭11の表面に形成された生物膜が剥離してしまう。廃水の流速が前記範囲にある曝気槽5,27では、曝気槽5,27内における廃水の停滞を防ぐことができ、曝気槽5,27に貯水された廃水すべてを活性炭11に確実に接触させ、活性炭11に有機物を効率よく吸着させることができる。さらに、活性炭11どうしが容器4,26内で衝突したとしても、その衝撃が小さく、活性炭11が損壊することはなく、活性炭11の表面に形成された生物膜が剥離することはない。
【0043】
曝気槽5に投入される種菌溶液の割合は、曝気槽5内に流入する廃水の単位体積に対して0.05%以上である。種菌溶液の割合が0.05%未満では、廃水の単位体積に対する微生物の量が少なく、微生物を短時間に増殖させることができず、廃水中の有機物の分解に長時間を要する。種菌溶液が前記割合で投入された曝気槽5では、曝気槽5内における廃水中の微生物の量が安定し、常時一定量の微生物を曝気槽5において確実に増殖、活性化させることができる。
【0044】
曝気槽5の廃水貯水量は、200〜1000リットルの範囲にある。廃水貯水量が1000リットルを超過すると、システム自体が大型化し、システムを原子力発電所内の限られた場所に設置することができないのみならず、原子力発電所の廃水処理の必要性に応じてシステムの運転と停止とを自由に行うことができず、原子力発電所の廃水排出量に適応しつつ廃水を短時間に処理することができない。
【0045】
濾過処理工程103では、処理水に含まれる微細なクロックが除去される。濾過処理工程103は、処理水が順次流入する3つの濾過器43,44,45から形成されている。濾過器43は、配水管46を介して曝気槽5に連結されている。配水管46には、バルブ47と処理水をそれら濾過器43に強制的に送水する給水ポンプ48とが取り付けられている。
【0046】
濾過処理工程103では、濾過器43から濾過器45に向かうにつれて処理水中の微細なクロックを次第に除去する。それら濾過器43,44,45内には、中空紙膜フィルタや多孔質平膜フィルタが設置されている(図示せず)。濾過器43には、フィルタメッシュ15〜30ミクロンのフィルタが使用され、濾過器44には、フィルタメッシュ5〜10ミクロンのフィルタが使用されている。濾過器45には、フィルタメッシュ1〜3ミクロンのフィルタが使用されている。それら濾過器43,44,45を透過した処理水は、膜処理工程104に送水される。フィルタは、汚れに応じて交換される。
【0047】
膜処理工程104では、処理水が膜装置49を介して濾過水と濃縮水とに分水される。膜装置49は、その内部に膜が設置され(図示せず)、膜によって処理水に含まれる10μm〜1nmの微細な不純物を除去するとともに、膜の逆浸透の原理によって処理水に含まれる低分子やイオンを除去する。さらに、廃水に含まれる放射性物質を除去する。膜装置49には、処理水の流入口50と、濾過水を排出する排出口51と、濃縮水を曝気槽5に環流させる環流口52とが形成されている。膜装置49は、配水管53を介して濾過器45に連結されている。配水管53には、バルブ54と処理水を膜装置49に強制的に送水する給水ポンプ55とが取り付けられている。膜装置49は、配水管56を介して曝気槽5に連結されている。配水管56には、バルブ57が取り付けられている。
【0048】
膜装置49には、平膜型モジュール、回転平膜型モジュール、チューブラー型モジュール、スパイラル型モジュール、中空糸型モジュールの少なくとも1つが使用される。濃縮水は、配水管56を介して曝気槽5に送水される。曝気槽5では、濃縮水に含まれる微量の有機物が微生物を介して廃水とともに分解される。濾過水は、濾過水受けタンク58に送水される。
【0049】
膜には、精密濾過膜(MF:Micro Filtration Membrane)、限外濾過膜(UF:Ultra
Filtration Membrane)、逆浸透膜(RO:Reverse Osmosis Membrane)、ナノ濾過膜(NF:Nano Filtration Membrane)のうちの少なくとも限外濾過膜と逆浸透膜とが使用されている。それら膜は、酢酸セルロース、ポリアミド、ポリアクリルニトリル、ポリスルホン、ポリフッ化ビニルデン、テフロン(登録商標)、ポリプロピレンから作られている。膜は、性能劣化に応じて交換される。
【0050】
検査工程105では、濾過水受けタンク58に貯水された濾過水のBODやCOD、SS、放射能量が検査される。タンク58は、配水管60を介して膜装置49に連結されている。配水管60には、バルブ61が取り付けられている。検査の結果、濾過水のBODやCOD、SS、放射能量が所定の値以下を示した場合、濾過水が下水道や河川に放水される。検査の結果、濾過水のBODやCOD、SS、放射能量が所定の値以上を示した場合、濾過水は、再びタンク1に戻され、曝気槽5において再処理される。
