説明

排ガス浄化用触媒

【課題】多量のニッケルを含んでいないにも拘わらず、硫化水素の排出が抑制され且つ十分な排ガス浄化性能を有している排ガス浄化用触媒を提供する。
【解決手段】排ガス浄化用触媒1は、排ガスが流れる1つ以上の貫通孔が設けられた基材10と、基材10に支持され且つ酸素貯蔵材を含有した触媒層20とを具備し、排ガスが供給される第1部分100と、第1部分を通過した前記排ガスが供給される第2部分200とを含み、触媒層20は、白金及び/又はパラジウムを含有した第1触媒層20Aとロジウムを含有した第2触媒層20Bとの積層構造を第1部分100に含むと共に、ロジウムを含有した第3触媒層20Cを第2部分200に含み、第2部分200は、第1部分100と比較して単位容積当りの酸素貯蔵材含量がより少ない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、排ガス浄化用触媒に関する。
【背景技術】
【0002】
近年、自動車等に対する排ガス規制が強化されてきている。これに対応するため、排ガス中の窒素酸化物(NOx)等をより効率的に浄化するための種々の排ガス浄化用触媒が開発されている。例えば、特許文献1には、セリウム酸化物を含んだ担体と、この担体に担持された貴金属とを備えた排ガス浄化用触媒が開示されている。セリウム酸化物は、高い酸素貯蔵能を有しており、排ガス浄化用触媒の性能向上に有効な成分として知られている。
【0003】
しかしながら、これらの触媒には、排ガスを浄化する過程で、悪臭の原因となる硫化水素(H2S)を放出し易いという問題があった。そこで、H2S排出量を低減させる触媒として、ニッケル(Ni)を含有した排ガス浄化用触媒が提案されてきた(例えば、特許文献2参照)。
【0004】
ところが、Niは、多くの国及び地域で、環境負荷物質に指定されている。そのため、Niを比較的多量に含んだ排ガス浄化用触媒は使用できなくなりつつある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平8−155302号公報
【特許文献2】欧州特許第244127号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
そこで、本発明は、多量のNiを含んでいないにも拘わらず、H2Sの排出が抑制され且つ十分な排ガス浄化性能を有している排ガス浄化用触媒を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一側面によると、排ガスが流れる1つ以上の貫通孔が設けられた基材と、前記基材に支持され且つ酸素貯蔵材を含有した触媒層とを具備し、前記排ガスが供給される第1部分と、前記第1部分を通過した前記排ガスが供給される第2部分とを含んだ排ガス浄化用触媒であって、前記触媒層は、白金及び/又はパラジウムを含有した第1触媒層とロジウムを含有した第2触媒層との積層構造を前記第1部分に含むと共に、ロジウムを含有した第3触媒層を前記第2部分に含み、前記第1触媒層の単位容積当りの白金含量とパラジウム含量との和は、前記第2触媒層の単位容積当りの白金含量とパラジウム含量との和及び前記第3触媒層の単位容積当りの白金含量とパラジウム含量との和と比較してより多く、前記第2触媒層の単位容積当りのロジウム含量及び前記第3触媒層の単位容積当りのロジウム含量は、前記第1触媒層の単位容積当りのロジウム含量と比較してより多く、前記第2部分は、前記第1部分と比較して単位容積当りの前記酸素貯蔵材含量がより少ないことを特徴とする排ガス浄化用触媒が提供される。
【発明の効果】
【0008】
本発明によると、多量のNiを含んでいないにも拘わらず、H2Sの排出が抑制され且つ十分な排ガス浄化性能を有している排ガス浄化用触媒を提供することが可能となる。
【図面の簡単な説明】
【0009】
【図1】本発明の一態様に係る排ガス浄化用触媒を示す概略図。
【図2】図1に示す排ガス浄化用触媒の一部を拡大して示す断面図。
【図3】各触媒のNOx排出量を示す棒グラフ。
【図4】各触媒のH2S排出量を示す棒グラフ。
【発明を実施するための形態】
【0010】
図1は、本発明の一態様に係る排ガス浄化用触媒を示す概略図である。図2は、図1に示す排ガス浄化用触媒の一部を拡大して示す断面図である。
【0011】
排ガス浄化用触媒1は、排ガスが流れる1つ以上の貫通孔が設けられた基材10と、基材10に支持された触媒層20とを備えている。
【0012】
排ガス浄化用触媒1は、第1部分100と第2部分200とを含んでいる。第1部分100は、第2部分200よりも先に排ガスが供給される部分である。第2部分200は、第1部分100を通過した排ガスが供給される部分である。第1部分100と第2部分200との境界の定め方については、後で説明する。
【0013】
基材10としては、例えば、モノリスハニカム型の基材を使用する。典型的には、基材は、コージェライトなどのセラミックス製である。
【0014】
触媒層20は、貴金属を含んでいる。触媒層20は、白金及び/又はパラジウムを含有した第1触媒層20Aとロジウムを含有した第2触媒層20Bとの積層構造を第1部分100に含んでいる。この第2触媒層20Bは、例えば、第1触媒層20Aを間に挟んで基材10と向き合っている。或いは、この第2触媒層20Bは、基材10と第1触媒層20Aとの間に形成されていてもよい。即ち、第1触媒層20Aが、第2触媒層20Bを間に挟んで基材10と向き合っていてもよい。第1部分100は、第1触媒層20A及び第2触媒層20B以外の層を更に含んでいてもよい。
