説明

微粒子の製造装置、乳化剤保持部、微粒子の製造方法および分子膜の製造方法

【課題】本発明の目的は、薬物等の生理活性物質を高活性で効率よく含み、かつ粒径、膜厚及び物質の内包率のばらつきが小さい微粒子を一度に大量に製造する装置を提供することである。
【解決手段】本発明は、流体を入れる流体供給部と、前記流体を流体供給部から押し出す押出し手段と、前記流体供給部から押し出された流体が通過する乳化剤を保持するための少なくとも2以上の貫通孔を有し、かつ前記流体供給部に対して着脱可能である乳化剤保持部とを具備する分子膜または微粒子の製造装置を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微粒子の製造装置及びその製造方法に関し、特にベシクル、ユニラメラベシクル、多重膜ベシクル、リポソーム、逆ベシクル、多重膜逆ベシクル、気泡等の微粒子の製造装置およびその製造方法に関する。また、本発明は、分子膜の製造装置およびその製造方法に関する。
【背景技術】
【0002】
微粒子の1種であるベシクルは細胞の機能および隔離、保存、隠蔽、徐放などの特性を有することで、バイオ、医薬品(DDS、遺伝子導入ベクター、人工赤血球)、食品、化粧品、塗料、環境、バイオセンサー、バイオリアクター等の技術分野において幅広く利用されている。ベシクルは、乳化剤として脂質を50%以上用いた場合、リポソームと呼ばれる。また、ベシクルは、乳化剤もしくは両親媒性分子を水溶媒中に懸濁し、生体膜で観察された二重構造を持つ閉鎖小胞体である場合は、ユニラメラベシクル(一枚膜ベシクルまたは一重膜ベシクル)に分類され、二重以上の構造を持つ小胞体はマルチラメラベシクル(多重膜ベシクル)に分類される。マルチラメラベシクルの内水相はさらに単一のものと複数のものがある。
【0003】
また、ベシクルはその粒径や構造によってさらに大きな多重膜ベシクルMLV(Multi lamellar vesicle)、小さな一枚膜ベシクルSUV(small unilamellar vesicle)、大きな一枚膜ベシクル(larger unilamellar vesicle)とジャイアントベシクル(giant vesicle)に細分化される。MLVは薄膜法、SUVは超音波法と界面活性剤処理法、LUVは逆相蒸発法および溶媒注入法、フレンチプレス法、コアセルべーション法、マイクロカプセル法(非特許文献1および2)、ジャイアントベシクルはエレクトロフォーメーション法(非特許文献3および4)により作製される。ぞれぞれの方法で製造されるMLV、SUV、LUV、ジャアントベシクルの粒径は0.4〜3.5μm、0.025〜0.05μm、0.03〜9μm、50〜100μmである。
【0004】
粒径のばらつきが小さいベシクルを製造するために、上述のベシクルの従来作製法を用いる場合、脂質の乾燥や撹拌、電圧の印加、蒸発、超音波、プレス、遠心分離、ゲルろ過分離、透析等の一連の複雑な工程が必要とされ、作製時間も長い(数時間から一週間以上掛かる)。さらに、ベシクルに物質を内包させるためには、さらに電気ショック法やマイクロキャピラリによる注入法、エレクトロポーレーション法やカルシウム融合法などによる封入工程が必要とされ、工程が非常に煩雑であるわりに、ベシクルへの物質の封入効率が非常に悪い。さらに、作製条件が過酷であるため、生理活性物質の直接封入ができない。また、未封入物質の除去工程も必要とされる。その他、水溶液中に形成されるユニラメラベシクルは水による脂質の加水分解が起こるため、長期保存ができない。通常冷蔵保存(4℃)で最大5〜7日までの保存が可能であるが、24時間以内での使用が望ましいとされる。
【0005】
総括すれば、従来法により粒径のばらつきが小さいベシクルの迅速自動製造と穏和な製造条件で生理活性物質内包のベシクルの製造が難しく、製造されたベシクルの粒径は小さいので、単位体積当たり充分量の高分子であるタンパク質、DNA、RNA等を高活性において封入することができない。
【0006】
一方、ベシクルは安定性の面から必要な時に、必要な量だけの即時供給が望まれる。また、ベシクルはドラッグデリバリーシステム(DDS)として利用する場合、薬物の投与量と放出の制御、薬物の吸収改善の面から、その粒径と膜厚の制御が必要とされ、安定且つ高い薬物内包率を有するベシクルの供給が望まれる。さらに、薬物の投与方法はベシクルの粒径に依存し、通常、1〜20μm径のベシクルは静脈注射、50〜300μm径のベシクルは動脈注射、300μm径以上のベシクルは腹腔内注射や経口投与などの投与方法が用いられているため、その粒径の制御が不可欠である。しかしながら、均一粒径や高生理活性、高物質内包率を有すベシクルの簡便および迅速作製法がなされていないのが現状である。
【0007】
他方、分子膜は、バイオセンサー、バイオリアクター、医療、抽出、環境評価などの分野において非常に有用とされる。マイクロチャンネルの2層流間において円筒状などの立体形状を有する分子膜を迅速に形成する手法が既に提案された(特許文献1)。その分子膜の形成方法とは別に、in-situ分析や簡易分析において使用可能であり、小型および着脱、使い捨て(Disposable)可能な構造を有するバラツキが少ない立体形状(三次元構造)の分子膜を製造する簡便な作製キットの提供が望まれる。
【特許文献1】特開2005-185972号公報
【非特許文献1】S. Matsumoto, M. Kohda, and S. Murata, J. Coll. Interface Sci., 62: 147(1977).
【非特許文献2】S. Kim and G. M. Martin, Biochimica et Biophysica Acta, 646: 1(1981).
【非特許文献3】M. I. Angelova, S. Soleau, Ph. Meleard, J. F. Faucon, and P. Bothorel, Progr Colloid Polym Sci., 89: 127(1992).
【非特許文献4】P. Bucher, A. Fischer, P. L. Luisi, T. Oberholzer, and P. Walde, Langmuir, 14, 2712(1998).
