説明

推進シールド工法におけるシールド掘進機の掘進方向制御装置

【課題】 電磁波を用いてシールド掘進機の位置や姿勢の確認を行ない、到達予定位置まで正確に誘導することができる推進シールド工法におけるシールド掘進機の掘進方向制御装置を提供する。
【解決手段】 所定位相の電磁波を発振する発振手段と、符号発生手段からの符号信号と上記電磁波とを合成し、合成電磁波を生ずる合成手段と、上記シールド掘進機に設けられ、上記合成電磁波に対応した磁場を形成して送出する送信手段と、上記シールド掘進機の到達予定位置に設けられ、上記磁場を検出して上記合成電磁波を受信する受信手段と、受信された合成電磁波を上記符号信号と同期した符号信号を用いて波形反転演算を行ない、上記所定位相の電磁波と同位相の電磁波を取り出す演算手段と、上記演算手段によって取り出された電磁波の強度に応じて上記シールド掘進機を上記到達予定位置に誘導する制御手段とを備えた構成。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、推進シールド工法におけるシールド掘進機の掘進方向制御装置に関するものである。
【背景技術】
【0002】
地中に埋設管を敷設する場合、シールド掘進機によって地中を掘削しながら上記シールド掘進機に接続された複数の埋設管を推し進めて管路を形成する推進工法、あるいはシールド掘進機による掘削部にセグメントと呼ばれる壁面形成部材を掘削部内壁に連続的に装着して管路を形成するシールド工法が採用されることが多い。
【0003】
図5は、従来の推進シールド工法で使用されているシールド掘進機及びこれに列状に接続された複数の埋設管から構成される推進体の一例及び推進体が直線状のトンネルを掘削する場合の一例を示す概略図で、(a)は推進体を上方から見た状態を示す平面図、(b)は同じく推進体を側方から見た状態を示す縦断面図であり、埋設管の図示は省略している。
【0004】
地中に埋設管を敷設する場合、掘削開始位置に形成された立抗からシールド掘進機によって地中を掘削しながらシールド掘進機に接続した埋設管を立抗から押し出しながら埋設管を所定の推進計画線に沿って敷設する推進工法が採用されている。
【0005】
この工法は周知のように、カッタヘッド1Aに図示しないパイプによって例えば泥水を供給しながら掘削を進め、掘削した泥を泥水と共に別のパイプで排出しながら掘削を行なうと共に、シールド掘進機の位置及び推進方向を計測して推進計画線に沿うよう制御するものである。
【0006】
シールド掘進機1は地中3を掘削するカッタヘッド1A及びカッタヘッドの位置と推進方向を計測するための例えばLEDからなる面光源を有するターゲット1Bと、シールド掘進機のカッタヘッド回転方向または埋設管の延長方向の傾斜角を計測する傾斜計1Cと、計測結果にもとづいてカッタヘッド1Aの推進方向を制御するジャッキ1D、1Eとを備えた掘進機本体1Fから構成されている。なお、ターゲット1BはLED等の発光体を縦横に複数配設して面光源を形成するようにされている。
【0007】
シールド掘進機1の後方には立抗4から押し出された複数の埋設管2が接続され、シールド掘進機1と共に推進体を形成している。
立抗4内にはカメラまたはCCD等の撮像手段(以下、単にカメラという)5がセオドライトまたはトランシットに装着された形で設置され、複数の埋設管2の内部空間を介してシールド掘進機1のターゲット1Bからの光を撮像し、推進計画線に対応する基準位置からの変位量を計測し、このデータをコンピュータ6に伝送する。
【0008】
コンピュータ6ではターゲット1Bとカメラ5との間の距離Lを加味してターゲット1Bの推進計画線からの変位量△x、△yを演算する。この演算にもとづいて、自動ジャッキ制御装置7が掘進機本体1Fに制御信号を送り、ジャッキ1D、1Eの押し出し量を調整してカッタヘッド1Aの推進方向を制御し推進計画線に沿うように制御する。
【0009】