【0015】
触媒層20は、ロジウムを含有した第3触媒層20Cを第2部分200に含んでいる。第2部分200は、第3触媒層20C以外の層を更に含んでいてもよい。
【0016】
第1触媒層20Aの単位容積当りの白金含量とパラジウム含量との和は、第2触媒層20Bの単位容積当りの白金含量とパラジウム含量との和及び第3触媒層20Cの単位容積当りの白金含量とパラジウム含量との和と比較してより多い。また、第2触媒層20B及び第3触媒層20Cの単位容積当りのロジウム含量は、第1触媒層20Aの単位容積当りのロジウム含量と比較してより多い。
【0017】
即ち、第1触媒層20Aは貴金属として白金及び/又はパラジウムを主として含み、第2触媒層20B及び第3触媒層20Cは貴金属としてロジウムを主として含んでいる。典型的には、第1触媒層20Aは貴金属として白金及び/又はパラジウムのみを含み、第2触媒層20B及び第3触媒層20Cは貴金属としてロジウムのみを含んでいる。
【0018】
このような構成を採用すると、白金及び/又はパラジウムの大部分とロジウムの大部分とを、互いに分離して存在させることが可能となる。これにより、優れた排ガス浄化性能、特には優れたNOx浄化性能を達成することが可能となる。その理由は必ずしも明らかではないが、本発明者らは、上記構成を採用することにより白金及び/又はパラジウムとロジウムとの合金化が抑制されたことに起因していると考えている。
【0019】
触媒層20は、貴金属を担持する担体を更に含んでいる。担体は、貴金属の比表面積を増大させると共に、反応による発熱を消散させて貴金属のシンタリングを抑制する役割を担っている。
【0020】
担体は、酸素貯蔵材を含んでいる。酸素貯蔵材は、排ガス中の酸素を吸蔵及び放出することにより、排ガスの空燃比の変動を緩和する役割を担っている。酸素貯蔵材としては、例えば、セリウム酸化物及びプラセオジム酸化物などの希土類酸化物、酸化鉄及び酸化マンガンなどの遷移金属酸化物、又はこれらの混合物若しくは複合酸化物を使用することができる。典型的には、酸素貯蔵材として、セリウム酸化物を使用する。
【0021】
本発明者らは、本発明に至る過程において、H2Sの発生原因、特には車両停止後に生じるH2Sの発生原因を検討した。そして、以下に述べるように、車両停止後における触媒の冷却速度には、触媒内の部位に応じた差があることを究明した。
【0022】
まず、貴金属及びセリウム酸化物を均一に含んだ触媒層を備えた排ガス浄化用触媒を準備した。そして、この触媒を自動車に搭載し、基材の上流端から基材の全長の0%、16%、33%、50%、67%及び83%の各位置における温度を測定しながら自動車の運転条件を変化させた。具体的には、まず、車両を約40km/hの速度で走行させた。このとき、触媒の上流端における温度は約400℃であった。次いで、約100km/hまでのワイドオープンスロットルでのゼロ発進加速を行い、その後、車両を停止させ、エンジンをアイドリングさせたまま放置した。
【0023】
その結果、速度が約100km/hに達するまでの期間においては、触媒内の各位置の温度に有意な差は見られなかった。しかしながら、その後の減速期間及び車両停止後の期間において、触媒の下流端近傍では、触媒の上流端近傍と比較して、温度がより低下し難いことが明らかとなった。特には、触媒の下流端近傍において温度が500℃以上に保持されている時間は、触媒の上流端近傍におけるそれと比較して、遥かに長いことが分かった。
【0024】
さらに、触媒各成分の特性についても検討した結果、触媒成分の中で、酸素貯蔵材がH2Sの吸着及び脱離に関与していることも究明した。詳細については不明であるが、下記のような機構であると考えられる。
【0025】
低温且つ酸化雰囲気(例えば、通常走行時)においては、セリウム酸化物などの酸素貯蔵材は、排ガス中のSO2などの硫黄成分と反応して、Ce(SO42などの化合物を生成し易い。すなわち、この条件下では、酸素貯蔵材は、硫黄成分を吸着し易い。
【0026】
これに対し、高温且つ還元雰囲気(例えば、高速走行時又は登坂時)においては、吸着された硫黄成分の還元反応により、SO2又はH2Sなどを発生し易い。すなわち、この条件下では、硫黄成分の脱着、特にはH2Sの排出が起こり易い。特に、触媒の温度が約500℃以上である場合に、H2Sの排出が顕著となる。そして、このH2Sは、排ガスの悪臭の主たる要因となる。
【0027】
上記の通り、排ガスが高温、例えば500℃以上の還元性である場合、H2Sの排出が顕著となる。そして、排ガス浄化用触媒の下流部は、上流部と比較して降温し難い。したがって、H2Sは、主に下流部で生じると考えられる。
【0028】
上記のような知見を基に、ここでは、以下に述べる構成を採用する。即ち、第2部分200の単位容積当りの酸素貯蔵材含量D2を、第1部分100の単位容積当りの酸素貯蔵材含量D1と比較してより少なくする。このような構成を採用すると、第2部分200における触媒層20への硫黄成分の吸着が比較的少なくなる。
【0029】