【発明の開示】
【発明が解決しようとする課題】
【0008】
従来の微粒子の1種であるベシクルの作製法は、前述のように作製条件や作製方法などにおいて様々な課題を抱えている。本発明はこのような課題を解決するためになされたものであり、本発明の目的は、粒径、膜厚及び物質の内包率のばらつきが小さい微粒子の製造装置およびその製造方法を提供することを目的とする。
【0009】
更に、本発明の目的は、立体形状(三次元構造)のバラツキが少ない分子膜を迅速に形成することができる分子膜の製造装置およびその製造方法を提供することである。
【課題を解決するための手段】
【0010】
本発明の分子膜または微粒子の製造装置は、流体を入れる流体供給部と、前記流体を流体供給部から押し出す押出し手段と、前記流体供給部から押し出された流体が通過する乳化剤を保持するための少なくとも2以上の貫通孔を有し、かつ前記流体供給部に対して着脱可能である乳化剤保持部とを具備する。
【0011】
本発明の微粒子の製造方法は、流体供給部から押し出された流体が通過する貫通孔に乳化剤を保持させる工程と、前記流体供給部に流体を入れる工程と、前記流体供給部に入れられた流体を、前記乳化剤が保持された貫通孔を通して前記貫通孔の外に押し出す工程とを具備する。
【0012】
本発明の分子膜の製造方法は、流体供給部から押し出された流体が通過する貫通孔に乳化剤を保持させる工程と、前記流体供給部に流体を入れる工程と、前記流体供給部に入れられた流体を、前記乳化剤が保持された貫通孔に押し出し、前記貫通孔の先端部に分子膜を形成させる工程とを具備する。
【発明の効果】
【0013】
本発明によれば、粒径、膜厚及び物質の内包率のばらつきが小さい微粒子を製造することができる。
【0014】
更に、本発明によれば、立体形状(三次元構造)のバラツキが少ない分子膜を迅速に形成することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施の形態について図面を参照して詳細に説明する。以下の図面の記載
において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は
模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。
【0016】
従って、具体的な寸法等は以下の説明を参照して判断すべきものである。又、図面相互間
においてもお互いの寸法の関係や比率が異なる部分が含まれている。
【0017】
[第1の実施の形態]
本発明の第1の実施の形態は、粒径、膜厚及び封入容量のばらつきが小さい微粒子、詳しくはベシクル、ユニラメラベシクル、多重膜ベシクル、リポソーム、逆ベシクル、多重膜逆ベシクル、気泡等の微粒子、高い封入容量において薬物等の生理活性物質を高活性で効率よく微粒子内に迅速に封入する微粒子の製造装置およびその微粒子の製造方法に関して説明する。
【0018】
<微粒子製造装置の基本構造>
図1に示す微粒子の製造装置は、第1の流体8を入れる流体供給部6と、第1の流体8を流体供給部6から押し出す押出し手段7と、流体供給部6から押し出された第1の流体8が通過する貫通孔2を有する乳化剤保持部1とを具備する。乳化剤保持部1は、流体供給部6に対して着脱可能である。乳化剤保持部1は、嵌め込み或いは挟み込みなどの方法によって流体供給部6の流体供給口7側に装着されている。また、乳化剤保持部1は、少なくとも2以上の貫通孔2を有する。複数の貫通孔を有することにより、押し出し手段7の一回の操作によって多数の微粒子を一度に製造することができる。さらに、貫通孔2には乳化剤が保持される。乳化剤が保持された乳化剤保持部1を流体供給部6に装着し、第1の流体8を流体供給部に入れる。この時点では、貫通孔2は乳化剤で塞がれているので、第1の流体8は貫通孔を通過することなく流体供給部6に留まる。ここで、押し出し手段7の操作によって第1の流体8に圧力をかけると、第1の流体8が乳化剤とともに貫通孔2を通過して第2の流体9内に押し出される。このとき、第2の流体9内において、第1の流体8を内包し、その外側が乳化剤で覆われた微粒子が製造される。
【0019】
なお、第1の流体8に液体を用いる場合、流体供給部に第3の流体11を入れることができる。第3の流体11が第1の流体8に続いて押し出されることにより、第1の流体8を内包した微粒子は導出口5から流体9に向かって乳化剤保持部1と分離する。この際、流体供給部6に供給する第1の流体8の量を最適化し、さらに「気体」の第3の流体11を流体供給部6に入れることが望ましい。この場合は、第1の流体8の第2の流体9への意図しない混入を低減することができる。
【0020】
図2に示す微粒子の製造装置は、円筒状の乳化剤保持部1を具備する。乳化剤保持部1は、流体供給部6に対して着脱可能であり、かつ環状の壁面に少なくとも2以上の貫通孔2を有する。貫通孔2には乳化剤が保持される。その他の構成は図1に示す装置と同様である。
【0021】
図3に示す微粒子の製造装置は、針状の乳化剤保持部1を具備する。乳化剤保持部1は、流体供給部6に対して着脱可能であり、かつ針状の壁面に少なくとも2以上の貫通孔2を有する。貫通孔2には乳化剤が保持される。その他の構成は図1に示す装置と同様である。
【0022】
その他、乳化剤保持部1は、用途に応じて適宜適当な形状にすることができる。例えば、図3に示す針状の乳化剤保持部ではその側面に貫通孔を設けているが、先端部に貫通孔を設けてもよい。この態様は図6に詳述する。また、乳化剤保持部1が流体供給部6に対して着脱可能ではなく、乳化剤保持部と流体供給部が一体型の製造装置でもよい。また、流体供給部6と押出し手段7は、材質や形状に制限はなく、上記目的を達成できる全ての態様を含む。
【0023】
図4に示す乳化剤保持部1は、流体供給部6に対して着脱可能なフィルム状部材4を有し、フィルム状部材4に貫通孔2が少なくとも2以上設けられている。貫通孔2は、流体供給部6から押し出された第1の流体8が通過する細孔であり、流体供給部側から導出口5側に向かって貫通している。また、貫通孔2には乳化剤3が保持される。乳化剤3は貫通孔2に予め保持されていても、使用時に別途保持させてもよい。
【0024】
図5は、乳化剤保持部1の他の例である。貫通孔2(b)の口径は貫通孔2(a)の口径より大きくする。第2の流体9側に接したフィルム状部材4(a)に充填される乳化剤3(a)で第1の流体8(a)を含む微粒子20(a)を作製した後に、このフィルム状部材4(a)の貫通孔2(a)が空になる。貫通孔2(a)が空になったフィルム状部材4(a)が、流体供給部側に近いフィルム状部材4(b)で作製された多重膜ベシクル(20b)のろ過フィルムとして使われる。すなわち、流体供給部側に近いフィルム状部材4(b)で作製された比較的に大きな多重膜ベシクル(20b)は、空になった貫通孔径が比較的に小さい次のフィルム状部材4(a)を透過することによって、その粒径および膜厚をより小さくすることができる(ベシクル20(bf))。
