説明

投射型画像表示装置およびその制御方法

【課題】表示画像の画質の劣化を抑制しながら、スペックルノイズの低減率を向上させることができないという問題を解決する投射型画像表示装置を提供する。
【解決手段】光源11は、映像信号に応じて変調された光ビームを出射する。投射部12は、光源11から出射された光ビームを投射する。光路長調整部13は、光ビームの光路長を調整する。制御部14は、光源11から出射された光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが映像信号に応じた表示画像の各画素位置に対して時分割されて投射されるように、映像信号に基づいて、光路長調整部13を制御して、光源11から出射された光ビームの光路長を変更する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、投射型画像表示装置に関し、特には、光ビームを走査してスクリーンに画像を表示する投射型画像表示装置およびその制御方法に関する。
【背景技術】
【0002】
レーザ光源などの光ビームを出射する光源を有し、その光源からの光ビームを走査することで、スクリーン上に画像を投射する走査型の画像表示装置が提案されている。走査型の画像表示装置では、光ビームのコヒーレンス性に起因する斑点状のノイズが表示画像に生じるため、画質が低いという問題があった。この斑点状のノイズは、スペックルノイズと呼ばれている。
【0003】
スペックルノイズは、光ビームを複数の光束に分割し、各光束に光路差を与えてから、各光束を重ね合わせる遅延光学系を用いることで低減することが可能になる。これは、光路差を有する光束が重ね合わさることにより、コヒーレンス性が低減するためである。
【0004】
上記の遅延光学系に関する技術としては、特許文献1に記載の光学系、特許文献2に記載のスペックル消去光学装置、特許文献3に記載のスペックル低減装置、および、特許文献4に記載の蛍光内視鏡システムがある。
【0005】
特許文献1に記載の光学系は、入射光を反射および透過するハーフミラーと、ハーフミラーからの反射光を再入射光としてハーフミラーに入射するミラーとを有する。ミラーは、再入射光を元の入射光の入射位置と異なる位置に入射する。これにより、ハーフミラーからの透過光は、光路差を有する複数の光束となる。
【0006】
複数の光束は、集光レンズによって、ライトパイプまたはマルチモードファイバからなるホモジナイザの入射面に集光される。このため、ホモジナイザからの出射光は、光路差を有する複数の光束が重なり合った光となり、スペックルノイズを低減することが可能になる。
【0007】
また、特許文献2に記載のスペックル消去光学装置は、レーザ光源と、レーザ光源からの光ビームを反射および透過するハーフミラーと、ハーフミラーからの透過光を再入射光として再びハーフミラーに入射する光転向手段とを有する。
【0008】
光転向手段は、再入射光のハーフミラーによる透過光の光軸と、元の光ビームのハーフミラーによる反射光の光軸とが一致するように、再入射光をハーフミラーに入射する。
【0009】
これにより、再入射光の透過光と元の光ビームの反射光とが重なり合い、また、これらの透過光および反射光は光路差を有するので、スペックルノイズを低減することが可能になる。
【0010】
また、特許文献3に記載のスペックル低減装置は、長さの異なる複数のファイバ素線からなる光ファイバ群を有する。光ファイバ群の一方の端面が入射面とされ、他方の端面が出射面とされる。
【0011】
光源から光ファイバ群の入射面に入射された光束は、各ファイバ素線によって分割される。各ファイバ素線によって分割された各光束は、光ファイバ群の出射面で重なり合って出射される。
【0012】
これにより、各ファイバ素線の長さが異なるため、各ファイバ素線によって分割された各光束は、光路差を有することになる。したがって、光路差を有する複数の光束が重なり合うため、スペックルノイズを低減することが可能になる。
【0013】
また、特許文献4に記載の蛍光内視鏡システムでは、特許文献3に記載のスペックル低減装置と同様な構成を有するノイズ低減装置が用いられている。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】米国特許5224200号明細書
【特許文献2】特公平7−104500号公報
【特許文献3】特開2007−193108号公報
【特許文献4】特開2008−43493号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
走査型の画像表示装置において、画像を表示するためには、投射される光がビームである必要がある。ここで、ビームとは、例えば、レーザ光線のように、空間的な広がりが非常に小さく、光強度分布の変化も非常に小さい光をさす。複数のモードを有するマルチモード光でも、上記の特性を有する光は、ビームに含まれる。
【0016】
このため、スペックルノイズを低減するための遅延光学系を走査型の画像表示装置に適用する場合、遅延光学系から出射される光もビームである必要がある。
【0017】
特許文献1に記載の光学系では、複数の光束が集光レンズによってホモジナイザの入射面に集光されるため、ホモジナイザ内を伝搬する光は、光軸が異なる複数の光束からなる光になる。したがって、ホモジナイザからの出射光は、ビームにならない。
【0018】
また、特許文献3および4に記載の技術では、各ファイバ素線から出射された複数の光束の光軸は一致しないので、光ファイバ群から出射される光はビームにならない。
【0019】
したがって、特許文献1、3および4に記載の技術を、走査型の画像表示装置に適用することは困難である。
【0020】
特許文献2に記載のスペックル消去光学装置では、再入射光の透過光の光軸と、元の光ビームの反射光の光軸とが一致するので、その透過光および反射光が重なり合った多重光はビームとなる。
【0021】
しかしながら、スペックル消去光学装置では、多重光に含まれる透過光および反射光の光路長は互いに異なっているものの、多重光に含まれる透過光および反射光のそれぞれの光路長は一定である。光ビームの波面形状は、その光ビームの光路長に応じて決定されるので、その透過光および反射光のそれぞれのスクリーン上の波面形状は、一定になる。このため、透過光および反射光が重ね合わさった多重光のスクリーン上の波面形状も一定となる。
【0022】
スペックルパターンは、光ビームのスクリーン上の波面形状に応じて変化するので、その波面形状が一定であると、スペックルパターンも一定となる。したがって、スペックル消去光学装置では、スペックルパターンが時間的に積分されることになり、スペックルノイズが強調される。このため、スペックルノイズの低減率が低くなるという問題があった。
【0023】
なお、多重光に含まれる透過光および反射光の光軸をずらすことでスペックルノイズの低減率を向上させることができる。しかしながら、光軸をずらすと、多重光の口径が増大することになり、表示画像の画質が大幅に劣化する。
【0024】
本発明の目的は、上記の課題である、表示画像の画質の劣化を抑制しながら、スペックルの低減率を向上させることができないという問題を解決する投射型画像表示装置およびその制御方法を提供することである。