触媒層20は、第2部分200に酸素貯蔵材を含んでいなくてもよく、第1部分100及び第2部分200の双方に酸素貯蔵材を含んでいてもよい。後者の場合、比D2/D1は、例えば0.5以下とする。
【0030】
第1部分100に含まれている酸素貯蔵材は、排ガスが酸化性から還元性へと切り替わると、貯蔵していた酸素の少なくとも一部を放出する。そのため、この場合、第1部分100を通過して第2部分200に流入する排ガスは、その還元性が比較的緩和されている。したがって、排ガス浄化用触媒1は、第2部分200に吸着された硫黄成分の還元を生じ難い。
【0031】
このように、排ガス浄化用触媒1では、第2部分200における触媒層20への硫黄成分の吸着が少ない。加えて、排ガス浄化用触媒1では、第2部分200に吸着された硫黄成分の還元を生じ難い。それゆえ、排ガス浄化用触媒1は、H2S排出が少ない。
【0032】
また、酸素貯蔵材を含んだ触媒中を排ガスが通過する場合、触媒の下流部には、触媒の上流部に含まれている酸素貯蔵材によって空燃比が調整された排ガスが流入する。すなわち、触媒の上流部に含まれている酸素貯蔵材の作用により、触媒の下流部では、排ガスの空燃比の変動が比較的小さくなっている。したがって、酸素貯蔵材は、触媒の上流部においては比較的高い必要性を有しているが、触媒の下流部においてはより低い必要性しか有していない。
【0033】
上記の通り、本態様では、第2部分200の単位容積当りの酸素貯蔵材含量D2を第1部分100の単位容積当りの酸素貯蔵材含量D1と比較してより少なくした構成を採用している。それにも拘わらず、例えば、酸素貯蔵材が触媒全体に均一に含まれている場合とほぼ同程度に、触媒中を流れる排ガスの空燃比の変動を緩和することができる。すなわち、このような構成を採用すると、より少量の酸素貯蔵材によって、十分な排ガス浄化性能を発揮させることが可能となる。
【0034】
典型的には、第3触媒層20Cの単位容積当りの酸素貯蔵材含量は、第1触媒層20Aの単位容積当りの酸素貯蔵材含量と比較してより少なくする。また、典型的には、第2触媒層20Bの単位容積当りの酸素貯蔵材含量は、第1触媒層20Aの単位容積当りの酸素貯蔵材含量と比較してより少なくする。即ち、貴金属としてロジウムを主として含有した触媒層では、貴金属として白金及び/又はパラジウムを主として含有した触媒層と比較して、単位容積当りの酸素貯蔵材含量をより少なくする。このような構成を採用すると、ロジウムと酸素貯蔵材とを共存させることに起因したリーン雰囲気における排ガス浄化性能の低下を抑制することができる。即ち、このような構成を採用することにより、触媒層20の酸素貯蔵材含量を一定としたままで、排ガス浄化用触媒1の排ガス浄化性能を更に向上させることが可能となる。
【0035】
第3触媒層20Cの単位容積当りの酸素貯蔵材含量の第1触媒層20Aの単位容積当りの酸素貯蔵材含量に対する比率は、例えば0.8以下とし、典型的には0.2乃至0.04の範囲内とする。この比率を過度に小さくすると、ロジウムの排ガス浄化性能が低下する可能性がある。この比率を過度に大きくすると、H2Sの排出が顕著となる可能性がある。
【0036】
第2触媒層20Bの単位容積当りの酸素貯蔵材含量の第1触媒層20Aの単位容積当りの酸素貯蔵材含量に対する比率は、例えば1.5以下とし、典型的には0.8乃至0.04の範囲内とする。この比率を過度に小さくすると、ロジウムの排ガス浄化性能が低下する可能性がある。この比率を過度に大きくすると、H2Sの排出が顕著となる可能性がある。
【0037】
第1部分100と第2部分200とは、同一の種類の酸素貯蔵材を含んでいてもよく、異なる種類の酸素貯蔵材を含んでいてもよい。第1触媒層20Aと第2触媒層20Bと第3触媒層20Cとは、同一の種類の酸素貯蔵材を含んでいてもよく、異なる種類の酸素貯蔵材を含んでいてもよい。
【0038】
第1部分100の排ガスの流れ方向についての寸法、即ち第1部分100のコート幅は、例えば、基材10の全長の15%乃至85%の長さとする。そして、第2部分200の排ガスの流れ方向についての寸法、即ち第2部分200のコート幅は、例えば、基材10の全長の85%乃至15%の長さとする。
【0039】
なお、ここでは、第1部分100と第2部分200との境界は、例えば以下のようにして定める。即ち、まず、排ガス浄化用触媒1の排ガスの流れ方向の各位置における単位容積当りの酸素貯蔵材含量を測定する。次に、上記各位置における単位容積当りの酸素貯蔵材含量を算術平均値を計算する。そして、単位容積当りの酸素貯蔵材含量が上記算術平均値より多い位置であって、排ガス浄化用触媒1の下流端に最も近い位置を、第1部分100と第2部分200との境界とする。即ち、排ガス浄化用触媒1のうち当該位置より上流側にある部分を第1部分100とし、当該位置より下流側にある部分を第2部分200とする。
【0040】