【0025】
より詳述すると、図5に示された乳化剤保持部12において、第2の流体9側にある乳化剤保持部1(a)の片側の導出口にフィルム状部材4(a)を設け、その貫通孔2(a)にさらに乳化剤3(a)を予め保持して置き、次に、乳化剤保持部1(a)に第1の流体8(a)を入れる。一方、乳化剤保持部1(b)の片側の導出口も同様にフィルム状部材4(b)を設置し、この貫通孔2(b)に乳化剤3(b)を予め保持して置き、さらに乳化剤保持部1(b)に第1の流体8(b)を入れた後に、第1の流体8を保持する流体供給部6の導出口15(図1)に接続する。次に、乳化剤保持部1(b)のフィルム状部材4(b)側に乳化剤保持部1(a)のもう片側を接続する。
【0026】
または、乳化剤3(b)および第1の流体8(b)を保持させた後の乳化剤保持部1(b)のフィルム状部材4(b)側に、乳化剤3(a)と第1の流体8(a)を保持させた乳化剤保持部1(a)のもう片側を接続し、乳化剤保持部12として先に組み立てた後に、図1に示された乳化剤保持部1と同様な手法で、乳化剤保持部12の乳化剤保持部1(b)の第1の流体8(b)を有する側に、流体供給部6を取り付る。
【0027】
また、微粒子20の作製方法としては、図1に示した方法と同様に、押し出し手段7を用いて、流体供給部6の第1の流体8を押し出すことにより、第2の流体9へ導出口5(a)から乳化剤3(a)と第1の流体8(a)、または第1の流体8(a)へ導出口5(b)から乳化剤3(b)と第1の流体8(b)が順次に押し出されることにより、粒径の大きさが異なる多重膜ベシクル20(a)と多重膜ベシクル20(b)をそれぞれ作製する。貫通孔2(b)の口径は貫通孔2(a)の口径より大きいため、作製される多重膜ベシクル20(b)の粒径が多重膜ベシクル20(a)の粒径よりも大きい。また、作製される多重膜ベシクル20(a)の膜厚が多重膜ベシクル20(bf)の膜厚よりも厚い。異なる膜厚のベシクルを作製することができ、薬物の徐放速度を制御することができる。すなわち、この方法で作製されたベシクルをDDSとして使用する場合、治療効果の期間を適宜に制御することができる。
【0028】
図6には、変形例として、乳化剤保持部1に設けられた貫通孔2に乳化剤3と第1の流体8とを交互に保持させる態様を示した。乳化剤3と第1の流体8とを交互に保持させることによって1つの貫通孔当り複数の微粒子を製造することができる。このとき、流体供給部6には空気が入っており、押し出し手段7によって流体供給部内の空気が圧縮され、乳化剤保持部1の貫通孔2内部に交互に保持された乳化剤3と第1の流体8とが導出口5から順次に押し出される。理論的には乳化剤3と第1の流体8の繰り返しの数だけ微粒子が製造される。
【0029】
図7〜12については後述する。
【0030】
次に、フィルム状部材4についてさらに詳述する。
【0031】
ナノポーラスフィルムを用いることができる。また、微細孔を有する金属フィルム、合成樹脂フィルム、可撓性を有する金属層の片面に樹脂層が被覆されているフィルムを用いることができる。樹脂性シートおよび前記樹脂層は、1種類以上の樹脂もしくは2種類以上の樹脂からそれぞれ形成させることができる。一方、金属層は、1種類の金属もしくは2種類以上の金属から形成することができる。合成樹脂として、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリメタクリル酸メチル樹脂、ゴム系樹脂、ポリエステル樹脂、ポリウレタン樹脂、タールエポキシ樹脂、エポキシ樹脂、ビニル樹脂、アクリル樹脂、尿素樹脂、アミノアルキド樹脂、アルキド樹脂、フェノール樹脂、メラミン樹脂、ポリフッ化ビニリデン(PVdF)などを用いることができる。また、合成樹脂を不織布に加工して用いることができる。その他、微細孔を有するゴム材料、テフロン(登録商標)膜などを用いることもできる。
【0032】
アルミニウム、チタン、シリコンなどの材料により作製されたナノポーラスフィルムは貫通孔の孔径(微細孔径)だけではなく、貫通孔(微細孔)の深さ方向(膜厚)も作製条件により制御することができる。これらの材料を使用する場合、貫通孔(微細孔)の外部材料の表面または貫通孔(微小孔)の先端壁面は乳化剤との親和力が高い特性を有することが望ましい。微細孔内部または外部の親和力は電解めっき、または無電解めっきを適切に施すことにより実現することができる。
【0033】
また、乳化剤保持部1として可撓性のある部材を用い、変形させることによって貫通孔2の孔径を広げることができる。例えば、乳化剤保持部1に弾力性の部材または変形可能な部材を用いる場合、乳化剤保持部1を流体供給部6に取り付けることにより、その貫通孔2の孔径を拡大させることができる。または、乳化剤保持部1を流体供給部6に取り付けた後に、乳化剤保持部1を伸長などの方法により、変形させることで、貫通孔2の孔径を拡大させることができる。
【0034】
次に、乳化剤3についてさらに詳述する。
【0035】
乳化剤保持部1の貫通孔2に保持されている乳化剤3は、一種類以上の乳化剤である。乳化剤3には、脂質と境界脂質、スフィンゴ脂質、蛍光脂質、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、合成高分子、タンパク質などの天然高分子等を適宜選択して使用することができる。乳化剤3を使用して安定な微粒子20を製造することができる限り、乳化剤3の種類と組み合わせについて特に限定はない。
【0036】
乳化剤3として脂質を用いる場合、例えばトリオレイン、モノオレイン、卵黄レシチン、リン脂質類、合成脂質類、リゾリン脂質類、グリコシルジアシルグリセロール類、プラズマローゲン類、スフィンゴミエリン類、ガングリオシド類、蛍光脂質、スフィンゴ脂質、スフィンゴ糖脂質、レシチン、ステロイド、ステロール類、コレステロール、酸化コレステロール、ジヒドロコレステロール、グリセリルジステアレート、グリセリルモノオレエート、グリセリルジオレエート、イソソルベイトモノブラシデイド、ソルビタントリステアレート、ソルビタンモノオレエート、ソルビタンモノパルミトレエート、ソルビタンモノラウレート、ソルビタンモノブラシデート、ドデシル酸リン酸塩、ジオクタデシルリン酸塩、トコフェノール、クロロフィル、キサントフィル、ホスファチジルエタノールアミン、ホスファチジルセリン、イノシトール、臭化へキサデシルトリメチルアンモニウム、ジグルコシルジグリセリド、ホスファチジルコリン、レチナール/酸化コレステロール/レクチン/ロドプシン、脳全脂質、ヒト赤血球全脂質等を使用することができるが、その他の微粒子20の製造を実現する脂質及び合成脂質であれば、本発明は特に限定するものではない。
【0037】