【課題を解決するための手段】
【0025】
本発明による投射型画像表示装置は、映像信号に応じて変調された光ビームを出射する光源と、前記光源から出射された光ビームを投射する投射手段と、前記光ビームの光路長を調整する調整手段と、前記光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが前記映像信号に応じた画像の各画素位置に対して時分割されて投射されるように、前記映像信号に基づいて、前記調整手段を制御して前記光ビームの光路長を変更する制御手段と、を有する。
【0026】
本発明による投射型画像表示装置の制御方法は、映像信号に応じて変調された光ビームを出射する光源と、前記光源から出射された光ビームを投射する投射手段と、前記光ビームの光路長を調整する調整手段と、前記光ビームの光路長を調整する調整手段と、を有する投射型画像表示装置の制御方法であって、前記光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが前記映像信号に応じた画像の各画素位置に対して時分割されて投射されるように、前記映像信号に基づいて、前記調整手段を制御して前記光ビームの光路長を変更する制御ステップを有する。
【発明の効果】
【0027】
本発明によれば、表示画像の画質の劣化を抑制しながら、スペックルの低減率を向上させることが可能になる。
【図面の簡単な説明】
【0028】
【図1】本発明による第一の実施形態の投射型画像表示装置の構成を示したブロック図である。
【図2】光ビームのビームウェスト付近の形状を示した説明図である。
【図3】遠視野像である光強度分布を示したグラフである。
【図4】本発明による第二の実施形態の投射型画像表示装置の構成を示したブロック図である。
【図5】本発明による第三の実施形態の投射型画像表示装置の構成を示したブロック図である。
【図6】本発明による第四の実施形態の投射型画像表示装置の構成を示したブロック図である。
【図7】回転ミラーの一例を模式的に示した外観図である。
【図8】本発明による第五の実施形態の投射型画像表示装置の構成を示したブロック図である。
【図9】本発明による第六の実施形態の投射型画像表示装置の構成を示したブロック図である。
【図10】制御部の構成の一例を示したブロック図である。
【図11】投射型画像表示装置の動作の一例を説明するためのタイミングチャートである。
【図12】投射型画像表示装置の動作の他の例を説明するためのタイミングチャートである。
【図13】切替速度の一例を説明するための説明図である。
【図14】切替速度の他の例を説明するための説明図である。
【発明を実施するための形態】
【0029】
以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有する構成には同じ符号を付け、その説明を省略する場合がある。
【0030】
図1は、本発明による第一の実施形態の投射型画像表示装置の構成を示したブロック図である。図1において、投射型画像表示装置1は、光源11と、投射部12と、光路長調整部13と、制御部14とを含む。
【0031】
光源11は、例えば、レーザダイオードである。なお、光源11は、レーザダイオードに限らず適宜変更可能である。
【0032】
光源11は、映像信号に応じて変調された光ビームを、光路長調整部13を経由して投射部12に向けて出射する。光ビームは、例えば、レーザ光であり、空間的な広がりが非常に小さい光であれば、シングルモード光でもよいしマルチモード光でもよい。
【0033】
投射部12は、投射手段の一例である。投射部12は、光源11から出射された光ビームをスクリーン100に投射する。これにより、映像信号に応じた画像がスクリーン100に表示されることになる。
【0034】
光路長調整部13は、調整手段の一例である。光路長調整部13は、光源11および投射部12の間に設けられる。光路長調整部13は、光源11から投射部12までの光路長を調整する。
【0035】
制御部14は、制御手段の一例である。制御部14は、映像信号に基づいて、光路長調整部13を制御して、光源11から出射された光ビームの光路長を変更する。具体的には、制御部14は、光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが映像信号に応じた表示画像の各画素位置に対して時分割されて投射されるように、光ビームの光路長を変更する。
【0036】
例えば、制御部14は、光ビームが二つの調整ビームが一つずつ順番に生成され、各調整ビームが各画素位置に対して交互に投射されるように光路長を変更する。
【0037】
次に光ビームの波面形状について説明する。
【0038】
図2は、光ビームのビームウェスト付近の形状を示した説明図である。なお、図2では、光ビームは、シングルモードのガウスビームであるとする。ガウスビームとは、断面の光強度分布がほぼガウス分布となっている光ビームである。
【0039】
光ビームがシングルモードのガウスビームの場合、光ビームの遠視野像(FFP:Far Field Pattern)は、数1で表わされる。遠視野像は、光源11から十分に離れた位置における光ビームの波面形状を表す光強度分布である。通常、スクリーン100の位置は光源11から十分に離れているとみなせるため、数1で表わされる遠視野像が、スクリーン100上の光ビームの波面形状を表す。
【0040】
【数1】

【0041】
数1において、θは、ビームウェストの位置を基準とした光ビームの放射角を示す。具体的には、放射角θは、光ビームの光軸と、光ビームのビームウェストの中央とスクリーン100上の点を結んだ線との成す角である。θ0は、光強度が1/e2となる放射角θである発散半角を示す。なお、遠視野像である光強度分布のピーク値は、1に規格化されている。
【0042】
遠視野像は、光源11から十分に離れた位置における光ビームの波面形状を表す光強度分布である。通常、スクリーン100の位置は光源11から十分に離れていると見なせるため、数1で表わされる遠視野像が、スクリーン100上の光ビームの波面形状を表す。なお、遠視野像は、図3で示したグラフで表すことができる。図3において、横軸は、放射角θを示し、縦軸は、光強度Iを示す。
【0043】
発散半角θ0は、光ビームのビームウェストの位置から十分離れた領域では、ほぼ一定となり、数2で表わされる光ビームの1/e2径と同じになる。なお、1/e2径は、光強度が1/e2となる光ビームの幅である。
【0044】
【数2】

【0045】
数2において、ω0は、光ビームのビームウェストの幅を示し、λは、光ビームの波長、zは、光ビームの光軸方向におけるビームウェストの位置からの距離を示す。
【0046】
これに対し、図2に示したように、ビームウェストの位置の近傍では、発散角度θは、一定でなく、ビームウェストの位置に近づくにしたがい急激に小さくなる。
【0047】
また、光ビームの波面形状は、ビームの進行方向に対して垂直となる。このため、ビームウェストの位置の近傍以外では、光ビームの進行方向が光軸に対して0°からθ0まで変化するので、光ビームの波面形状が曲線を描き、光ビームは球面波となる。これに対して、ビームウェストの位置では、光ビームの進行方向が光軸に対して0°となる(つまり、光軸に対して平行となる)ため、光ビームの波面形状が光軸に対して垂直となり、光ビームは平面波になる。さらに、ビームウェストの位置の近傍では、光ビームは、ビームウェストの位置から離れるに従い、平面波から球面波に連続的に変化する。なお、ビームウェストの前後のそれぞれの波面形状は、ビームウェストの位置を通り光軸に垂直な線を対象軸とした線対象となる。