排ガス浄化用触媒1の単位容積当りの表面積は、例えば5000m2/L乃至23000m2/Lの範囲内とし、典型的には5000m2/L乃至16000m2/Lの範囲内とする。ここで、「表面積」は、77.4KにおけるN2吸着等温線に基づいて作成したBETプロットにより求められる。この表面積を小さくすると、触媒層20への排ガス吸着量が減少し、排ガス浄化性能が低下する可能性がある。この表面積を大きくすると、触媒層20への硫黄成分の吸着量が増加し、H2S排出量が増大する可能性がある。なお、第1部分100の単位容積当りの表面積と、第2部分200の単位容積当りの表面積とは同じであってもよく、互いに異なっていてもよい。例えば、後者を前者と比較してより小さくすると、第2部分200への硫黄成分の吸着が比較的抑制され、排ガス浄化用触媒1のH2S排出量をより有効に減少させ得る。
【0041】
触媒層20が含有している担体は、酸素貯蔵材以外に、ジルコニウム酸化物、アルミナ又はゼオライトなどの酸化物を更に含んでいてもよい。或いは、担体は、酸素貯蔵材とこれら酸化物との複合酸化物を含んでいてもよい。また、担体は、貴金属との固溶体を形成していてもよい。
【0042】
触媒層20は、バインダを更に含んでいてもよい。バインダは、例えば、担体粒子同士の結合及び担体粒子と貴金属との結合をより強固にして排ガス浄化用触媒1の耐久性を向上させる役割を担っている。バインダとしては、例えば、アルミナゾル、チタニアゾル又はシリカゾルを使用することができる。
【0043】
触媒層20は、酸性成分を更に含んでいてもよい。酸性成分は、触媒層20における硫黄成分の付着サイトの数を減少させることにより、硫黄成分の吸着量及びH2Sの排出量を減少させる役割を担っている。酸性成分としては、触媒層20を構成している金属元素のうち最も多く含まれている元素と比較してより大きな電気陰性度を有している成分を使用することができる。そのような酸性成分としては、例えば、チタン、タングステン、ケイ素、モリブデン、リン及びニオブからなる群より選択される少なくとも1つの元素を使用することができる。酸性成分は、典型的には、担体を構成する酸化物の一部として触媒層20に含まれる。
【0044】
本態様では、排ガス浄化用触媒1は、例えば、以下の方法により製造する。
【0045】
まず、コージェライト等からなり、排ガスが流れる1つ以上の貫通孔が設けられた基材10を準備する。
【0046】
次に、第1触媒層20Aを形成するためのスラリーを調製する。具体的には、白金化合物などの貴金属化合物の溶液と、セリウム酸化物などを含んだ担体と、任意に酸性成分を含んだ化合物及び/又はバインダとを混合し、所望の組成のスラリーを調製する。そして、このスラリーを基材10の上流端から一定の長さの範囲にコートして、これを乾燥させる。
【0047】
次いで、第3触媒層20Cを形成するためのスラリーを調製する。具体的には、ロジウム化合物などの貴金属化合物の溶液と、セリウム酸化物などを含んだ担体と、任意に酸性成分を含んだ化合物及び/又はバインダとを混合し、所望の組成のスラリーを調製する。その後、このスラリーを基材10の下流端から一定の長さの範囲にコートして、これを乾燥させる。
【0048】
続いて、第2触媒層20Bを形成するためのスラリーを調製する。具体的には、ロジウム化合物などの貴金属化合物の溶液と、セリウム酸化物などを含んだ担体と、任意に酸性成分を含んだ化合物及び/又はバインダとを混合し、所望の組成のスラリーを調製する。その後、このスラリーを基材10の上流端から一定の長さの範囲にコートして、これを乾燥させる。
【0049】
なお、第2触媒層20を形成するためのスラリーは、第3触媒層20Cを形成するためのスラリーと同一の組成を有していてもよく、互いに異なった組成を有していてもよい。組成が同一の場合、このスラリーを、基材10の全長に亘って、第1触媒層20Aを覆うようにしてコートしてもよい。この場合、このスラリーを用いて形成した層のうち第1部分100に属する層が第2触媒層20Bであり、第2部分200に属する層が第3触媒層20Cである。
【0050】
その後、これらコート層を熱処理に供する。このようにして、排ガス浄化用触媒1を得る。
【実施例】
【0051】
<例1:触媒C1の製造>
まず、ジニトロジアミン白金硝酸溶液とセリウム酸化物粉末とジルコニウム酸化物粉末とアルミナ粉末とアルミナゾルとを混合して、スラリーを調製した。以下、このスラリーを「スラリーSA」と呼ぶ。
【0052】
次に、硝酸ロジウム溶液とセリウム酸化物粉末とジルコニウム酸化物粉末とアルミナ粉末とアルミナゾルとを混合して、スラリーを調製した。以下、このスラリーを「スラリーSB」と呼ぶ。
【0053】
次いで、コージェライトからなるモノリスハニカム担体基材を準備し、スラリーSAを基材の上流端から基材の全長の50%の位置までコートして、これを乾燥させた。このコート層は、第1触媒層に対応している。
【0054】
続いて、スラリーSBを基材の下流端から基材の全長の70%の位置までコートして、これを乾燥させた。このコート層は、第3触媒層に対応している。
【0055】
更に、スラリーSBを基材の上流端から基材の全長の70%の位置までコートして、これを乾燥させた。このコート層は、第2触媒層に対応している。
【0056】
その後、これらコート層を、酸化雰囲気中、500℃で1時間の熱処理に供した。以下、このようにして得られた排ガス浄化用触媒を「触媒C1」と呼ぶ。この触媒C1では、基材の上流端から基材の全長の50%の位置までが「第1部分」に対応し、基材の下流端から基材の全長の50%の位置までが「第2部分」に対応している。
【0057】