距離Lの計測方法としては、立抗4に設置される埋設管押し出し用の元押しジャッキ(図示せず)のロータリーエンコーダ等による押し出し長さの累計によって算出する場合や、ターゲットのモニターに写る寸法によって計算する場合、あるいは押し出した埋設管の長さの累計によって求める場合等がある。
【0010】
図6は、シールド掘進機及びこれに接続された複数の埋設管から構成される推進体によって曲線トンネルの推進計画線に沿ったシールド掘削を行なう状況を示した概略図で、(a)は推進体を上方から見た状態を示す平面図、(b)は同じく推進体を側方から見た状態を示す縦断面図で、いずれの図もシールド掘進機に接続された複数の埋設管の図示を省略している。
【0011】
この図の場合には曲線トンネルの推進計画線に沿って掘削推進するシールド掘進機1のターゲット1Bの推進計画線からの水平方向のずれ△xと垂直方向のずれ△yを演算するデータを求めるために、複数の埋設管2内に所定の間隔で複数の中間計測機8A〜8Dを配設している。
【0012】
即ち、シールド掘進機1に設けられたターゲット1Bと、各中間計測機8A〜8Dと、立抗4内に設けられたカメラ5とから得られるデータにもとづいて△x、△yを演算しようとするものである。中間計測機8A〜8Dの具体的構成は後述することとし、ここでは中間計測機に搭載された計測手段についてのみ説明する。また、中間計測機8A〜8Dは、いずれも同じ構成とされているため、その中の一つ8Aについてのみ説明する。
なお、中間計測機の相互間隔は後述するように所定長さの連結杆によって予め設定した所定の長さに保持されている。
【0013】
中間計測機8Aは適宜の大きさを有する平板状の台車81を有し、その上に以下に述べる各装置が搭載されている。即ち、前方に向けて発光するLED等からなる面光源を有する前方用ターゲット82と、前方に向けて配設され、前方に位置するターゲットの発光を撮像する前方用カメラ83とを一体化して前方用装置84を構成し、台車81の前方寄りの位置に設置している。
【0014】
また、後方に向けて発光するLED等からなる面光源を有する後方用ターゲット85と、後方に向けて配設され、後方に位置するターゲットの発光を撮像する後方用カメラ86とを一体化して後方用装置87を構成し、台車81の後方寄りの位置に設置している。
【0015】
前方用装置84と後方用装置87とは電気的には接続されているが両者間には十分なスペースが設けられ、そのスペースに傾斜計88が設置されている。この傾斜計は台車81の水平方向または埋設管の延長方向の傾斜角を計測し得るようにされている。上記スペースにはまた、図示していないが、データ伝送ユニットやポンプなども設置されている。
【0016】
計測に際しては、立抗4内のカメラ5によって最後部の中間計測機8Dの後方用ターゲット85の発光を撮像して後方用ターゲット85の変位データを採取すると共に、中間計測機8Dの後方用カメラ86によって立抗4内のターゲットの発光を撮像し、その相対的変位データを採取する。また、傾斜計88による角度データも採取する。
【0017】
次いで、最後部の中間計測機8Dの前方用カメラ83によって、その前方に位置する中間計測機8Cの後方用ターゲット85の発光を撮像して変位データを採取し、傾斜計88の角度データを採取すると共に、中間計測機8Cの前方用カメラ83によって更にその前方に位置する中間計測機8Bの後方用ターゲット85の発光を撮像して変位データを採取する。
【0018】
このような計測を各中間計測機8A〜8D間及びシールド掘進機1との間で繰り返し、それぞれから採取されたデータをコンピュータ6に伝送して△x及び△yを演算し、シールド掘進機1の掘進方向を修正するようにしている。
この結果、シールド掘進機1及び複数の埋設管2からなる推進体は曲線トンネルの推進計画線に沿って推進することになる。
【0019】
図7は、中間計測機の構成及び埋設管内での移動状況を示す概略図で、(a)は埋設管内での配設状況を示す側面図、(b)は同じく平面図である。また、図8は、埋設管内での配設状況を埋設管の延長方向から見た状況を示す正面図である。
【0020】