【0048】
したがって、もしスクリーン100の位置がビームウェスト近傍であった場合、制御部14が光ビームの光路長を変更することで、スクリーン100上の光ビームの波面形状を変化させることができる。
【0049】
また、光ビームのビームウェストの位置である焦点位置がスクリーン100上にあるときに、ビーム径が最も小さいため表示画像の画質が最もよくなる。しかしながら、焦点位置がスクリーン100から少しずれても、図2に示したようにビーム径は殆ど変化しないため、表示画像の画質は殆ど変わらない。
【0050】
さらに、光ビームの波面形状は、特に焦点位置の前後で大きく変わる。このため、リアプロジェクションテレビのように光源11からスクリーン100までの距離が予め定められている場合、制御部14は、焦点位置がスクリーン100の前後で切り替わるように、光ビームの光路長を変更することが望ましい。
【0051】
なお、光ビームが複数のガウスビームからなるマルチモードビームの場合、光ビームの遠視野像は、数1で表わされた遠視野像の重ね合わせで表すことができる。
【0052】
本実施形態によれば、光源11は、映像信号に応じて変調された光ビームを出射する。投射部12は、光源11から出射された光ビームを投射する。光路長調整部13は、光ビームの光路長を調整する。制御部14は、光源11から出射された光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが映像信号に応じた表示画像の各画素位置に対して時分割されて投射されるように、映像信号に基づいて、光路長調整部13を制御して、光源11から出射された光ビームの光路長を変更する。
【0053】
この場合、表示画像の各画素位置に対して、波面形状がそれぞれ異なる複数の調整ビームが時分割されて投射される。なお、スペックルパターンは、波面形状に応じて異なる。
【0054】
このため、表示画像の各画素位置に複数のスペックルパターンを生じさせることが可能になる。よって、複数のスペックルパターンが時間的に平均化されたスペックルを観察者に観察させることが可能になる。したがって、スペックルノイズを軽減することが可能になる。また、光ビームの径を大きくする必要がないため、表示画像の画質の劣化を抑制することができる。つまり、表示画像の画質の劣化を抑制しながら、スペックルノイズの低減率を向上させることが可能になる。
【0055】
また、本実施形態では、光源11からスクリーン100まで光路長に比べて微小な光路長が変更されるだけなので、既存の投射型画像表示装置の光学部品および光学設計にほとんど影響を与えずにスペックルの低減率を向上させることができる。
【0056】
次に第二の実施形態について説明する。
【0057】
本実施形態では、投射型画像表示装置1のより詳細な構成を説明する。
【0058】
図4は、第二の実施形態の投射型画像表示装置の構成を示したブロック図である。図4において、投射型画像表示装置1は、光源11と、投射部12と、光路長調整部13と、制御部14と、コリメータレンズ15とを含む。
【0059】
コリメータレンズ15は、光源11から出射された光ビームを平行光にする。
【0060】
光路長調整部13は、コリメータレンズ15にて平行光にされた光ビームの光路長を調整する。
【0061】
光路長調整部13は、ハーフミラー21と、ミラー22および23とハーフミラー24とを含む第一光学系と、シャッター25および26とを有する。
【0062】
ハーフミラー21は、分割手段の一例である。ハーフミラー21は、コリメータレンズ15にて平行光にされた光ビームを複数の分割ビームに分割する。
【0063】
より具体的には、ハーフミラー21は、光ビームを透過および反射して透過光および反射光に分割する。この透過光および反射光が分割ビームとなる。以下、ハーフミラー21による反射光を第一分割ビームと称し、ハーフミラー21による透過光を第二分割ビームと称する。
【0064】
第一光学系は、光学手段の一例である。第一光学系は、ハーフミラー21にて分割された第一分割ビームおよび第二分割ビームに光路差を与える。
【0065】
具体的には、ミラー22は、第一分割ビームを反射してミラー23に入射する。ミラー23は、ミラー22から入射された第一分割ビームを反射してハーフミラー24に入射する。また、第二分割ビームは、ミラー22および23を経由せずに、直接、ハーフミラー24に入射される。
【0066】
ハーフミラー24は、ミラー23から入射された第一分割ビームを反射して、調整ビームとして生成し出射する。また、ハーフミラー24は、ハーフミラー21から入射された第二分割ビームを透過して調整ビームを生成し出射する。
【0067】
これにより、第一分割ビームの光路長は、ミラー22および23を経由している分、第二分割ビームの光路長よりも長くなる。したがって、第一分割ビームおよび第二分割ビームに光路差が与えられることになる。
【0068】
また、ハーフミラー24は、調整ビームの光軸が一定になるように配置される。つまり、ハーフミラー24は、調整ビームとして出射される、第一分割ビームがハーフミラー24で反射されたビームの光軸と、調整ビームとして出射される、第二分割ビームがハーフミラー24を透過したビームの光軸とが一致するように配置される。
【0069】
シャッター25および26は、シャッター手段の一例である。シャッター25および226は、第一分割ビームおよび第二分割ビームのそれぞれの光路上に設けられる。シャッター25および26は、開閉可能であり、開放されると、その光路上の分割ビームを透過する透過状態になり、閉鎖されると、その光路長の分割ビームを遮蔽する遮蔽状態になる。
【0070】
本実施形態では、シャッター25は、ミラー22および23の間に設けられ、第一分割ビームの透過および遮蔽を切り替える。シャッター26は、ハーフミラー21および24の間に設けられ、第二分割ビームの透過および遮蔽を切り替える。なお、シャッター25は、ハーフミラー21およびミラー22の間に設けられてもよいし、ミラー23およびハーフミラー24の間に設けられてもよい。
【0071】
これにより、シャッター25が開放されると、第一分割ビームが調整ビームとして生成され、シャッター26が開放されると、第二分割ビームが調整ビームとして生成されることになる。
【0072】
投射部12は、光路長調整部13から出射された調整ビームをスクリーン100に投射して、映像信号に応じた表示画像を表示する。本実施形態では、投射部12は、調整ビームを2次元走査してスクリーン100に投射するスキャナである。
【0073】
制御部14は、シャッター25および26の開閉を切り替えることで、光ビームの光路長を変更し、第一分割ビームおよび第二分割ビームを一つずつ順番に調整ビームとして出射する。このとき、制御部14は、表示画像の各画素位置に対して第一分割ビームおよび第二分割ビームが調整ビームとして時分割されて投射されるように、シャッター25および26の開閉を変更する。