触媒C1の第1触媒層の単位容積当りの白金含量は6.2×10-3 mol/Lであり、セリウム酸化物含量は0.17mol/Lであり、ジルコニウム酸化物含量は0.49mol/Lであり、アルミナ含量は0.39mol/Lであった。また、触媒C1の第2及び第3触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.08mol/Lであり、ジルコニウム酸化物含量は0.17mol/Lであり、アルミナ含量は0.21mol/Lであった。
【0058】
即ち、触媒C1の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.47であった。また、触媒C1の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.47であった。
【0059】
触媒C1の第1部分の単位容積当りのセリウム酸化物含量D1は0.25mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.08mol/Lであった。即ち、触媒C1のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.32であった。また、この触媒C1の単位容積当りの表面積は11600m2/Lであった。
【0060】
<例2:触媒C2の製造>
セリウム酸化物粉末及びジルコニウム酸化物粉末の含量をより少なくし、アルミナ含量をより多くしたこと以外は、スラリーSBと同様のスラリーを調製した。以下、このスラリーを「スラリーSC」と呼ぶ。
【0061】
スラリーSBの代わりにスラリーSCを使用したこと以外は、触媒C1について述べたのと同様にして、排ガス浄化用触媒を製造した。以下、この触媒を「触媒C2」と呼ぶ。
【0062】
触媒C2の第1触媒層の単位容積当りの白金含量は6.2×10-3 mol/Lであり、セリウム酸化物含量は0.17mol/Lであり、ジルコニウム酸化物含量は0.49mol/Lであり、アルミナ含量は0.39mol/Lであった。また、触媒C2の第2及び第3触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.02mol/Lであり、ジルコニウム酸化物含量は0.09mol/Lであり、アルミナ含量は0.56mol/Lであった。
【0063】
即ち、触媒C2の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.12であった。また、触媒C2の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.12であった。
【0064】
触媒C2の第1部分の単位容積当りのセリウム酸化物含量D1は0.19mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.02mol/Lであった。即ち、触媒C2のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.105であった。また、この触媒C2の単位容積当りの表面積は15000m2/Lであった。
【0065】
<例3:触媒C3の製造>
ロジウム含量をより多くしたこと以外は、スラリーSCと同様のスラリーを調製した。以下、このスラリーを「スラリーSD」と呼ぶ。
【0066】
ロジウム含量をより少なくしたこと以外は、スラリーSCと同様のスラリーを調製した。以下、このスラリーを「スラリーSE」と呼ぶ。
【0067】
第3触媒層の材料としてスラリーSBの代わりにスラリーSDを使用すると共に、第2触媒層の材料としてスラリーSBの代わりにスラリーSEを使用したこと以外は、触媒C1について述べたのと同様にして、排ガス浄化用触媒を製造した。以下、この触媒を「触媒C3」と呼ぶ。
【0068】
触媒C3の第1触媒層の単位容積当りの白金含量は6.2×10-3 mol/Lであり、セリウム酸化物含量は0.17mol/Lであり、ジルコニウム酸化物含量は0.49mol/Lであり、アルミナ含量は0.39mol/Lであった。また、触媒C3の第2触媒層の単位容積当りのロジウム含量は0.42×10-3 mol/Lであり、セリウム酸化物含量は0.02mol/Lであり、ジルコニウム酸化物含量は0.09mol/Lであり、アルミナ含量は0.56mol/Lであった。また、触媒C3の第3触媒層の単位容積当りのロジウム含量は1.26×10-3 mol/Lであり、セリウム酸化物含量は0.02mol/Lであり、ジルコニウム酸化物含量は0.09mol/Lであり、アルミナ含量は0.56mol/Lであった。
【0069】
即ち、触媒C3の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.12であった。また、触媒C3の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.12であった。
【0070】
触媒C3の第1部分の単位容積当りのセリウム酸化物含量D1は0.19mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.02mol/Lであった。即ち、触媒C3のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.105であった。また、この触媒C3の単位容積当りの表面積は15000m2/Lであった。