埋設管2内では図8に示すように、パイプ支持機構10が底部に設けられ、送泥管11と排泥管12とが支承されると共に、車輪13によって埋設管2の延長方向に移動可能に構成されている。パイプ支持機構10の上部には床材14が支承され、その上面に3個のローラ15A、15B、15Cが回転可能に支持されている。
【0021】
ローラ15A、15B、15C上には上述した中間計測機8Aを構成する台車81が載置され、埋設管2の延長方向に移動し得るようにされている。なお、台車81の移動に際してその両側部が埋設管2の内壁と接触して移動に支障を来たす場合が考えられるため、台車の両側には前後に1個ずつ側方ローラ16A、16Bが設けられ、スムースな移動ができるようにされている。なお、上述したローラ15A、15B、15Cと側方ローラ16A、16Bは省略される場合もある。
【0022】
また、台車81には2個の回転台17が前後に離隔して設けられ、それぞれに上述した前方用装置84及び後方用装置87が載置されて回転可能とされている。
図中、89はデータ伝送ユニット、90は台車上の各装置を覆うカバーである。(例えば特許文献1参照)。
【0023】
図9は、従来のシールド工法によって曲線トンネルの推進計画線に沿ったシールド掘削を行なう状況を示した概略図で、(a)は掘削の状況を上方から見た状態を示す平面図、(b)は同じく側方から見た状態を示す縦断面図である。
【0024】
この図に示すように、シールド工法は、シールド掘進機1に反射プリズムからなるターゲット1Hを前後の2個所に間隔を介して設けると共に、立抗4内にトランシットを含むトータルステーション50を架台51上に設置する形で設け、トータルステーション50から赤外線をターゲット1Hに向けて照射することにより、シールド掘進機1との距離及び推進角度を計測し、これらをコンピュータ6に入力して推進計画線に対するずれ△x、△yを演算し、自動ジャッキ制御装置7によってジャッキ1D、1Eの押し出し量を調整することによりシールド掘進機1を推進計画線に沿って導くようにしている。
【0025】
シールド掘進機1が前進すると、掘削された部分の内面にセグメントと呼ばれる幅約60cm〜100cmの円弧状に湾曲した壁面板52を複数枚貼り付けて全体として短いパイプ状の空間を形成する。パイプ状の空間は円周方向に3枚以上のセグメントを貼り付けて形成されるように各セグメントの円周方向の寸法が設定されている。
【0026】
1つのパイプ状の空間が形成されると、その空間の立抗側に隣接して掘削部分の内面に更に別のセグメント52を複数枚貼り付けて次の空間を形成しパイプ状空間を延長する作業をシールド掘進機1の前進に合わせて繰り返すことによりシールド掘進機1の後方に管路を形成することができる。
【0027】
シールド掘進機1が更に前進して立抗4内のトータルステーション50とシールド掘進機1との間隔が所定値を超えると、その中間部に追加のトータルステーション50Bを架台51Bと共に設置し、トータルステーション50とシールド掘進機1との間及びトータルステーション50と50Bとの間で上述した方法による計測を行なうことによりシールド掘進機1を推進計画線に沿って推進させる。
【0028】
シールド掘進機1が更に前進すると、追加したトータルステーション50Bとシールド掘進機1との中間部に更にトータルステーション50Cを追加設置し、以後、シールド掘進機1の前進に応じて同様に対応する。トータルステーション50等からの赤外線照射を含む計測は自動的に行なわれるように構成される場合もあるが、手動的に行なわれる場合もある。
【先行技術文献】
【特許文献】
【0029】
【特許文献1】特開2007−113385号公報
【発明の概要】
【発明が解決しようとする課題】
【0030】
従来の推進シールド工法におけるシールド掘進機の掘進方向制御装置は上記のように構成され、距離の計測とシールド掘進機の位置及び姿勢を光学的手段によって確認し制御していたが、距離が大きくなると計測誤差が大きくなるため距離や位置及び姿勢の演算誤差が大きくなるという問題点があった。
【0031】