【0074】
例えば、制御部14は、シャッター25および26を交互に開放して、表示画像の各画素位置に対して、第一分割ビームおよび第二分割ビームが調整ビームとして交互に投射されるようにする。
【0075】
また、制御部14は、映像信号に応じて光源11から出射される出射光を変調する。これにより、光源11は、映像信号に応じて変調された光ビームを出射することになる。さらに、制御部14は、映像信号に基づいて投射部12であるスキャナを駆動させる。これにより、映像信号に応じた表示画像がスクリーン100に表示されることになる。
【0076】
次に動作を説明する。
【0077】
光源11から出射された光ビームは、光路長調整部13のハーフミラー21に入射される。ハーフミラー21は、その光ビームを反射および透過して、第一分割ビームおよび第二分割ビームに分割する。
【0078】
第一分割ビームは、ミラー22を経由してシャッター25に入射される。シャッター25が開放されていると、第一分割ビームは、シャッター25を透過し、ミラー23を経由してハーフミラー24に入射される。一方、シャッター25が閉鎖されていると、第一分割ビームは、遮蔽される。
【0079】
ハーフミラー24は、第一分割ビームが入射されると、その第一分割ビームを、反射することで調整ビームにして投射部12に向けて出射する。
【0080】
また、第二分割ビームは、シャッター26に入射される。シャッター26が開放されていると、第二分割ビームは、シャッター26を透過し、ハーフミラー24に入射される。一方、シャッター26が閉鎖されていると、第二分割ビームは、遮蔽される。
【0081】
ハーフミラー24は、第二分割ビームが入射されると、その第二分割ビームを、透過することで調整ビームにして投射部12に向けて出射する。
【0082】
投射部12は、ハーフミラー24から出射された調整ビームを2次元走査してスクリーン100に投射し、映像信号に応じた画像をスクリーン100上に表示する。
【0083】
制御部14は、投射部12にて表示された表示画像の各画素位置に、第一分割ビームおよび第二分割ビームが調整ビームとして交互に投射されるように、シャッター25および26を交互に開放する。
【0084】
本実施形態によれば、ハーフミラー21は、光ビームを複数の分割ビームに分割する。第一光学系は、ハーフミラー21にて分割された分割ビームに光路差を与える。シャッター25および26は、分割ビームのそれぞれの光路上に設けられる。制御部14は、シャッター25および26の開閉を切り替えて、光ビームの光路長を変更する。
【0085】
この場合、シャッター25および26の開閉が切り替えられるだけで、光ビームの光路長が変更される。したがって、容易に光路長を変更することが可能になる。
【0086】
次に第三の実施形態について説明する。
【0087】
本実施形態では、光路長調整部13の別の構成例について説明する。
【0088】
図5は、第三の実施形態の投射型画像表示装置の構成を示したブロック図である。図5において、投射型画像表示装置1は、図4で示した構成と同様に、光源11と、光路長調整部13と、投射部12と、制御部14と、コリメータレンズ15とを含む。
【0089】
光路長調整部13は、光スイッチ31と、ミラー32および光スイッチ33とを有する第二光学系とを有する。
【0090】
光スイッチ31は、スイッチ手段の一例である。光スイッチ31は、コリメータレンズ15にて平行光にされた光ビームを、予め定められた複数の出力方向のいずれかに出力する。
【0091】
本実施形態では、光スイッチ31は、光ビームを第一の出力方向と第二の出力方向の2つの出力方向のいずれかに出力する。また、第一の出力方向に出力された光ビームを第一方向ビームと称し、第二の出力方向に出力された光ビームを第二方向ビームと称する。
【0092】
第二光学系は、光学手段の一例である。第二光学系は、光スイッチ31から複数の出力方向のそれぞれに出力された第一方向ビームおよび第二方向ビームに光路差を与え、その第一方向ビームおよび第二方向ビームを特定の方向に出射する。なお、特定の方向は、投射部12に向かう方向である。
【0093】
具体的には、ミラー32は、光スイッチ31から出力された第一方向ビームを反射して、光スイッチ33に入射する。なお、光スイッチ31から出力された第二方向ビームは、ミラー32を経由せずに、直接、光スイッチ33に入射される。
【0094】
光スイッチ33は、ミラー32から入射された第一方向ビームと、光スイッチ31から直接入射された第二方向ビームとを、調整ビームとして投射部12に向けて出射する。
【0095】
これにより、第一方向ビームの光路長は、ミラー32を経由している分、第二方向ビームの光路長よりも長くなる。したがって、第一方向ビームおよび第二方向ビームに光路差が与えられることになる。
【0096】
また、光スイッチ33は、調整ビームの光軸が一定になるように配置される。つまり、光スイッチ33は、調整ビームとして出射された第一方向ビームの光軸と、調整ビームとして出射された第二方向ビームの光軸とが一致するように配置される。
【0097】
光スイッチ31および33は、例えば、ガルバノミラー、MEMS(メムス:Micro Electro Mechanical Systems)ミラー、電気光学変調素子または音響光学変調素子である。なお、光スイッチ31および33は、ガルバノミラー、MEMSミラー、電気光学変調素子または音響光学変調素子に限らず適宜変更可能である。
【0098】
制御部14は、光スイッチ31から出力される光ビームの出力方向を切り替えることで、光ビームの光路長を変更し、第一方向ビームおよび第二方向ビームを一つずつ順番に調整ビームとして出射する。
【0099】
例えば、制御部14は、第一出力方向および第二出力方向を交互に、光スイッチ31から出力される光ビームの出力方向にして、表示画像の各画素位置に対して、第一方向ビームおよび第二方向ビームが調整ビームとして交互に投射されるようにする。
【0100】
また、制御部14が光ビームの出力方向を切り替えると、光スイッチ33に入射される光ビームが第一方向ビームおよび第二方向ビームの中で切り替わる。このとき、制御部14は、光スイッチ33に第一方向ビームが入射されても、第二方向ビームが入射されても、調整ビームの光軸が変化しないように、光スイッチ33に対して切替処理を行う。例えば、制御部14は、光スイッチ31による光ビームの出力方向を切り替えるとともに、光ビームの出力方向ごとに異なる電圧を光スイッチ33に印加することで、調整ビームの光軸が変化しないようにする。
【0101】
次に動作を説明する。
【0102】
光源11から出射された光ビームは、光路長調整部13の光スイッチ31に入射される。光スイッチ31は、その光ビームを第一出力方向および第二出力方向のいずれかに出力する。
【0103】
光スイッチ31が光ビームを第一出力方向に出力した場合、その出力された光ビームである第一方向ビームは、ミラー32を経由して光スイッチ33に入射する。光スイッチ33は、その第一方向ビームを調整ビームとして投射部12に向けて出射する。
【0104】
一方、光スイッチ31が光ビームを第二出力方向に出力した場合、その出力された光ビームである第二方向ビームは、直接、光スイッチ33に入射する。光スイッチ33は、第二方向ビームが入射されると、その第二方向ビームを調整ビームとして投射部12に向けて出射する。