【0051】
図7は、微生物による有機物の処理を示す概念図である。生分解性有機物は、図7に示すように、生物膜中の微生物に捕捉された後、微生物の生分解を受けて分解生成物となり、無機物(二酸化炭素)にまで分解されて微生物から排出される。無機物まで分解されなかった中間体(有機物)は、微生物から排出されて廃水中に混入したり、活性炭に吸着される。活性炭表面の生物膜が十分に形成されていない場合、生物膜中の微生物は最大量の有機物を捕捉しており、微生物は分解、排出によって空いた分だけ有機物を捕捉する状態となる。すると、有機物は微生物に分解されないまま生物膜を通過して活性炭に吸着される。活性炭は有機物に対する吸着、脱離作用があるので、活性炭から脱離した有機物は再び微生物に捕捉、分解される。これを生物再生という。
【0052】
図8は、生物再生の原理を示す模式図である。図8では、生分解性有機物61を白丸で示し、難分解性有機物62を黒丸で示す。活性炭11の有機物に対する吸着、脱離機能が略平衡している場合、図8(a)に示すように、生分解性有機物61と難分解性有機物62とは、同じように活性炭11の細孔63内に進入する。微生物は、図8(b)に示すように、活性炭11に吸着される生分解性有機物61を捕捉しつつ活性炭11表面で増殖し、活性炭11の表面に生物膜64を形成する。微生物が活性炭11の表面に生物膜64を形成して微生物による生分解性有機物61の分解が活発になると、図8(c)に示すように、液相における生分解性有機物61が減少する。活性炭11の吸着量は平衡関係に支配されるため、液相中の生分解性有機物61の濃度が減少すると、図8(d)に示すように、活性炭11の細孔63内に吸着された生分解性有機物61が活性炭11から脱離し、脱離した生分解性有機物61が生物膜64中に進入して微生物に捕捉、分解される。この作用によって、全体的な活性炭吸着座が空くので、図8(e)に示すように、活性炭11が新たな有機物を吸着することができるようになる。最終的には、図8(f)に示すように、難分解性有機物62を吸着した状態で活性炭11の吸着機能が飽和する。生分解性有機物61は微生物によって分解され、活性炭11の吸着量は難分解性有機物62に左右される。生物再生では、廃水に含まれる生分解性有機物61が微生物によって処理され、廃水に含まれる難分解性有機物62が活性炭11によって除去される。
【0053】
曝気槽5内の廃水中のCODは、曝気槽5に廃水を流入させた直後(経過時間0)の値が120mg/リットルであった。30分経過後のCODの値は73mg/リットル、1時間経過後のCODの値は35mg/リットル、2時間経過後のCODの値は22mg/リットルであった。3時間経過後のCODの値は14mg/リットル、6時間経過後のCODの値は9mg/リットル、24時間経過後のCODの値は8mg/リットルであった。曝気槽5では、廃水中のCODが時間の経過にともなって減少し、廃水中のCODを約6時間で大幅に減少させることができた。
【0054】
このシステムは、常時一定量の微生物を曝気槽5において増殖、活性化させることができ、微生物を利用して短時間に廃水に含まれる有機物を分解することができる。システムは、有機物が濾材を形成する粒状活性炭11に吸着され、微生物が活性炭11の表面に生物膜を作るので、廃水中の有機物と微生物とが活性炭11に集中し、活性炭11と微生物とによる生物再生を利用しつつ、活性炭の有機物吸着作用と有機物に対する微生物の生分解との相乗効果によって短時間に効率よく有機物を分解することができる。
【0055】
このシステムは、培養装置25を使用して微生物を曝気槽27内の廃水1ミリリットル当たり10〜1010個に増殖させることができるので、一定量の微生物を曝気槽5内の廃水に混入することができ、微生物の量的不安定によるシステムの廃水処理能力の低下を防ぐことができる。システムでは、培養装置25を利用して、微生物の有機物に対する分解能力や分解時間、微生物の増殖時間、微生物の増殖に適する廃水温度等を試験することができ、廃水の種類による微生物の選別や微生物の最適な増殖条件を決定してそれを曝気槽5の運転条件に適用することができる。システムは、選別した微生物を曝気槽5に投入することができ、曝気槽5を微生物の増殖に最適な条件で運転することができるので、曝気槽5における廃水処理能力を常時一定に保持することができる。
【0056】
このシステムは、膜装置49を介して処理水に含まれる微細な不純物を除去することができるとともに、膜装置49を介して分離された濃縮水を曝気槽5に戻し、濃縮水に含まれる有機物を廃水とともに曝気槽5において分解することができるので、濃縮水に含まれる微量の有機物を減少させることができる。