この発明は、上記のような問題点を解消するためになされたもので、電磁波を用いてシールド掘進機の位置や姿勢の確認を行ない、到達予定位置まで正確に誘導することができる推進シールド工法におけるシールド掘進機の掘進方向制御装置を提供することを目的とする。
【課題を解決するための手段】
【0032】
この発明に係る推進シールド工法におけるシールド掘進機の掘進方向制御装置は、シールド掘進機の後方に埋設管を結合した推進体を立抗から掘削しながら推進させ、上記埋設管によって形成される管路を敷設する推進シールド工法において、所定位相の電磁波を発振する発振手段と、符号発生手段からの符号信号と上記電磁波とを合成し、合成電磁波を生ずる合成手段と、上記シールド掘進機に設けられ、上記合成電磁波に対応した磁場を形成して送出する送信手段と、上記シールド掘進機の到達予定位置に設けられ、上記磁場を検出して上記合成電磁波を受信する受信手段と、受信された合成電磁波を上記符号信号と同期した符号信号を用いて波形反転演算を行ない、上記所定位相の電磁波と同位相の電磁波を取り出す演算手段と、上記演算手段によって取り出された電磁波の強度に応じて上記シールド掘進機を上記到達予定位置に誘導する制御手段とを備えたものである。
【0033】
この発明に係る推進シールド工法におけるシールド掘進機の掘進方向制御装置は、また、上記受信手段がほぼ90度の角度でV字形に保持された2つのコイルを有するものである。
【0034】
この発明に係る推進シールド工法におけるシールド掘進機の掘進方向制御装置は、また、上記受信手段がほぼ90度の角度で十字形に保持された2つのコイルを有するものである。
【0035】
この発明に係る推進シールド工法におけるシールド掘進機の掘進方向制御装置は、また、上記送信手段がシールド掘進機の外周に形成された溝内に巻回された送信コイルを有し、上記溝内の上記送信コイルの外周側に樹脂を充填して構成されたものである。
【発明の効果】
【0036】
この発明に係る推進シールド工法におけるシールド掘進機の掘進方向制御装置は上記のように構成され、発振手段から発振される所定位相の電磁波と、符号発生手段からの符号信号とを合成して合成電磁波を形成し、この合成電磁波に対応した磁場をシールド掘進機から送出すると共に、到達予定位置に設けられた受信手段によって上記磁場を検出して上記合成電磁波を受信し、上記符号信号と同期した符号信号を用いて波形反転演算を行うことにより、上記所定位相の電磁波と同位相の電磁波を取り出し、この取り出された電磁波の強度に応じてシールド掘進機を誘導するようにしているため、シールド掘進機を精度よく到達予定位置に誘導することができる。
【0037】
また、送信コイルから出力された磁場によって周辺の金属等に誘導される誘導電流に起因する位相の異なる二次磁場による悪影響を小さくすることができ、他のシステムに与えるあるいは他のシステムから受ける磁場による悪影響も小さくすることができ、秘匿性に優れた制御装置を得ることができる。
【図面の簡単な説明】
【0038】
【図1】この発明の実施の形態1によるシールド掘進機の誘導方式を示す概略図で、(a)は電磁波による誘導方式の原理を説明するための説明図、(b)は地中での誘導方式を説明する概略断面図である。
【図2】実施の形態1における送信コイルの装着例を示す概略図である。
【図3】実施の形態1による推進シールド工法の全体構成を示すブロック図である。
【図4】実施の形態1において、送信側から送出される電磁波の波形及び受信側において取り出される電磁波の波形を示す波形図である。
【図5】従来の推進工法における推進体の構成の一例及び直線状のトンネルを掘削する場合の状況を説明する概略図で、(a)は推進体を上方から見た状態を示す平面図、(b)は同じく推進体を側方から見た状態を示す縦断面図である。
【図6】従来の推進工法によって曲線トンネルを掘削する場合の状況を説明する概略図で、(a)は推進体を上方から見た状態を示す平面図、(b)は同じく推進体を側方から見た状態を示す縦断面図である。