【0105】
制御部14は、投射部12にて表示された画像の各画素位置に、第一分割ビームおよび第二分割ビームのそれぞれが調整ビームとして時分割されて投射されるように、光スイッチ31から出力される光ビームの出力方向を切り替えるとともに、その出力方向に応じた電圧を光スイッチ33に印加する。
【0106】
本実施形態によれば、光スイッチ31は、光ビームを複数の出力方向のいずれかに出力する。第二光学系は、その複数の出力方向のそれぞれに出力される光ビームに光路差を与え、その光ビームを特定の方向に出射する。制御部14は、光スイッチ31による出力方向を切り替えて、光路長調整部13にて調整される光路長を変更する。
【0107】
この場合、複数の出力方向のそれぞれに出力される光ビームに光路差が与えられる。また、その出力方向が切り替えられて、光ビームの光路長が変更される。
【0108】
このため、光ビームが分割された分割ビームを調整ビームとして用いなくてもよくなる。よって、光源11から出射される元の光ビームの光量を小さくしても、表示画像を十分な明るさにすることが可能になる。したがって、消費電力を軽減することが可能になる。
【0109】
次に第四の実施形態について説明する。
【0110】
本実施形態では、光路長調整部13の別の構成例について説明する。
【0111】
図6は、第四の実施形態の投射型画像表示装置の構成を示したブロック図である。図6において、投射型画像表示装置1は、図4で示した構成と同様に、光源11と、投射部12と、光路長調整部13と、制御部14と、コリメータレンズ15とを含む。
【0112】
光路長調整部13は、回転ミラー41と、ミラー42〜46を有する第三光学系とを有する。
【0113】
回転ミラー41は、スイッチ手段の一例である。回転ミラー41は、ミラー部41Aと、回転駆動部41Bとを有する。ミラー部41Aは、光を透過する透過領域と、光を反射する反射領域とを有する。回転駆動部41Bは、所定の軸を中心としてミラー部41Aを回転させる。
【0114】
図7は、回転ミラー41の一例を模式的に示した外観図である。
【0115】
図7では、回転ミラー41のミラー部41Aは、円盤状の部材にて形成される。円盤状の部材の表面は、合同な4つの扇型の領域に分割されている。その扇型の領域のうち2つの領域が透過領域52であり、残りの領域が反射領域51である。また、透過領域52および反射領域51が交互に配置されている。
【0116】
透過領域52は、例えば、ガラスなどの光透過部材で形成される。
【0117】
反射領域51は、ミラーなどの光を反射する光反射部材で形成される。本実施形態では、反射領域51の裏面も、光反射部材で形成された反射領域である。また、反射領域51の裏面の反射領域がミラー46となっている。
【0118】
回転駆動部41Bは、例えば、モーターであり、ミラー部41Aである円盤状の部材の下面に取り付けられている。回転駆動部41Bは、ミラー部41Aの中心を通りミラー部41Aの表面に垂直な軸を中心としてミラー部41Aを回転させる。なお、ミラー部41Aの中心を通りミラー部41Aの表面に垂直な軸が所定の軸となる。
【0119】
また、回転ミラー41は、コリメータレンズ15で平行光にされた光ビームがミラー部41Aに入射されるように配置される。図7では、ミラー部41Aにおける、光ビームの入射位置53が示されている。
【0120】
回転駆動部41Bによってミラー部41Bが回転されると、光ビームは、透過領域52および反射領域51に交互に入射されることになる。したがって、回転ミラー41は、光ビームの反射および透過を交互に行う。
【0121】
回転ミラー41による反射光および透過光それぞれは、互いに異なる方向に出力されるので、回転ミラー41は、光ビームを、複数の出力方向のいずれかに出力することになる。以下、回転ミラー41における反射光を、第三方向ビームと称し、回転ミラー41における透過光を第四方向ビームと称する。
【0122】
図6に戻る。第三光学系は、光学手段の一例である。第三光学系は、回転ミラー41から複数の出力方向のそれぞれに出力された第三方向ビームおよび第四方向ビームに光路差を与え、その第三方向ビームおよび第四方向ビームを特定の方向に出射する。
【0123】
具体的には、ミラー42は、回転ミラー41にて反射された第三方向ビームを反射してミラー43に入射する。ミラー43は、ミラー42から入射された第三方向ビームを反射してミラー44に入射する。ミラー44は、ミラー43から入射された第三方向ビームを反射してミラー45に入射する。ミラー45は、ミラー44から入射された第三方向ビームを反射してミラー46に入射する。ミラー46は、ミラーから45から入射された第三方向ビームを反射して、調整ビームとして投射部12に向けて出射する。
【0124】
また、回転ミラー41を透過した第四方向ビームは、ミラー42〜46を経由せずに、直接、調整ビームとして投射部12に向けて出射される。
【0125】
第三方向ビームの光路長は、ミラー32〜46を経由している分、第四方向ビームの光路長よりも長くなる。したがって、回転ミラー41から複数の出力方向のそれぞれに出力された光ビームに光路差が与えられることになる。
【0126】
制御部14は、表示画像の各画素位置に対して、第三方向ビームおよび第四方向ビームが調整ビームとして時分割されて投射されるように、回転ミラー41の回転速度を調節する。
【0127】
次に動作を説明する。
【0128】
光源11から出射された光ビームは、光路長調整部13内の回転ミラー41のミラー部41Aに入射される。
【0129】
光ビームがミラー部41Aの反射領域51に入射された場合、光ビームは反射領域51で反射され第三方向ビームとして出射される。第三方向ビームは、ミラー42〜45を経由してミラー46に入射される。ミラー46は、第三方向ビームを反射することで、調整ビームとして投射部12に向けて出射する。
【0130】
また、光ビームがミラー部41Aの透過領域52に入射された場合、光ビームは、第四方向ビームとして透過領域52を透過する。その後、第四方向ビームは、調整ビームとして投射部12に向けて出射される。
【0131】
制御部14は、投射部12にて表示された画像の各画素位置に、第三方向ビームおよび第四方向ビームのそれぞれが調整ビームとして時分割されて投射されるように、回転ミラー41の回転速度を調節して、回転ミラー41からの光ビームの出力方向を切り替える。
【0132】
本実施形態によれば、透過領域および反射領域を有し、所定の回転軸を中心として回転する回転ミラー41がスイッチ手段として用いられる。制御部14は、回転ミラーの回転速度を調節して、回転ミラー41から出力される光ビームの出力方向を切り替える。
【0133】
この場合、光ビームが分割された分割ビームを調整ビームとして用いなくてもよくなる。よって、光源11から出射される元の光ビームの光量を小さくしても、表示画像を十分な明るさにすることが可能になる。したがって、消費電力を軽減することが可能になる。
【0134】
次に第五の実施形態について説明する。
【0135】
本実施形態では、光路長調整部13の別の構成例について説明する。
【0136】