また、乳化剤3として各種界面活性剤を用いる場合、例えば、アルキル四級アンモニウム塩(CTAB、TOMAC等)、アルキルピリジニウム塩(CPC等)、ジアルキルスルホコハク酸塩(AOT等)、ジアルキルリン酸塩、アルキル硫酸塩(SDS等)、アルキルスルホン酸塩、ポリオキシエチレン系界面活性剤(Tween系、Brij系、Triton系等)、アルキルソルビタン(Span系等)、レシチン系界面活性剤、ベタイン系界面活性剤、蔗糖脂肪酸エステル等の界面活性剤を用いることができるが、本発明は特にこれらに限定されるものではない。
【0038】
また、乳化剤3として高分子乳化剤を使用する場合、例えば、ポリソープ、ポリエチ
レングリコール、ポリビニルアルコール、プロピレングリコール等を使用することができ
る。
【0039】
また、乳化剤3としてタンパク質の乳化剤を用いる場合、例えば、カゼイン等を使用
することができる。
【0040】
また、乳化剤3の融点およびHLB値、粘度、比重は、異なる融点、HLB値、粘度、比重を有する乳化剤を適切に混合させることにより制御することができ、または、乳化剤を溶かす溶媒の種類や混合率を適切に選択することにより制御することができる。本発明は、ベシクルを簡便、迅速に製造する面から、すなわち、微粒子を製造した後に、溶媒を除去する工程を必要としないことが好ましいので、除去必要な溶媒を使用しない、若しくは最少量に抑えることが望ましい。
【0041】
また、乳化剤3に少なくとも1種類以上の他の物質を含ませることができる。例えば、蛋白質(例えば、酵素、分子シャペロン、抗原、抗体、ホルモン等)、核酸、核酸関連物質、光感応性分子、糖脂質、コレステロール、蛍光色素、リガンド、光感応性分子、イオンチャンネル、電子共役系の物質、助界面活性剤、クラウンエーテル、フラーレン、カーボンナノチューブ、カーボンナノホーン、ポルフィリン類、シクロデキストリン、分子トング、微粒子、デンドリマー、ステロイド、ペプチド、ポリペプチド、糖類などを他の物質として含ませることができる。本発明は、乳化剤3に各種物質を含ませることにより、各種物質で修飾される微粒子を製造することができる。なお、製造された微粒子が安定して存在し、前記他の物質が乳化剤分子から形成される集合体の中に、若しくはベシクル、逆ベシクルの内膜及び外膜に安定して存在することができれば、乳化剤と、乳化剤に含まれる他の物質の種類およびそれらの組み合わせについて特に限定はない。
【0042】
次に、第1の流体8についてさらに詳述する。
【0043】
第1の流体8は、製造された微粒子に内包される流体である。第1の流体は、液体、液晶、気体の何れか1つ、またはこれらの混合物である。変形例として、例えば図6に示した態様では、乳化剤保持部1の貫通孔2に乳化剤3と第1の流体8とを予め交互に保持させている。この場合、微粒子が安定して存在する限りにおいて、第1の流体8として水、油といった液体、液晶、気体、またはこれらの混合物を適宜選択して使用することができる。例えば、第1の流体8に空気を用いた場合、押し出し手段7によって流体供給部内の空気が圧縮され、乳化剤保持部1の貫通孔2内部に交互に保持された乳化剤と第1の流体とが導出口5から押し出される。理論的には乳化剤と第1の流体の繰り返しの数だけ微粒子が製造される。
【0044】
また、第1の流体8には他の物質を添加することができる。第1の流体8に添加する物質として、例えば香り物質、匂い物質、薬物、薬品、色素、蛍光剤、糖類、酸化還元剤、ペプチド、ポリペプチド、タンパク質、核酸、核酸関連物質、金属微粒子、デンドリマー、カーボンナノホーン、微粒子、金属微粒子、油溶性の薬物を含むミセル、ウォータープールに水溶性の薬物やタンパク質を含む逆ミセル、乳酸菌や大腸菌などの細胞、液晶などを単独もしくは混合で適宜に使用することができる。また、第1の流体8に添加される物質は乳化剤3によって形成される分子膜の中において存在する前記物質であってもよい。
【0045】
最後に、第2の流体9について説明する。第2の流体9には水や油といった液体を用いることができる。また、複合型微粒子20の安定性を増すために、第2の流体9に界面活性剤、高分子、糖類などを適宜添加してもよい。また、第2の流体9は気体であってもよく、例えば、作製された微粒子が直接空気中に放出されてもよい。
【0046】
<微粒子の製造方法>
図1〜3に示す微粒子の製造装置において、本発明の微粒子の製造方法は、流体供給部6から押し出された第1の流体8が通過する貫通孔2の内部に乳化剤3を保持させる工程と、流体供給部6に第1の流体8を入れる工程と、流体供給部6に入れられた第1の流体8を、乳化剤3が保持された貫通孔2を通して第2の流体9の中に押し出す工程とを具備する。乳化剤保持部1が着脱可能である場合、貫通孔2に乳化剤3を充填して貫通孔を塞いだ後、乳化剤保持部1を流体供給部6に装着し、その後、第1の流体8を流体供給部6に入れる。この時点では、貫通孔2は乳化剤で塞がれているので、第1の流体8は貫通孔を通過することなく流体供給部6に留まる。ここで、押し出し手段7の操作によって第1の流体8に圧力をかけると、第1の流体8が乳化剤とともに貫通孔2を通過して第2の流体9内に押し出される。このとき、第2の流体9内において、第1の流体8を内包し、その外側が乳化剤で覆われている微粒子が製造される。
【0047】
また、図6に示す変形例では、流体供給部6に第1の流体8を入れる代わりに、貫通孔2の内部に乳化剤3と第1の流体8とを交互に保持させ、押出し手段7を流体供給部6に押し込むことによって流体供給部内の空気を圧縮し、前記貫通孔内部に交互に保持された乳化剤3と第1の流体8とを第2の流体の中に押し出すことができる。この態様では、1つの貫通孔当り複数の微粒子を製造することができる。
【0048】
作製された微粒子には、ベシクル、ユニラメラベシクル、多重膜ベシクル、リポソーム、逆ベシクル、多重膜逆ベシクル、気泡などがある。図7に単層膜ベシクル、図8に多重膜ベシクルの模式図を示した。図8の多重膜ベシクルは乳化剤3が多重層構造を形成し、その内部に第1の流体8を内包している。乳化剤の量を適宜調節することで所望の層数のベシクルを製造することができる。
【0049】
次に、分子膜または微粒子が製造されるメカニズムを図9および図10に基づいて説明する。乳化剤保持部1の貫通孔2内部に保持された乳化剤3が第1の流体8とともに導出口5に向かって押し出される。乳化剤は、親和力によって導出口5に付着したまま、この位置でしばらくの間留まる。このとき、貫通孔2内部から押し出された第1の流体8と、系外の第2の流体9との間に半球状の分子膜10が形成される。分子膜10は、導出口5の内径寸法よりも大きな半球状の形態をなす。ここで、第1の流体8をさらに系外に向かって押し出すと、前記半球形状の分子膜は微小粒子まで膨張、熟成し、乳化剤は親和力に抗して導出口5から離脱し、乳化剤3の中に第1の流体8を内包する微粒子20が第2の流体9の中で製造される。
【0050】