【図7】従来の推進工法における中間計測機の構成の一例及び埋設管内での移動状況を示す概略図で、(a)は埋設管内での配設状況を示す側面図、(b)は同じく平面図である。
【図8】従来の推進工法における埋設管内での中間計測機の配設状況を埋設管の延長方向から見た状況を示す正面図である。
【図9】従来のシールド工法による掘削状況を示す概略図で、(a)は上方から見た状態を示す平面図、(b)は側方から見た状態を示す縦断面図である。
【発明を実施するための形態】
【0039】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による電磁波を用いたシールド掘進機の誘導方式を示す概略図で、(a)は電磁波による誘導方式の原理を説明するための説明図、(b)は地中での誘導方式を説明する概略断面図である。
【0040】
推進シールド工法において、シールド掘進機を所定の推進計画線に沿って掘削しながら推進させ、到達予定位置に正確に到達させるのは容易ではない。このため、実施の形態1は電磁波の磁力線による吸引原理を利用してシールド掘進機を到達予定位置に誘導しようとするものである。
【0041】
先ず、この方式の原理について説明する。図1(a)に示すように、シールド掘進機1に送信コイル20を巻回し、この送信コイル20に図1(b)に示す送信機19から電流を供給すると、シールド掘進機1が鉄心の作用をして強力な磁場が形成され電磁波が発生される。
シールド掘進機1に巻回する送信コイル20は、例えば図2に示すように、カッタヘッド1Aの外周に深さ10mmから30mm程度の溝1Gを1個または複数個形成し、その溝1G内に例えばエナメル線からなる送信コイル20を数10回、巻回し、送信コイル20の外周側にエポキシ樹脂1Hを充填して溝1Gを塞ぐようにしている。
【0042】
一方、図1(b)に示すように、シールド掘進機1の到達予定位置に形成された到達立抗22に受信コイル21を設けると、この受信コイル21が送信コイル20から発せられた電磁波の磁場センサーとして機能し、磁力線に対応した出力を得ることができるため、磁力線の方向にシールド掘進機1を誘導することにより到達予定位置に到達させることができる。
【0043】
図3は、シールド掘進機を誘導するためのシールド工法における実施の形態1の全体構成を示すブロック図、図4は、実施の形態1において送信側から送出される電磁波の波形及び受信側において取り出される電磁波の波形を示すものである。
【0044】
シールド工法では、シールド掘進機の送信コイル20から送出される磁場を地球磁場(直流磁場)と区別するために送信側では交流磁場が用いられ、図4(a)にW1で示すような一定波長(一定周波数)のサイン(sin)波が図3に示す信号発振器31から出力される。一方、図3に示す符号発生装置(コンピュータ)32から図4(b)にW2で示すような符号信号が発生される。
【0045】
Sin波W1と符号信号W2とは図3のスイッチ回路(波形反転回路)33で合成され、図4(c)にW3で示す合成電磁波を形成し、図3に示す増幅器38で増幅した後、シールド掘進機1の発信コイル20に供給される。発信コイル20からは合成電磁波W3に対応する磁場が送出される。
【0046】
到達予定位置の到達立抗22に設けられた図3の受信コイル21によって図4(d)に示す上記合成電磁波W3に対応した磁場を受信し、増幅器34によって増幅した後、図3のAD変換器35によってアナログ信号をデジタル信号に変換する。
変換されたデジタル信号は図3の波形反転演算装置(コンピュータ)36に入力され、ここで符号発生装置32Bから与えられる図4(e)に示す符号信号W5を用いて波形反転演算を行ない、図4(f)に示すように送信側の信号発振器31から出力されたsin波W1と同位相のsin波W6を分離する。なお、符号発生装置32と32BとはケーブルまたはGPSで図示のように接続され、符号信号W2とW5とが同位相となるように設定されている。
【0047】