【0071】
<例4:触媒C4の製造>
ジニトロジアミン白金硝酸溶液と硝酸パラジウム溶液とセリウム酸化物粉末とジルコニウム酸化物粉末とアルミナ粉末とアルミナゾルとを混合して、スラリーを調製した。以下、このスラリーを「スラリーSF」と呼ぶ。
【0072】
スラリーSAの代わりにスラリーSFを使用したこと以外は、触媒C1について述べたのと同様にして、排ガス浄化用触媒を製造した。以下、この触媒を「触媒C4」と呼ぶ。
【0073】
触媒C4の第1触媒層の単位容積当りの白金含量は1.0×10-3 mol/Lであり、パラジウム含有量は9.4×10-3 mol/Lであり、セリウム酸化物含量は0.23mol/Lであり、ジルコニウム酸化物含量は0.65mol/Lであり、アルミナ含量は0.39mol/Lであった。また、触媒C4の第2及び第3触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.02mol/Lであり、ジルコニウム酸化物含量は0.09mol/Lであり、アルミナ含量は0.56mol/Lであった。
【0074】
即ち、触媒C4の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.087であった。また、触媒C3の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.087であった。
【0075】
触媒C4の第1部分の単位容積当りのセリウム酸化物含量D1は0.25mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.02mol/Lであった。即ち、触媒C4のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.08であった。また、この触媒C4の単位容積当りの表面積は15800m2/Lであった。
【0076】
<例5:触媒C5の製造>
セリウム酸化物含量及びジルコニウム酸化物含量をより少なくすると共に、アルミナ含量をより多くしたこと以外は、スラリーSAと同様のスラリーを調製した。以下、このスラリーを「スラリーSG」と呼ぶ。
【0077】
セリウム酸化物含量及びジルコニウム酸化物含量をより多くしたこと以外は、スラリーSBと同様のスラリーを調製した。以下、このスラリーを「スラリーSH」と呼ぶ。
【0078】
第1触媒層の材料としてスラリーSAの代わりにスラリーSGを使用すると共に、第2触媒層の材料としてスラリーSCの代わりにスラリーSHを使用したこと以外は、触媒C2について述べたのと同様にして、排ガス浄化用触媒を製造した。以下、この触媒を「触媒C5」と呼ぶ。
【0079】
触媒C5の第1触媒層の単位容積当りの白金含量は6.2×10-3 mol/Lであり、セリウム酸化物含量は0.12mol/Lであり、ジルコニウム酸化物含量は0.32mol/Lであり、アルミナ含量は0.69mol/Lであった。また、触媒C5の第2触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.06mol/Lであり、ジルコニウム酸化物含量は0.32mol/Lであり、アルミナ含量は0.21mol/Lであった。また、触媒C5の第3触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.02mol/Lであり、ジルコニウム酸化物含量は0.09mol/Lであり、アルミナ含量は0.56mol/Lであった。
【0080】
即ち、触媒C5の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.17であった。また、触媒C5の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.5であった。
【0081】
触媒C5の第1部分の単位容積当りのセリウム酸化物含量D1は0.18mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.02mol/Lであった。即ち、触媒C5のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.11であった。また、この触媒C5の単位容積当りの表面積は14600m2/Lであった。
【0082】
<例6:触媒C6の製造>
セリウム酸化物含量、ジルコニウム酸化物含量及びアルミナ含量をより少なくしたこと以外は、スラリーSGと同様のスラリーを調製した。以下、このスラリーを「スラリーSI」と呼ぶ。
【0083】
第1触媒層の材料としてスラリーSAの代わりにスラリーSIを使用すると共に、第2触媒層の材料としてスラリーSCの代わりにスラリーSBを使用したこと以外は、触媒C2について述べたのと同様にして、排ガス浄化用触媒を製造した。以下、この触媒を「触媒C6」と呼ぶ。
【0084】