ここで、図9は、特にW/Os/W型の分子膜または微粒子が製造されるメカニズムの模式図である。乳化剤保持部1の貫通孔(例えばマイクロチャンネル)の内壁面および導出口5の外壁面は疎水性である。そして、貫通孔2内に親油性の乳化剤3(Os)を保持させ、流体供給部6に入れられた第1の流体8(W)を、前記乳化剤3(Os)が保持された貫通孔2を通して導出口5から水相である第2の流体9(W)内に押し出すことにより、乳化剤3内に第1の流体8を内包させる単一水相型のW/Os/Wエマルションやベシクルの分子膜10、並びにベシクル、ユニラメラベシクル、多重膜ベシクル、リポソームなどの微粒子20を製造することができる。この場合、図9に示すように、乳化剤3の疎水基は、疎水性の導出口5の外壁面との間の疎水性相互作用によって、導出口5の外壁面に付着する。更に、乳化剤3と、第1の流体8、第2の流体9のそれぞれとが接触する界面において、乳化剤3の親水基が第1の流体8、第2の流体9のそれぞれの側に向かって整列され、乳化剤3内への第1の流体8の注入に伴い、乳化剤3を境界膜(分子膜)とした半球状又は微小球状へと膨張し、脱離期の大きさになると導出口5の外壁面から離れてゆき、単一水相型のW/Os/Wエマルション、またはベシクル、ユニラメラベシクル、多重膜ベシクル、リポソームなどの微粒子20を製造することができる。
【0051】
同様の原理により、貫通孔2内に親油性の乳化剤3(Os)を保持させ、流体供給部6に入れられた第1の流体8(V)を、前記乳化剤3(Os)が保持された貫通孔2を通して導出口5から水相である第2の流体9(W2)内に押し出すことにより、乳化剤3内に第1の流体8を内包させる単一気相型のV/Os/Wエマルションの分子膜10並びに気泡の微粒子20を製造することができる。乳化剤3の疎水基は疎水性の導出口5の外壁面との間の疎水性相互作用によって導出口5の外壁面に付着する。なお、単一気相型のV/Os/Wエマルションの場合には、乳化剤3と第1の流体8、第2の流体9のそれぞれとが接触する界面において、乳化剤3の疎水基が第1の流体8(V)、親水基が第2の流体9(W2)に向かって整列される(図示省略)。
【0052】
そして、図10は、特にO1/Ws/O型の分子膜または微粒子が製造されるメカニズムの模式図である。貫通孔の内壁面は親水性を備え、貫通孔2内に親水性の乳化剤3(Ws)を保持させ、流体供給部6に入れられた第1の流体8(O)を、前記乳化剤3(Ws)が保持された貫通孔2を通して導出口5から油相である第2の流体9(O)内に押し出すことにより、乳化剤3内に第1の流体8を内包させる単一油相型のO1/Ws/Oエマルションや逆ベシクルの分子膜10、並びに、単一油相型のO1/Ws/Oエマルション、または逆ベシクル、多重膜逆ベシクルなどの微粒子20を製造することができる。この場合、乳化剤3は、親水性の貫通孔2との間の親水性相互作用によって、導出口5に付着する。更に、乳化剤3と、第1の流体8、第2の流体9のそれぞれとが接触する界面において、乳化剤3の疎水基が第1の流体8、第2の流体9のそれぞれの側に向って整列され、乳化剤内への第1の流体8の注入に伴い、乳化剤3を境界膜とした半球状又は微小球状へと膨張し、脱離期の大きさになると導出口5から離れてゆき、単一水相型のO1/Ws/Oエマルション、または逆ベシクル、多重膜逆ベシクルの微粒子20を製造することができる。
【0053】
同様の原理により、貫通孔2内に親水性の乳化剤3(Ws)を保持させ、流体供給部6に入れられた気相である第1の流体8(V)を、前記乳化剤3(Ws)が保持された貫通孔2を通して導出口5から油相である第2の流体9(O)内に押し出すことにより、単一気相型のV/Ws/Oエマルション、または気泡の分子膜10、さらに、単一気相型のV/Ws/Oエマルションまたは気泡の微粒子20を製造することができる(図示省略)。
【0054】
貫通孔2の導出口5には、乳化剤3を親和力により付着させる材料が使用されている。この貫通孔2の導出口5の表面特性、特に濡れの特性は、乳化剤3と第1の流体8とによって相対的に決定することができる。なお、導出口5の材料の選定に代えて、導出口5の表面処理によっても表面特性を制御することができる。例えば、導出口5の表面を粗面加工することにより、乳化剤3が付着する濡れの特性を向上させることができる。
【0055】
また、上述した図6の変形例のように、乳化剤3と第1の流体8が乳化剤保持部1の貫通孔2内部に交互に保持される場合、第1の流体8のセグメント毎に異なる各種物質を含ませることにより、図11に示すように異なる物質(8a、8b、8c)を封入するベシクル、逆ベシクル(微粒子20a、20b、20c)を製造することができ、内膜と外膜とに異なる物質により修飾されるベシクル、逆ベシクルを製造することができる。
【0056】
第1の実施の形態に係わる微粒子20の製造方法においては温度並びに圧力の制御が大切である。例えば、系の昇温にはジュール熱を利用することできる。また、局所加熱にはレーザー光を利用することができる。製造系の温度を制御する場合、例えば流体供給部6または貫通孔2の内部や外部から直接的若しくは間接的に乳化剤3、第1の流体8の温度、または第1の流体8を部分的に若しくは全体的に制御することができれば、本発明はその温度制御の手段を限定するものではない。
【0057】
また、微粒子の製造装置において、微粒子20を製造する場合、貫通孔2へ乳化剤3を供給した後に乳化剤保持部1を乳化剤3の融点以下に冷却し、乳化剤3と第1の流体8とを第2の流体9に押し出す前に、乳化剤保持部1を乳化剤3の融点以上に加熱して、微粒子20を製造することができる。
【0058】
微粒子20を製造するための乳化剤3としては、乳化剤のみを使用することもできる。もちろん、乳化剤の溶媒としての水と油を除いて、少なくとも1種類以上の物質を含ませた乳化剤を使用することができる。この場合微粒子20を製造する時、乳化剤の温度を融点、或いは分子膜の相転移以上にすることによって使用することができる。また、乳化剤3は少なくとも1種類以上の異なる融点の乳化剤を混合させて使用することができる。融点の低い乳化剤と融点の高い乳化剤を混合して使用する場合、融点の高い乳化剤をその融点未満の条件で使用し、微粒子を製造することができる。例えば、融点が比較的に高い乳化剤であるモノオレインとレシチンは融点が比較的低い乳化剤であるソルビタンモノオレアート(融点10〜20℃)と混合して得られた乳化剤混合物の融点はモノオレインの融点(α形25℃、β形35℃)以下であり、微粒子をその乳化剤混合物の融点以上、モノオレインの融点以下において製造することができる。
【0059】
一方、融点の高い乳化剤を使用する場合は、融点未満の条件で乳化剤を保持部品1に保持しておき、使用直前に融点以上に温度をあげ、微粒子20を製造することができる。従って、保持部品1において、光や熱などの外部環境条件に不安定なリン脂質や二重結合を有する乳化剤はこの方法で長期保存することができる。
【0060】
また、本発明は、乳化剤を溶かすための溶媒、特に非水溶媒を用いず、乳化剤3を用いて、微粒子を製造することができる。この場合は乳化剤と保持部品との親和力に基づいて所定のHLB値を有する乳化剤もしくは乳化剤混合物を適切に選択して、使用すれば、乳化剤を溶かすための溶媒を使用せず、微粒子を製造することができる。