図8は、第五の実施形態の投射型画像表示装置の構成を示したブロック図である。図8において、投射型画像表示装置1は、図4で示した構成と同様に、光源11と、光路長調整部13と、投射部12と、制御部14と、コリメータレンズ15とを含む。
【0137】
光路長調整部13は、屈折率可変素子61を有する。
【0138】
屈折率可変素子61は、透過素子の一例である。屈折率可変素子61は、例えば、電気光学素子または音響光学素子であり、屈折率が可変な光透過部材で形成される。屈折率可変素子61は、コリメータレンズ15にて平行光にされた光ビームを透過して調整ビームを生成し出射する。なお、光路長は、光ビームが実際に走る距離に、光ビームが走る媒質の屈折率を乗算したものであるため、その屈折率が変化すると、光路長も変化する。
【0139】
制御部14は、光ビームから波面形状が異なる複数の調整ビームが生成され、かつ、各調整ビームが表示画像の各画素位置に時分割されて投射されるように、屈折率可変素子61の屈折率を変更することで、光ビームの光路長を変更する。
【0140】
本実施形態によれば、屈折率可変素子61は、光ビームを透過する。制御部14は、屈折率可変素子61の屈折率を変更することで、光ビームの光路長を変更する。
【0141】
この場合、光ビームを分割したり、光ビームの出力方向を切り替えたりする必要がないため、屈折率可変素子61の他に、複数の光ビームに光路差を与えるミラーなどの光学部品を用いる必要がなくなる。したがって、光路長調整部13および投射型画像表示装置1の構成を単純化することが可能になる。
【0142】
次に第六の実施形態について説明する。
【0143】
図9は、光路数が3つある光路長調整部13の構成例を示した模式図である。図9において、光路長調整部13は、ハーフミラー21および71を有する分割部と、ミラー23、72〜74とハーフミラー24とを有する第四光学系と、シャッター25、26および75とを有する。
【0144】
ハーフミラー21は、光源11からの光ビームを反射および透過して、反射光である第一分割ビームと、透過光である第二分割ビームとに分割する。
【0145】
ハーフミラー71は、ハーフミラー21からの第一分割ビームを反射および透過して、反射光である第三分割ビームと、透過光である第四分割ビームとに分割する。
【0146】
これにより、分割部は、光源からの光ビームを、第二分割ビーム〜第四分割ビームの3つの分割ビームに分割することになる。
【0147】
第二分割ビームは、直接、ハーフミラー24に入射される。
【0148】
第三分割ビームは、ミラー72に入射される。ミラー72は、その入射された第三分割ビームを反射してミラー73に入射する。ミラー73は、その入射された第三分割ビームを反射してミラー74に入射する。ミラー74は、その入射された第三分割ビームを反射してハーフミラー24に入射する。
【0149】
第四分割ビームは、ミラー23に入射される。ミラー23は、その入射された第四分割ビームを反射してハーフミラー24に入射する。
【0150】
ハーフミラー24は、ハーフミラー21から入射された第二分割ビームを透過して調整ビームとして出射する。また、ハーフミラー24は、ミラー74および23から入射された第三分割ビームおよび第四分割ビームのそれぞれを反射して調整ビームとして生成し出射する。
【0151】
これにより、第四光学系は第二分割ビーム〜第四分割ビームに光路差を与えることになる。
【0152】
シャッター25は、第四分割ビームの光路上であるハーフミラー71およびミラー23の間に設けられ、第一分割ビームの透過および遮蔽を切り替える。シャッター26は、第二分割ビームの光路上であるハーフミラー21および24間に設けられ、第二分割ビームの透過および遮蔽を切り替える。シャッター75は、第三分割ビームの光路上であるミラー72および73の間に設けられ、第三分割ビームの透過および遮蔽を切り替える。
【0153】
これにより、シャッター25を透過した第四分割ビームは、ハーフミラー24から出射され、シャッター26を透過した第二分割ビームは、ハーフミラー24から出射され、シャッター75を透過した第三分割ビームは、ハーフミラー24から出射されることになる。
【0154】
以上により、光路長がそれぞれ異なる3つの調整ビームを出射することが可能になる。同様に、分割部に含まれるハーフミラーの数を増やすことで、調整ビームの数を4以上にすることもできる。
【0155】
なお、本実施形態では、第二の実施形態のように光ビームを分割する構成としたが、第三および第四の実施形態のように光ビームの出力方向を切り替える構成であってよい。この場合、光スイッチや回転ミラーの数を増やしたり、光スイッチによる光ビームの出力方向の数を増やすことで、調整ビームの数を3以上にすることができる。
【0156】
また、第五の実施形態のように光路長調整部13に屈折率可変素子を用いた場合、制御部14が屈折率可変素子の屈折率を段階的に切り替えることで、調整ビームの数を3以上にすることができる。
【0157】
また、光源11からスクリーン100までの距離が予め定められており、かつ、調整ビームの数が3以上の場合、制御部14は、光ビームの焦点位置がスクリーン100の前、スクリーン100上、および、スクリーン100の後の中で切り替わるように、光路長を変更することが望ましい。
【0158】
本実施形態によれば、調整ビームの数を増やすことが可能になるので、より多くのスペックルパターンを生じさせることが可能になり、スペックルノイズの低減率をさらに向上させることが可能になる。
【0159】
次に第七の実施形態について説明する。
【0160】
本実施形態の投射型画像表示装置は、図4で示した第二の実施形態の投射型画像表示装置の同じ構成を有する。
【0161】
本実施形態では、制御部14は、同時に開放するシャッターの数を1以上にする。
【0162】
例えば、制御部14は、先ず、シャッター25を開放し、シャッター26を閉鎖する。続いて、制御部14は、シャッター25を閉鎖し、シャッター26を開放する。そして、制御部14は、シャッター25および26の両方を開放する。制御部14は、この順序でシャッター25および26の開閉を切り替える。
【0163】
この場合、調整ビームとして、第一分割ビーム、第二分割ビーム、および、第一分割ビームと第二分割ビームとの合成ビームが生成される。
【0164】
合成ビームの波面形状は、第一分割ビームおよび第二分割ビームのそれぞれの波面形状の和になる。このため、合成ビームの波面形状は、第一分割ビームの波面形状とも、第二分割ビームの波面形状とも異なる。したがって、波面形状がそれぞれ異なる3つの調整ビームを投射することが可能になる。
【0165】
また、合成ビームの光量は、第一分割ビームおよび第二分割ビームのそれぞれの光量の和になるので、第一分割ビームおよび第二分割ビームのそれぞれの光量よりも大きくなる。
【0166】
このため、制御部14は、シャッター25および26を同時に開放する場合、光源11から出射される光ビームの光量を、シャッター25および26の一方を開放する場合に比べて半分にして、複数の調整ビームのそれぞれの光量を等しくすることが望ましい。
【0167】
また、光路長調整部13が図9で示した構成の場合でも、制御部14は、同時に開放するシャッターの数を1以上にしてもよい。この場合、制御部14は、同時に開かれるシャッターの数に応じて、光源11から出射される光ビームの光量を調整する。