触媒C6の第1触媒層の単位容積当りの白金含量は6.2×10-3 mol/Lであり、セリウム酸化物含量は0.08mol/Lであり、ジルコニウム酸化物含量は0.23mol/Lであり、アルミナ含量は0.47mol/Lであった。また、触媒C6の第2触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.09mol/Lであり、ジルコニウム酸化物含量は0.17mol/Lであり、アルミナ含量は0.21mol/Lであった。また、触媒C6の第3触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.02mol/Lであり、ジルコニウム酸化物含量は0.09mol/Lであり、アルミナ含量は0.056mol/Lであった。
【0085】
即ち、触媒C6の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.25であった。また、触媒C6の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は1.125であった。
【0086】
触媒C6の第1部分の単位容積当りのセリウム酸化物含量D1は0.17mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.02mol/Lであった。即ち、触媒C6のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.12であった。また、この触媒C6の単位容積当りの表面積は12300m2/Lであった。
【0087】
<例7:触媒C7の製造>
セリウム酸化物含量、ジルコニウム酸化物含量及びアルミナ含量をより多くしたこと以外は、スラリーSBと同様のスラリーを調製した。以下、このスラリーを「スラリーSJ」と呼ぶ。
【0088】
第1触媒層の材料としてスラリーSAの代わりにスラリーSGを使用し、第3触媒層の材料としてスラリーSCの代わりにスラリーSJを使用すると共に、第2触媒層の材料としてスラリーSCの代わりにスラリーSHを使用したこと以外は、触媒C2について述べたのと同様にして、排ガス浄化用触媒を製造した。以下、この触媒を「触媒C7」と呼ぶ。
【0089】
触媒C7の第1触媒層の単位容積当りの白金含量は6.2×10-3 mol/Lであり、セリウム酸化物含量は0.12mol/Lであり、ジルコニウム酸化物含量は0.32mol/Lであり、アルミナ含量は0.69mol/Lであった。また、触媒C7の第2触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.06mol/Lであり、ジルコニウム酸化物含量は0.32mol/Lであり、アルミナ含量は0.21mol/Lであった。また、触媒C7の第3触媒層の単位容積当りのロジウム含量は0.84×10-3 mol/Lであり、セリウム酸化物含量は0.14mol/Lであり、ジルコニウム酸化物含量は0.29mol/Lであり、アルミナ含量は0.15mol/Lであった。
【0090】
即ち、触媒C7の第3触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は1.17であった。また、触媒C7の第2触媒層の単位容積当りのセリウム酸化物含量に対する第1触媒層の単位容積当りのセリウム酸化物含量の比率は0.5であった。
【0091】
触媒C7の第1部分の単位容積当りのセリウム酸化物含量D1は0.18mol/Lであり、第2部分の単位容積当りのセリウム酸化物含量D2は0.14mol/Lであった。即ち、触媒C7のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.78であった。また、この触媒C7の単位容積当りの表面積は13400m2/Lであった。
【0092】
<例8:触媒C8の製造(参考例)>
ジニトロジアミン白金硝酸溶液と硝酸ロジウム溶液とセリウム酸化物粉末とジルコニウム酸化物粉末とアルミナ粉末とアルミナバインダとを混合し、スラリーを調製した。以下、このスラリーを「スラリーSK」と呼ぶ。
【0093】
ロジウム含量をより多くすると共に、白金含量、セリウム酸化物含量、ジルコニウム酸化物含量及びアルミナ含量をより少なくしたこと以外は、スラリーSKと同様にして、スラリーを調製した。以下、このスラリーを「スラリーSL」と呼ぶ。
【0094】
コージェライトからなるモノリスハニカム担体基材を準備し、スラリーSKを基材の上流端から基材の全長の50%の位置までコートして、これを乾燥させた。続いて、スラリーSLを基材の下流端から基材の全長の50%の位置までコートして、これを乾燥させた。その後、これらコート層を、酸化雰囲気中、500℃で1時間の熱処理に供した。以下、このようにして得られた排ガス浄化用触媒を「触媒C8」と呼ぶ。この触媒C8では、基材の上流端から基材の全長の50%の位置までが「第1部分」に対応し、基材の下流端から基材の全長の50%の位置までが「第2部分」に対応している。
【0095】
触媒C8の第1部分の単位容積当りの白金含量は5.1×10-3 mol/Lであり、ロジウム含量は0.39×10-3 mol/Lであり、セリウム酸化物含量D1は0.35mol/Lであり、ジルコニウム酸化物含量は0.49mol/Lであり、アルミナ含量は0.78mol/Lであった。また、触媒C8の第2部分の単位容積当りの白金含量は1.0×10-3 mol/Lであり、ロジウム含量は1.9×10-3 mol/Lであり、セリウム酸化物含量D2は0.12mol/Lであり、ジルコニウム酸化物含量は0.32mol/Lであり、アルミナ含量は0.29mol/Lであった。触媒C8のセリウム酸化物含量D1に対するセリウム酸化物含量D2の比は0.34であった。そして、この触媒C8の単位容積当りの表面積は13200m2/Lであった。