【0061】
通常、HLB値の低い乳化剤は油に対する親和力が高く、親油性を示す。また、HLB値の高い乳化剤は高い親水性を示す。従って、上述のように異なるHLB値を有する乳化剤を適宜に混合して、広い範囲のHLBを有する乳化剤混合物を用いて微粒子を製造することができる。例えば、低いHLB値を有するソルビタン脂肪酸エステル(以下ソルビタンエステルと略称する)の系列と高いHLB値を有するツィーンの系列を適宜に混合することにより、4から17のHLB値を有する乳化剤混合物を調製することができる。例えば、ソルビタンモノラウレートとポリオキシエチレンソルビタンモノラウレートとを適当な割合で混合することにより、HLB値が9から17までの乳化剤混合物を得ることが出来る。また、ソルビタンモノステアレートとポリオキシエチレンソルビタンモノステアレートと、またはソルビタンモノオレアートとポリオキシエチレンソルビタンモノオレートとを適当な割合で混合することにより、HLB値が5から15までの乳化剤混合物を得ることが出来る。さらに、蔗糖脂肪酸エステルの系列においても、異なるHLB値を有するものを適当な割合で混合することにより、HLB値が1から19までの蔗糖脂肪酸エステル系の乳化剤混合物を得ることが出来る。
【0062】
前記より本発明は、乳化剤混合物3と乳化剤保持部品の導出口5との親和力関係の兼ね合いで乳化剤混合物のHLB値を考慮すべきであり、乳化剤混合物が親和力によって導出口5に留まるとき、乳化剤混合物に第1の流体8を注入しつつ、この乳化剤混合物を第2の流体9内に押し出すことにより、分子膜10を製造し、更にこの分子膜10から乳化剤混合物内に第1の流体8を内包させる微粒子20を製造できる適宜なHLB値を有する乳化剤混合物を使用すればよい。
【0063】
また、乳化剤を溶かすための溶媒を含まない乳化剤3、あるいは各種物質を含む乳化剤3を使用して、微粒子を製造する場合、熱力学的安定なリポソーム、ユニラメラベシクル、多重膜ベシクル或いは多重膜逆ベシクル、逆ベシクルが製造される。
【0064】
本発明は乳化剤を溶かすための溶媒を含む乳化剤3を用いる場合、最初に微粒子20の1種であるダブルエマルションが製造される。エマルションは熱力学的に不安定であり、時間経過と共にクリーミングや凝集、オストワルド熟成や合一を起こすことによって油相と水相の相分離に至るが、ダブルエマルションが製造された直後に昇温或いは減圧・昇温、不活性ガス(アルゴンガス、窒素ガスなど)のバブリングなどの工程をさらに加えることにより、乳化剤を溶かすための溶媒を微粒子から除去することで、リポソーム、ユニラメラベシクル、多重膜ベシクル或いは多重膜逆ベシクル、逆ベシクルを製造することができる。この場合、微粒子の迅速作製の面から考えた場合、望ましくないが、作製の速度および溶媒の影響を考慮する必要がない場合、ダブルエマルションから上述の昇温或いは減圧・昇温、不活性ガス(アルゴンガス、窒素ガスなど)のバブリングなどの方法によりリポソーム、ユニラメラベシクル、多重膜ベシクル或いは多重膜逆ベシクル、逆ベシクルを製造しても良い。
【0065】
(応用例)
前述の図1に示す第1の実施の形態に係る製造装置において、気体、液体もしくは液晶などからなる混合物(不均一系)(多相系)の流体を「第3の流体」とし、順次に乳化剤3内に導入することにより同じ微粒子内に不均一系の流体(気体、液体もしくは液晶)を同時に内包させることができる。勿論、第1の流体8を構成するそれぞれの相内に含有される物質も同様に微粒子に内包されることになる。
【0066】
[第2の実施の形態]
本発明の第2の実施の形態は、立体構造(三次元構造)、詳しくは二分膜、多重層分子、逆二分子膜、多重層逆分子膜を製造する装置と方法に関して説明する。
【0067】
<分子膜製造装置の基本構造>
分子膜の製造装置の基本構造は、微粒子の製造装置の基本構造と同一である。従って、図1〜5に示した微粒子の製造装置によって分子膜を製造することができる。説明の便宜上、分子膜の製造装置を図12に別途表わした。
【0068】
図12に示す分子膜の製造装置は、第1の流体8を入れる流体供給部6と、第1の流体8を流体供給部6から押し出す押出し手段7(図示せず)と、流体供給部6から押し出された第1の流体8が通過する貫通孔2を有する乳化剤保持部1とを具備する。乳化剤保持部1は、流体供給部6に対して着脱可能である。乳化剤保持部1は、嵌め込み或いは挟み込みなどの方法によって流体供給部6の流体供給口に装着されている。また、乳化剤保持部1は、少なくとも2以上の貫通孔2を有する。複数の貫通孔を有することにより、押し出し手段7(図示せず)の一回の操作によって多数の分子膜を一度に作製することができる。さらに、貫通孔2には乳化剤が保持される。これらの点については微粒子の製造装置と同様である。
【0069】
分子膜を製造するための乳化剤および乳化剤に含まれる物質、第1の流体、第2の流体の種類と使用方法については微粒子の製造装置と同様であるため、ここでは説明を省略する。
【0070】
<分子膜の製造方法>
図12に示す分子膜の製造装置において、本発明の分子膜の製造方法は、流体供給部6から押し出された流体が通過する貫通孔2の内部に乳化剤3を保持させる工程と、流体供給部6に第1の流体8を入れる工程と、流体供給部6に入れられた第1の流体8を、乳化剤3が保持された貫通孔2に押し出し、前記貫通孔の先端部に分子膜10を形成させる工程とを具備する。乳化剤保持部1が着脱可能である場合、貫通孔2に乳化剤を充填した後、乳化剤保持部1を流体供給部6に装着し、その後、第1の流体8を流体供給部6に入れる。ここで、押し出し手段7(図示せず)の操作によって第1の流体8に圧力をかけると、第1の流体8が乳化剤保持部の貫通孔内部に保持された乳化剤3とともに前記貫通孔の導出口5に向かって押し出される。乳化剤は、親和力によって導出口5に付着したまま、この位置でしばらくの間留まる。このとき、貫通孔2内部から押し出された第1の流体8と、系外の第2の流体9との間に半球状の分子膜10が形成される。分子膜10は、導出口5の内径寸法よりも大きな半球状の形態をなす。
【0071】
分子膜は微粒子20を製造する過程において得られるものであり、その製造方法は基本的に微粒子の製造方法と同様であるので、ここでは作製方法の詳細について省略する。ただし、微粒子20を作製する場合は第1の流体8が完全に乳化剤3に内包されることに対して、分子膜10の場合には第1の流体8は乳化剤3の中に閉じ込められないのが特徴である。
【0072】