【0168】
具体的には、同時に開放されるシャッターの数がMの場合、制御部14は、光ビームの光量を、同時に開放されるシャッターの数が1の場合における光ビームの光量の1/M倍にする。なお、Mは、1以上の整数である。
【0169】
本実施形態によれば、制御部14は、同時に開放するシャッターの数を1以上にする。この場合、波面形状が異なる調整ビームの数を増やすことが可能になるので、スペックルノイズの低減率をより向上させることが可能になる。また、調整ビームの数を増やすために新たにミラーなどの光学部品を追加する必要がないので、光路長調整部13が大きくなることを抑制することが可能になる。したがって、光路長調整部13を大きくすることなく、スペックルノイズの低減率をより向上させることが可能になる。
【0170】
次に第八の実施形態を説明する。
【0171】
本実施形態では、制御部14のより詳細な説明を行う。
【0172】
図10は、制御部14の構成例を示したブロック図である。図10において、制御部14は、信号処理部81と、タイミング抽出部82と、駆動部83とを有する。
【0173】
信号処理部81には、映像信号が入力される。信号処理部81は、その映像信号に対して信号処理を行う。なお、信号処理は、例えば、γ補正などである。
【0174】
タイミング抽出部82は、信号処理部81にて信号処理が行われた映像信号から、表示画像が切り替わる速度を示すフレームレートを抽出する。
【0175】
駆動部83は、タイミング抽出部82が抽出したフレームレートに応じた切替速度で、光路長調整部13が調整する光路長を変更する。例えば、駆動部83は、フレームレートと同じ速度で光路長を切り替える。
【0176】
タイミング抽出部82および駆動部83の動作は、光路長調整部13の構成に応じて異なる。このため、タイミング抽出部82および駆動部83は、光路長調整部13の構成に応じて設計される。
【0177】
以下、光路長調整部13の構成ごとに、制御部14の動作を説明する。なお、切替速度は、フレームレートと同じ速度であるとする。
【0178】
図11は、光路長調整部13が図4で示した構成を有する場合における、制御部14の動作の一例を説明するためのタイミングチャートである。なお、フレーム番号がN、N+1およびN+2の3つのフレームが連続して表示されているものとする。
【0179】
先ず、信号処理部81に映像信号が入力される。信号処理部81は、その映像信号に対してγ補正などの信号処理を行い、その信号処理を行った映像信号をタイミング抽出部82に出力する。
【0180】
続いて、タイミング抽出部82は、映像信号を受け付けると、その映像信号からフレームレートを抽出する。タイミング抽出部82は、そのフレームレートと同じ切替速度で、光路長の変更を示す駆動信号を駆動部83に出力する。このとき、タイミング抽出部82は、表示画像のフレームが切り替わるタイミングに合わせて駆動信号を出力することが望ましい。
【0181】
駆動部83は、駆動信号を受け付けるたびに、シャッター25および26の一方に開放を示す開放信号を出力し、他方に閉鎖を示す閉鎖信号を出力する。このとき、駆動部83は、駆動信号を受け付けるたびに、開放信号および閉鎖信号の出力先となるシャッターを入れ替える。開放信号を受け付けたシャッターは開放され、閉鎖信号を受け付けたシャッターは閉鎖される。
【0182】
また、光路長調整部13が図5で示した構成を有する場合、タイミング抽出部82は、光路長調整部13が図2で示した構成を有する場合と同様に、フレームレートと同じ切替速度で駆動信号を駆動部83に入力する。
【0183】
駆動部83は、駆動信号が入力されるたびに、出力方向を切り替えるための方向切替信号を光スイッチ31に出力するとともに、光スイッチ31に対して切替処理を行う。
【0184】
光スイッチ31は、方向切替信号を受け付けるたびに、光ビームの出力方向を切り替える。また、光スイッチ33は、方向切替信号を受け付けるたびに、第一光ビームが入射されても、第二光ビームが入射されても、それらの光ビームの光軸が一致して出射されるように切り替える。
【0185】
図12は、光路長調整部13が図6および図7で示した構成を有する場合における、制御部14の動作を説明するためのタイミングチャートである。図12では、映像信号のフレーム番号N、N+1およびN+2のフレームが表示されているときの、光ビームの回転ミラー上の入射位置が示されている。
【0186】
タイミング抽出部82は、映像信号からフレームレートを抽出すると、そのフレームレートの1/4の回転速度を示す駆動信号を駆動部83に入力する。
【0187】
駆動部83は、駆動信号が入力されると、その駆動信号が示す回転速度でミラー部41Aが回転するように回転駆動部41Bに電力を供給する。これにより、ミラー部41Aにおける光ビームの入射位置53がフレームごとに透過領域52および反射領域51の中で切り替わる。
【0188】
また、光路長調整部13が図8で示した構成を有する場合、タイミング抽出部82は、光路長調整部13が図4で示した構成を有する場合と同様に、フレームレートと同じ速度で駆動信号を駆動部83に入力する。駆動部83は、駆動信号が入力されるたびに、屈折率可変素子61の屈折率を変更する。
【0189】
以上のように制御部14が動作すると、表示画像のフレームごとに光路長が異なる調整ビームがスクリーン100に投射されることになるので、表示画像の各画素位置に光路長がそれぞれ異なる複数の調整ビームが時分割して投射されることになる。
【0190】
切替速度は、上記の例では、フレームレートと一致していたが、実際には、フレームレートと一致していなくてもよい。切替速度は、例えば、フレームレートの、調整ビームの数の倍数を除く1以上の整数倍であればよい。
【0191】
図13は、調整ビームの数が2の場合における切替速度を説明するための説明図である。図13では、フレーム番号がN、N+1およびN+2のフレームが示されている。2つの調整ビームのそれぞれを調整ビームAおよびBとする。
【0192】
切替速度がフレームレート3倍の場合、各画素位置には、フレームごとに調整ビームAおよびBが交互に投射されることになる。一方、切替速度がフレームレートの4倍であると、各画素位置には、フレームが切り替わっても同じ光路長の調整ビームが投射されることになる。
【0193】
図14は、調整ビームの数が3の場合における切替速度を説明するための説明図である。図14では、フレーム番号がN、N+1およびN+2のフレームが示されている。3つの調整ビームのそれぞれを調整ビームC、DおよびEとする。
【0194】
切替速度がフレームレートの2倍および4倍の場合、各画素位置には、フレームごとに調整ビームC、DおよびEが順番に投射されることになる。一方、切替速度がフレームレートの4倍であると、各画素には、フレームが切り替わっても同じ光路長の調整ビームが投射されることになる。
【0195】
本実施形態によれば、映像信号のフレームレートの、前記調整ビームの数の倍数を除く1以上の整数倍の速度で、光ビームの光路長を変更する。
【0196】
この場合、表示画像の各画素位置に複数の調整ビームを適切に時分割して投射することが可能になる。また、切替速度を比較的小さくすることが可能になる。