【0096】
触媒C1乃至C8に関するデータを、以下の表1及び表2に纏める。
【表1】

【0097】
【表2】

【0098】
<NOx排出量の測定>
触媒C1乃至C8について、排気量4.3Lのエンジンを用いて、950℃で50時間の耐久試験を行った。その後、これら触媒の各々を、直列4気筒2.4Lエンジンを搭載した自動車に設置した。そして、この自動車をLA#4(hot)モードで走行させて、NOx排出量を測定した。
【0099】
図3は、排ガス浄化用触媒のNOx排出量を示すグラフである。図3には、触媒C1乃至C8のNOx排出量を、触媒C8について得られた値を100とした相対値で示している。
【0100】
図3から分かるように、触媒C1乃至C6は、触媒C8と比較してより優れたNOx浄化性能を有していた。また、触媒C7は、触媒C8と比較してほぼ同程度のNOx浄化性能を有していた。
【0101】
<H2S排出量の測定>
直列4気筒2.4Lエンジンを搭載した自動車の排気系にSC(Start Catalyst)触媒と触媒C1とをエンジン側からこの順に設置した。その後、H2S排出量を測定しながら、以下のようにして自動車の運転条件を変化させた。
【0102】
具体的には、まず、この自動車を40km/hで一定時間走行させて、触媒C1に硫黄を吸着させた。次いで、ワイドオープンスロットルで100km/hまでの加速を行った。そして、車速が100km/hに達した後、スロットルを閉じて車両を停止させ、エンジンをアイドリングさせたまま一定時間放置した。以上の測定を触媒C2乃至C8についても行った。
【0103】
図4は、排ガス浄化用触媒のH2S排出量を示す棒グラフである。図4には、車両停止から60秒間に触媒C1乃至C8が排出したH2S量の積算値を、触媒C8について得られた値を100とした相対値で示している。
【0104】
図4から分かるように、触媒C1乃至C6を使用した場合には、触媒C8を使用した場合と比較して、H2S排出量が減少していた。また、触媒C7を使用した場合には、触媒C8を使用した場合と比較して、H2S排出量がほぼ同程度であった。
【符号の説明】
【0105】
1…排ガス浄化用触媒、10…基材、20…触媒層、20A…第1触媒層、20B…第2触媒層、20C…第3触媒層、100…第1部分、200…第2部分。

【特許請求の範囲】
【請求項1】
排ガスが流れる1つ以上の貫通孔が設けられた基材と、前記基材に支持され且つ酸素貯蔵材を含有した触媒層とを具備し、前記排ガスが供給される第1部分と、前記第1部分を通過した前記排ガスが供給される第2部分とを含んだ排ガス浄化用触媒であって、
前記触媒層は、白金及び/又はパラジウムを含有した第1触媒層とロジウムを含有した第2触媒層との積層構造を前記第1部分に含むと共に、ロジウムを含有した第3触媒層を前記第2部分に含み、
前記第1触媒層の単位容積当りの白金含量とパラジウム含量との和は、前記第2触媒層の単位容積当りの白金含量とパラジウム含量との和及び前記第3触媒層の単位容積当りの白金含量とパラジウム含量との和と比較してより多く、前記第2触媒層の単位容積当りのロジウム含量及び前記第3触媒層の単位容積当りのロジウム含量は、前記第1触媒層の単位容積当りのロジウム含量と比較してより多く、
前記第2部分は、前記第1部分と比較して単位容積当りの前記酸素貯蔵材含量がより少ないことを特徴とする排ガス浄化用触媒。
【請求項2】
前記第3触媒層の単位容積当りの前記酸素貯蔵材含量は、前記第1触媒層の単位容積当りの前記酸素貯蔵材含量と比較してより少ないことを特徴とする請求項1に記載の排ガス浄化用触媒。
【請求項3】
前記第2触媒層の単位容積当りの前記酸素貯蔵材含量は、前記第1触媒層の単位容積当りの前記酸素貯蔵材含量と比較してより少ないことを特徴とする請求項1又は2に記載の排ガス浄化用触媒。
【請求項4】
前記第2触媒層は、前記第1触媒層を間に挟んで前記基材と向き合っていることを特徴とする請求項1乃至3の何れか1項に記載の排ガス浄化用触媒。
【請求項5】
前記第1触媒層は貴金属として白金及び/又はパラジウムのみを含み、前記第2触媒層は貴金属としてロジウムのみを含んだことを特徴とする請求項1乃至4の何れか1項に記載の排ガス浄化用触媒。
【請求項6】
前記第3触媒層は貴金属としてロジウムのみを含んだことを特徴とする請求項5に記載の排ガス浄化用触媒。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−253447(P2010−253447A)
【公開日】平成22年11月11日(2010.11.11)
【国際特許分類】
【出願番号】特願2009−109850(P2009−109850)
【出願日】平成21年4月28日(2009.4.28)
【出願人】(000104607)株式会社キャタラー (161)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【Fターム(参考)】