【0057】
このシステムは、原子力発電所で排出される廃水に含まれる放射性物質を膜装置49を介して除去することができるので、廃水に水を混入して希釈化することや廃水を貯水槽に長期間貯留して放射能の減少を確認する手間を省くことができ、原子力発電所での廃水の処理にかかる時間と費用とを節約することができる。
【符号の説明】
【0058】
4 第1容器(容器)
5 第1曝気槽
6 第1散気器
7 ヒータ
8 ポンプ
11 粒状活性炭
25 培養装置
26 第2容器
27 第2曝気槽
28 第2散気器
29 ヒータ
30 ポンプ
49 膜装置
50 流入口
51 流出口
52 環流口
64 生物膜

【特許請求の範囲】
【請求項1】
表面に好気性微生物を付着させる濾材を収容した通気通水性の容器と、所定量の廃水を貯水可能かつ前記容器を収容可能な第1曝気槽と、前記第1曝気槽内の廃水に空気を供給する第1散気器とを有し、前記微生物の増殖と代謝活性とを利用して前記廃水に含まれる有機物を分解する廃水処理システムにおいて、
前記濾材が、1.3〜2.0mmの平均粒径を有して前記有機物を吸着する多数の粒状活性炭から形成され、1ミリリットル当たり10〜1010個の前記微生物を含む種菌溶液と該微生物の増殖を促進させる栄養源とが、前記廃水とともに前記第1曝気槽に投入され、前記微生物が、時間の経過にともなって前記活性炭の表面に生物膜を形成しつつ前記有機物を分解することを特徴とする前記廃水処理システム。
【請求項2】
前記廃水処理システムが、前記微生物を培養して前記種菌溶液を生産する培養装置を備え、前記培養装置が、所定量の前記廃水を貯水可能な第2曝気槽と、前記第2曝気槽内の廃水に空気を供給する第2散気器とから形成され、前記培養装置では、前記微生物の種菌と該微生物の増殖を促進させる栄養源とが前記廃水とともに第2曝気槽に投入され、前記微生物が時間の経過にともなって前記第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖する請求項1記載の廃水処理システム。
【請求項3】
前記廃水処理システムが、前記第1曝気槽の下流に配置されて該第1曝気槽を介して浄化された処理水を濾過する膜装置を備え、前記膜装置が、前記処理水の流入口と、前記処理水を濾過した濾過水を排出する排出口と、前記濾過水を除く残余の濃縮水を前記第1曝気槽に環流させる環流口とを有し、前記濃縮水に含まれる有機物が、前記廃水とともに前記第1曝気槽内で分解される請求項1または請求項2に記載の廃水処理システム。
【請求項4】
前記容器の容積に対する前記活性炭の充填密度が、400〜450g/リットルの範囲にある請求項1ないし請求項3いずれかに記載の廃水処理システム。
【請求項5】
前記第1および第2散気器の空気供給量が、前記廃水1リットル当たり0.05〜0.1リットル/minの範囲にある請求項2ないし請求項4いずれかに記載の廃水処理システム。
【請求項6】
前記第1および第2曝気槽が、それら槽内の廃水を加熱するヒータを備え、それら槽内の廃水温度が、前記ヒータによって20〜37℃に保持される請求項2ないし請求項5いずれかに記載の廃水処理システム。
【請求項7】
前記第1および第2曝気槽が、それら槽内の廃水を循環させるポンプを備え、それら槽内における廃水の流速が、1.2〜3.2cm/secの範囲にある請求項2ないし請求項6いずれかに記載の廃水処理システム。
【請求項8】
前記第1曝気槽に投入される前記種菌溶液の割合が、該第1曝気槽内の廃水の単位体積に対して0.05%以上である請求項1ないし請求項7いずれかに記載の廃水処理システム。
【請求項9】
前記第1曝気槽の廃水貯水量が、200〜1000リットルの範囲にある請求項1ないし請求項8いずれかに記載の廃水処理システム。
【請求項10】
前記システムが、原子力関連施設に設置され、前記廃水に含まれる放射性物質が、前記膜装置によって濾過される請求項3ないし請求項9いずれかに記載の廃水処理システム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−194541(P2010−194541A)
【公開日】平成22年9月9日(2010.9.9)
【国際特許分類】
【出願番号】特願2010−111971(P2010−111971)
【出願日】平成22年5月14日(2010.5.14)
【分割の表示】特願2004−304187(P2004−304187)の分割
【原出願日】平成16年10月19日(2004.10.19)
【出願人】(000213297)中部電力株式会社 (811)
【出願人】(000153100)株式会社日本環境調査研究所 (30)
【Fターム(参考)】