【0197】
次に第九の実施形態について説明する。
【0198】
本実施形態では、制御部14は、各画素が描写される描写時間内に、調整ビームが時分割されて投射されるように、光ビームの光路長を変更する。
【0199】
より具体的には、制御部14のタイミング抽出部82は、映像信号に基づいて描写時間を算出する。例えば、タイミング抽出部82は、映像信号からフレームレートおよび画素数を抽出し、そのフレームレートを画素数で除算することで描写時間を算出する。
【0200】
駆動部83は、タイミング抽出部82が算出した描写時間内に、調整ビームの数だけ光路長が切り替わるように、光路長調整部13を用いて光ビームの光路長を変更する。
【0201】
光路長調整部13が図4、図5、図8または図9で示した構成を有する場合、タイミング抽出部82は、その描写時間を調整ビームの数で除算した切替時間ごとに駆動信号を駆動部83に入力する。
【0202】
駆動部83は、駆動信号が入力されるたびに、シャッター25、26および75の開閉、光スイッチ31から出力される光ビームの出力方向、または、屈折率可変素子61の屈折率を変更することで、光ビームの光路長を変更する。
【0203】
また、光路長調整部13が図6および図7で示した構成を有する場合、タイミング抽出部82は、その描写時間を調整ビームの数で除算した値の1/2の回転速度を示す駆動信号を駆動部83に入力する。
【0204】
駆動部83は、駆動信号が入力されると、その駆動信号が示す回転速度でミラー部41Aが回転するように回転駆動部41Bに電力を供給する。
【0205】
本実施形態によれば、制御部14は、各画素が描写される描写時間内に、調整ビームが時分割されて投射されるように、光ビームの光路長を変更する。
【0206】
この場合、表示画像の各画素位置に複数の調整ビームを適切に時分割して投射することが可能になる。
【0207】
以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
【符号の説明】
【0208】
1 投射型画像表示装置
11 光源
12 投射部
13 光路長調整部
14 制御部
21、24、71 ハーフミラー
22、23、32、42〜46、72〜74 ミラー
25、26、75 シャッター
31、33 光スイッチ
41 回転ミラー
41A ミラー部
41B 回転駆動部
51 反射領域
52 透過領域
61 屈折率可変素子

【特許請求の範囲】
【請求項1】
映像信号に応じて変調された光ビームを出射する光源と、
前記光源から出射された光ビームを投射する投射手段と、
前記光ビームの光路長を調整する調整手段と、
前記光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが前記映像信号に応じた画像の各画素位置に対して時分割されて投射されるように、前記映像信号に基づいて、前記調整手段を制御して前記光ビームの光路長を変更する制御手段と、を有する投射型画像表示装置。
【請求項2】
請求項1に記載の投射型画像表示装置において、
前記調整手段は、
前記光ビームを複数の分割ビームに分割する分割手段と、
前記複数の分割ビームに光路差を与える光学手段と、
前記複数の分割ビームのそれぞれの光路上に設けられた開閉可能な複数のシャッター手段と、を含み、
前記制御手段は、前記複数のシャッター手段の開閉を切り替えて、前記光路長を変更する、投射型画像表示装置。
【請求項3】
請求項2に記載の投射型画像表示装置において、
前記制御手段は、前記複数のシャッター手段のうち、同時に開放するシャッター手段の数を1以上にする、投射型画像表示装置。
【請求項4】
請求項1に記載の投射型画像表示装置において、
前記調整手段は、
前記光ビームを複数の出力方向のいずれかに出力するスイッチ手段と、
前記複数の出力方向のそれぞれに出力された光ビームに光路差を与え、前記スイッチ手段が出力した光ビームを特定の方向に出射する光学手段と、を有し、
前記制御手段は、前記スイッチ手段による出力方向を切り替えて、前記光路長を変更する、投射型画像表示装置。
【請求項5】
請求項4に記載の投射型画像表示装置において、
前記スイッチ手段は、ガルバノミラー、MEMSミラー、電気光学変調素子または音響光学変調素子である、投射型画像表示装置。
【請求項6】
請求項4に記載の投射型画像表示装置において、
前記スイッチ手段は、光を透過する透過領域と、光を反射する反射領域とを有し、所定の軸を中心として回転する回転ミラーであり、
前記制御手段は、前記回転ミラーの回転速度を調整して、前記出力方向を切り替える、投射型画像表示装置。
【請求項7】
請求項1に記載の投射型画像表示装置において、
前記調整手段は、前記光ビームを透過する透過素子を有し、
前記制御手段は、前記透過素子の屈折率を変更することで、前記光路長を変更する、投射型画像表示装置。
【請求項8】
請求項1ないし7のいずれか1項に記載の投射型画像表示装置において、
前記制御手段は、前記画像の各画素を描写する描写時間内に前記複数の調整ビームが時分割されて投射されるように、前記光路長を変更する、投射型画像表示装置。
【請求項9】
請求項1ないし7のいずれか1項に記載の投射型画像表示装置において、
前記制御手段は、前記映像信号のフレームレートの、前記調整ビームの数の倍数を除く1以上の整数倍の速度で、前記光路長を変更する、投射型画像表示装置。
【請求項10】
請求項1ないし9のいずれか1項に記載の投射型画像表示装置において、
前記投射手段は、前記光ビームを走査することで投射するスキャナである、投射型画像表示装置。
【請求項11】
映像信号に応じて変調された光ビームを出射する光源と、前記光源から出射された光ビームを投射する投射手段と、前記光ビームの光路長を調整する調整手段と、前記光ビームの光路長を調整する調整手段と、を有する投射型画像表示装置の制御方法であって、
前記光ビームから波面形状がそれぞれ異なる複数の調整ビームが生成され、かつ、各調整ビームが前記映像信号に応じた画像の各画素位置に対して時分割されて投射されるように、前記映像信号に基づいて、前記調整手段を制御して前記光ビームの光路長を変更する制御ステップを有する、投射型画像表示装置の制御方法。
【請求項12】
請求項11項に記載の投射型画像表示装置の制御方法において、
前記制御ステップでは、前記画像の各画素を描写する描写時間内に前記複数の調整ビームが時分割されて投射されるように、前記光路長を変更する、投射型画像表示装置の制御方法。
【請求項13】
請求項11項に記載の投射型画像表示装置の制御方法において、
前記制御ステップでは、前記映像信号のフレームレートの、前記調整ビームの数の倍数を除く1以上の整数倍の速度で、前記光路長を変更する、投射型画像表示装置の制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2011−65021(P2011−65021A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−216905(P2009−216905)
【出願日】平成21年9月18日(2009.9.18)
【出願人】(000004237)日本電気株式会社 (19,353)
【Fターム(参考)】