波形反転演算装置36で分離されたsin波W6は表示装置37に表示される一方、図示しない制御装置に入力され、その強度に対応してシールド掘進機1の到達予定位置への誘導が行なわれる。
【0048】
具体的には、送信コイル20と受信コイル21とが共に推進計画線上にあれば、受信コイル21の2つのコイルの強度(出力)は同じ大きさとなるが、シールド掘進機1の送信コイル20が推進計画線上にない場合は2つのコイルの出力が異なる。出力の異なり方はシールド掘進機1の推進計画線に対するずれ方向によって一方のコイルの出力が他方のコイルの出力より小さくなるため、2つのコイルの出力の違いに応じて自動ジャッキ制御装置7(図5)を動作させ、上述のように、シールド掘進機1の推進方向を制御することにより到達予定位置に容易に誘導することができる。
【0049】
なお、受信コイル21は図1に示すようなV字形の配置のみでなく、2つのコイルをコイル相互の角度がほぼ90°となるように十字形に配置しても同様な効果を期待することができる。
【符号の説明】
【0050】
1 シールド掘進機、
2 埋設管
3 地面
4 立抗
5 カメラ
6 コンピュータ
7 自動ジャッキ制御装置
8A〜8D 中間計測機
10 パイプ支持機構
11 送泥管
12 排泥管
13 車輪
14 床材
15A、15B、15C ローラ
16A、16B 側方ローラ
17 回転台
18 連結杆
19 送信機
20 送信コイル
21 受信コイル
22 到達立抗
23 坑口
24 パイプ
25 受信機
26 コンピュータ
31 信号発振器
32 符号発生装置(コンピュータ)
32B 符号発生装置
33 スイッチ回路(波形反転回路)
34 増幅器
35 AD変換器
36 波形反転演算装置(コンピュータ)
37 表示装置
38 増幅器
50、50B、50C トータルステーション
51、51B、51C 架台
52 セグメント。

【特許請求の範囲】
【請求項1】
シールド掘進機の後方に埋設管を結合した推進体を立抗から掘削しながら推進させ、上記埋設管によって形成される管路を敷設する推進シールド工法において、所定位相の電磁波を発振する発振手段と、符号発生手段からの符号信号と上記電磁波とを合成し、合成電磁波を生ずる合成手段と、上記シールド掘進機に設けられ、上記合成電磁波に対応した磁場を形成して送出する送信手段と、上記シールド掘進機の到達予定位置に設けられ、上記磁場を検出して上記合成電磁波を受信する受信手段と、受信された合成電磁波を上記符号信号と同期した符号信号を用いて波形反転演算を行ない、上記所定位相の電磁波と同位相の電磁波を取り出す演算手段と、上記演算手段によって取り出された電磁波の強度に応じて上記シールド掘進機を上記到達予定位置に誘導する制御手段とを備えた推進シールド工法におけるシールド掘進機の掘進方向制御装置。
【請求項2】
上記受信手段はほぼ90度の角度でV字形に保持された2つのコイルを有することを特徴とする請求項1記載の推進シールド工法におけるシールド掘進機の掘進方向制御装置。
【請求項3】
上記受信手段はほぼ90度の角度で十字形に保持された2つのコイルを有することを特徴とする請求項1記載の推進シールド工法におけるシールド掘進機の掘進方向制御装置。
【請求項4】
上記送信手段はシールド掘進機の外周に形成された溝内に巻回された送信コイルを有し、上記溝内の上記送信コイルの外周側に樹脂を充填して構成されたことを特徴とする請求項1〜請求項3のいずれか1項記載の推進シールド工法におけるシールド掘進機の掘進方向制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−168996(P2011−168996A)
【公開日】平成23年9月1日(2011.9.1)
【国際特許分類】
【出願番号】特願2010−32327(P2010−32327)
【出願日】平成22年2月17日(2010.2.17)
【出願人】(506292262)ヤスダエンジニアリング株式会社 (8)
【出願人】(510043951)有限会社 ネオサイエンス (3)
【出願人】(505358679)
【Fターム(参考)】