例えば、図9に示すような親油性の乳化剤(Os)と水相である第1の流体8(W1)と水相である第2の流体9(W2)の系を用いて、分子膜を製造する場合は、乳化剤の親水基がそれぞれ第1の流体8と第2の流体9に向けられ、二重層もしくは多重層の分子膜を形成させることができる。分子膜10の膜厚と形状は、貫通孔に保持されている乳化剤3の量、乳化剤3と導出口5との親和力の強さ、および第1の流体8の注入量を制御することにより制御することができる。本発明により立体構造(三次元構造)を有する分子膜を製造することができる。例えば、図9に示すような半球状型の二分子膜を製造することができる。また、乳化剤3を溶かす溶媒を使用せず、乳化剤3の量が十分である場合、乳化剤の親水基がそれぞれ第1の流体8と第2の流体9に向けられ、その乳化剤の内側にさらに何層かの乳化剤3が規則正しく配置される多重層(ラメラ)の分子膜を製造することができる(図8を参照。但し、図8は多重層の微粒子)。
【0073】
一方、乳化剤3に物質を含ませる場合は、物質は分子膜10を構成する乳化剤の分子集合体に取り込まれて存在することができる。その他、乳化剤3に含まれる物質の存在形態は基本的に微粒子での存在形態と同様であるので、その詳細の説明については省略する。
【0074】
また、例えば、図10に示すような親水性の乳化剤(Ws)と油相である第1の流体8(O1)と油相である第2の流体9(O2)の系を用いて、分子膜10を製造する場合は、乳化剤の疎水基がそれぞれ第1の流体8と第2の流体9に向けられ、二重層(逆二分子膜)もしくは多重層の分子膜10(多重層逆分子膜)を形成させることができる。分子膜10の膜厚と形状は、貫通孔に保持されている乳化剤3の量、乳化剤3と導出口5との親和力の強さ、および第1の流体8の注入量を制御することにより制御することができる。また、図9の系と同様に、図10の系を用いて、立体構造(三次元構造)を有する分子膜を製造することができる。
【0075】
[実施例]
以下、第1の実施の形態および第2の実施の形態に係わる具体的な実施例について詳述する。
【0076】
[実施例1]
乳化剤3としてソルビタンモノオレアートを用い、第1の流体8として空気を用い、第2の流体9として純水を用いた。
【0077】
ソルビタンモノオレアートを乳化剤保持部1であるナイロン製のフィルム状不織布(平均細孔の大きさ:70μm)の片面に塗布した。ソルビタンモノオレアートを塗布したナイロン不織布を流体供給部6である注射用シリンジの先端にゴムリングで固定した後に、純水に浸漬し押し出し手段7によりシリンジ内部の空気を押し出した。すると、ソルビタンモノオレアートの分子膜および気泡を製造することができた。
【0078】
乳化剤ソルビタンモノオレアートを用いて製造された気泡をそのまま純粋中で3時間放置し、その安定性を観察した。その結果、放置中、気泡の凝集や合一による粒径の変化や崩壊が観測されず、非常に安定に存在できることを確認できた。
【0079】
上記のように本実施例で製造された気泡は乳化剤ソルビタンモノオレアートのみを用いて製造されたため、V/O/W中の油相(O)に乳化剤であるソルビタンモノオレアート以外の親油性溶媒が含まれていない。従って、この油相(O)としてはソルビタンモノオレアート分子のみがその疎水基の部分を第1の流体である空気相に向け、親水基の部分を第2の流体である水に向けて規則的に多重層に配列されるため、熱力学的に安定したベシクル構造の気泡を製造することができた。
【0080】
また、本作製法で乳化剤としてモノオレインを用いた場合も同様に粒径のバラツキが少ない気泡を製造することができた。
【0081】
[実施例2]
乳化剤3としてソルビタンモノオレアートのみを用い、第1の流体8として空気を用いた。第2の流体9として純水を用いた。乳化剤保持部1としてシリコンチューブ(肉厚約1000μm)を用いた。
【0082】
シリコンチューブにマイクロシリンジの針で孔を開け、そのチューブの外側にソルビタンモノオレアート(乳化剤3)のみを塗布して、チューブの片側をクリップで留め、乳化剤保持部1とした。図2に示された構成図のように、乳化剤保持部1であるシリコンチューブのもう片側を図2に示した流体供給部6であるシリンジの導出口15(流体供給部6の導出口15)に接続させた。シリコンチューブの導出口5を第2の流体9である純水中に水平に浸漬し、クリップで留めてある片側のシリコンチューブを引っ張りながら、導出口5よりソルビタンモノオレアートと空気8を導出口5より順次に押し出した。すると、チューブに穴が開けられた位置から、ソルビタンモノオレアートの分子膜10または粒径のバラツキが少ないソルビタンモノオレアートの気泡(微粒子20)を作製することができた。
【0083】
この実施例により図2に挙げた基本構造で、乳化剤3のみで分子膜10または分子膜微粒子20を作製できることを示した。また、乳化剤保持部に変形可能部材を用いる場合、予め貫通孔の孔径を拡大させた後に、分子膜10または粒径のバラツキが少ない微粒子20を作製できることを示した。
【0084】
[実施例3]
乳化剤3としてソルビタンモノオレアートを用い、第1の流体8として空気を用い、第2の流体9として純水を用いた。
【0085】
図1に示された作製方法で、多数の貫通孔(貫通孔径=100μm、膜厚=10μm)を有するポリプロピレン製のフィルム状部材4に、予めソルビタンモノオレアートを保持させて、乳化剤保持部1とした。ソルビタンモノオレアートを保持した乳化剤保持部1を図1に示した流体供給部6であるシリンジの導出口15(流体供給部6の導出口15)に装着した後に、導出口5を純水に浸漬させ、押し出し手段7を用いて、ソルビタンモノオレアートと空気を導出口5より順次に押し出す。すると、ソルビタンモノオレアートの分子膜10および粒径のバラツキが少ない気泡20を製造することができた。
【0086】
又、多数の貫通孔を有するポリプロピレン製のフィルム状部材4の貫通孔に予めソルビタンモノオレアートと空気のセグメントを交互に保持させた乳化剤保持部1を用いる場合、同様な作製方法で分子膜10および粒径のバラツキが少ない微粒子20を作製することができた。
【0087】
なお、多数の貫通孔を有するフィルム状部材4の膜厚は膜の強度と面積によって、適宜に選択することできる。また、フィルム状部材4の材質として更にテフロン(登録商標)、ナフロン、シリコン、ナイロン、ビニール、フロログラス[フッ素樹脂(PTFE)含浸ガラスクロス]などのものを用いると、上記の手法で微粒子20を作製することができる。
【0088】
[実施例4]
第1の流体8として薄いブルーインクを用い、乳化剤3としてモノオレインを用いた。
【0089】
乳化剤保持部1として三つの貫通孔(貫通孔径=100μm、膜厚=10μm)を有するテフロン(登録商標)膜を用いた。その他の製造条件は実施例3と同じである。
【0090】
モノオレイン(3)とブルーインク(8)を導出口5から純水(9)中に順次に導出することにより、モノオレインにブルーインクが注ぎ込まれた分子膜10が形成された。次に、さらにブルーインク(8)を導出すると、分子膜10は膨張し、やがて導出口5から完全に離れた状態の単一水相型(ブルーインク内包)の多重膜モノオレインベシクル(単一水相型多重膜ベシクル)(20)が製造された。このブルーインク内包の多重膜モノオレインベシクルを外力により強制的に破壊させると、多重膜モノオレインベシクル内に内包されたブルーインクが瞬時に放出された。
【0091】
又、流体供給部6に第1の流体8として液体のブルーインクを入れた後に、第3の流体11として気体の空気、酸素などを入れることよって、微粒子20の製造後、ブルーインクの第1の流体9への流出を防ぐことができた。なお、ブルーインクの量が少ない場合、ブルーインク8と空気11とを同一の微粒子20内に内包させることもできる。
【0092】
[実施例5]
乳化剤3としてソルビタンモノオレアートを用いた。その他の製造条件は実施例4と同じである。
【0093】
この場合、実施例4のモノオレインの場合と同様に、ソルビタンモノオレアートの分子膜10と単一水相型(ブルーインク内包)の多重膜ソルビタンモノオレアート微粒子20(単一水相型多重膜ベシクル20)を作製することができた。
【0094】
[実施例6]
乳化剤3として脂質であるレシチンを用いた。フィルム状部材4としてナフロンシート(貫通孔径=100μm、膜厚=1.0mm)を用いた。また第2の流体9としての純水を水温50℃までホット・プレートで温めて使用した。その他の製造条件は実施例4と同じである。
【0095】
この場合、実施例4のモノオレインの場合と同様に、レシチンの分子膜10とブルーインク内包の多重膜レシチンベシクル20(単一水相型多重膜ベシクル20)を製造することができた。
【0096】
[実施例7]
第1の流体8として物質を含有する薄いブルーインクを用い、乳化剤3として異なるHLB値を有するソルビタンモノオレアートとレシチンの乳化剤混合物3(混合重量比率3.9:1)を用いた。乳化剤混合物はマイクロ天秤で秤量したソルビタンモノオレアート(1.7g)とレシチン(0.30g)をそのまま超音波で混合させて調製した。なお、混合後の乳化剤混合物をしばらく放置した後、液面にまだ残された少量の泡をスポイト用いて除去した。前記他の物質として非定形の乳化剤凝集物微粒子を用いた。その他の製造条件は実施例6と同様である。
【0097】
前記乳化剤混合物にブルーインクが注ぎ込まれると、導出口5でソルビタンモノオレアート・レシチンの分子膜10が形成された。また、分子膜が形成されている状態でブルーインクと共に非定形微粒子(他の物質)を続けて分子膜に注入すると、粒径のバラツキが少ない他の物質とブルーインクを内包したソルビタンモノオレアート・レシチンの乳化剤混合物からなる多重膜ベシクル20(異なる乳化剤混合物による物質内包の単一水相型多重膜ベシクル)が形成された。
【0098】
この実施例により、異なるHLB値を有する乳化剤により調製された乳化剤混合物3を用いる場合も単一水相型多重膜ベシクル20を作製できることが示された。また、物質内包の単一水相型多重膜ベシクル20も作製できることが示された。
【0099】
なお、本発明は前述の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において、変更可能である。
【図面の簡単な説明】
【0100】
【図1】本発明の第1の実施の形態に係る微粒子の製造装置の概略図1。
【図2】本発明の第1の実施の形態に係る微粒子の製造装置の概略図2。
【図3】本発明の第1の実施の形態に係る微粒子の製造装置の概略図3。
【図4】乳化剤保持部の構造図1。
【図5】乳化剤保持部の構造図2。
【図6】乳化剤と第1の流体とを交互に保持させた貫通孔の拡大図。
【図7】単層膜ベシクルの模式図。
【図8】多重膜ベシクルの模式図。
【図9】W1/Os/W2型の分子膜および微粒子の製造メカニズムを示す模式図。
【図10】O1/Ws/O2型の分子膜および微粒子の製造メカニズムを示す模式図。
【図11】組成の異なる微粒子を製造する乳化剤保持部の貫通孔の拡大図。
【図12】本発明の第2の実施の形態に係る分子膜の製造装置。
【符号の説明】
【0101】
1, 1(b), 1(c)…乳化剤保持部、2, 2(a), 2(b)…貫通孔、3, 3(a), 3(b)…乳化剤、4, 4(a), 4(b)…フィルム状部材、5, 5(a), 5(b)…導出口、6…流体供給部、7…押出し手段、8, 8(a), 8(b)…第1の流体、9…第2の流体、10…分子膜、11…第3の流体、12…図5の乳化剤保持部、15…流体供給部6の導出口、20、20(a)、20(b)、20(bf)…微粒子。

【特許請求の範囲】
【請求項1】
流体を入れる流体供給部と、
前記流体を流体供給部から押し出す押出し手段と、
前記流体供給部から押し出された流体が通過する乳化剤を保持するための少なくとも2以上の貫通孔を有し、かつ前記流体供給部に対して着脱可能である乳化剤保持部と
を具備する分子膜または微粒子の製造装置。
【請求項2】
流体を入れる流体供給部と、
前記流体を流体供給部から押し出す押出し手段と、
前記流体供給部から押し出された流体が通過する少なくとも2以上の貫通孔を有し、かつ前記貫通孔の内部にそれぞれ乳化剤が保持されている乳化剤保持部と
を具備する分子膜または微粒子の製造装置。
【請求項3】
前記貫通孔の内部に乳化剤と流体とを交互に保持させ、1貫通孔当り複数の微粒子を製造することができることを特徴とする請求項1または2に記載の微粒子の製造装置。
【請求項4】
前記乳化剤保持部が、可撓性を有し、かつ前記乳化剤保持部を前記流体供給部に対して取り付ける際に、前記貫通孔の孔径が広がることを特徴とする請求項1ないし3のいずれか1項に記載の分子膜または微粒子の製造装置。
【請求項5】
流体供給部から押し出された流体が通過する乳化剤を保持するための少なくとも2以上の貫通孔を有し、かつ前記流体供給部に対して着脱可能であることを特徴とする乳化剤保持部。
【請求項6】
流体供給部から押し出された流体が通過する貫通孔に乳化剤を保持させる工程と、
前記流体供給部に流体を入れる工程と、
前記流体供給部に入れられた流体を、前記乳化剤が保持された貫通孔を通して前記貫通孔の外に押し出す工程と
を具備する微粒子の製造方法。
【請求項7】
流体供給部から押し出された流体が通過する貫通孔に乳化剤と流体とを交互に保持させる工程と、
前記貫通孔に交互に保持された乳化剤と流体とを前記貫通孔の外に押し出す工程と
を具備する、1貫通孔当り複数の微粒子を製造することができる微粒子の製造方法。
【請求項8】
流体供給部から押し出された流体が通過する貫通孔に乳化剤を保持させる工程と、
前記流体供給部に流体を入れる工程と、
前記流体供給部に入れられた流体を、前記乳化剤が保持された貫通孔に押し出し、前記貫通孔の先端部に分子膜を形成させる工程と
を具備する分子膜の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2007−268350(P2007−268350A)
【公開日】平成19年10月18日(2007.10.18)
【国際特許分類】
【出願番号】特願2006−94353(P2006−94353)
【出願日】平成18年3月30日(2006.3.30)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】