説明

最尤系列推定デコーダ

本発明の最尤系列推定器は、復号化のための第1の信号を受信する信号受信器(401)を備えている。シンボル間干渉プロセッサ(403)は、第1の信号から補償信号を生成する。補償信号は、最尤系列推定(MLSE)のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表し、最尤系列推定のチャネル・モデル・ウィンドウの中でのシンボル間干渉を含まない。補償プロセッサ(405)は、補償信号によって第1の信号を補償することによって、補償された信号を生成する。例えば、第1の信号から補償信号を減算することによってなされる。補償された信号は、最尤系列推定デコーダ(407)に供給され、補償された信号に対して最尤系列推定を実行することによって第1の信号のデータを復号化する。
本発明は、検出エラー率を低下させ、特に光ディスク読み取りシステムに適している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、最尤系列推定に関し、特に、例えば光記憶ディスクのためのビタビ復合読み取りシステムに関する。
【発明の背景】
【0002】
データ処理または配信システムのビット誤り検出および修正のための方法および技術は広く知られている。例えば、データが信頼できない通信リンクを通じて伝達される通信システムでは、通信エラーの量を減らすために、前方誤り訂正符号化および復号化が通常使用される。別の例として、光ディスクの読み取りシステムでは、読み取り誤差の量を減らすためにエラー復号が使用される。
【0003】
ビットエラーがある場合には、正しいビット値を検出するために特に効率的な技術は最尤系列推定として知られている、そして、特に部分応答最尤(PRML)ビット検出が知られている。特に、ビタビアルゴリズムは、媒体および電子的ノイズがある場合に、例えば光ディスクのような記憶媒体からのデータ読出し、および通信システムのために共通して利用される。
【0004】
具体的には、ビタビを基にしたビット検出は、光ディスクに格納されたデータに対して、信頼性の高い読出しを行うために、ハイエンドの最新の光ディスク・システムで多用される。また、ビタビ・ビット検出は、次世代の光記憶装置において主要な役割を演ずると期待されている。特に、ビタビ検出の利用は、ディスク上の1記録層につき25GBないし35GBで12cmのブルーレイディスク装置のような容量増加を達成可能にする。
【0005】
光ディスク読取装置の高いパフォーマンスおよび信頼性を達成するために、データの復号に対して高性能を担保することが重要となっている。そして特に、最尤系列推定器すなわちビタビ検出器の精度の最適化が重要である。
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、ビタビアルゴリズムは、比較的複雑で、大量の処理パワーおよび計算のためのリソースを必要とする。実際、必要とされるハードウェアコストは、現在の光ディスク記憶システムの様々なアルゴリズムの採用を制限する要因のうちの1つとなっている。
【0007】
したがって、現在の手法は本質的にパフォーマンスおよび複雑さ(例えば計算の複雑性および/またはハードウェアコスト)の間のトレードオフを必要とする。したがって、現実のシステムでのデータ検出のパフォーマンスは、理論的に達成可能なエラー率より高い値を示す傾向がある。
【0008】
それゆえ、改良された最尤系列推定は(例えば光ディスク読取装置に対して)望まれる。そして、特に、システムにおける柔軟性の増加、複雑さの減少、計算のために必要なリソースの低減、適用可能性の増加、および/またはパフォーマンスの改良が望まれる。
【0009】
したがって、本発明は、単独で、またはその組合せによって、上述した課題を好ましくは緩和、軽減または排除することを目的とする。
【課題を解決するための手段】
【0010】
本発明の第1の態様には、第1の信号のデータ復号化のための最尤系列推定器であって:前記第1の信号を受信するための受信手段;前記第1の信号から補償信号を生成するための第1の手段であって、前記補償信号は最尤系列推定のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表すところの第1の手段;前記補償信号によって前記第1の信号を補償することによって、補償された信号を生成するための第2の手段;および前記補償された信号に対して前記最尤系列推定を実行することによって前記第1の信号のデータ復号化を行う手段を有する最尤系列推定器、が開示されている。
【0011】
本発明は、最尤系列推定器のパフォーマンスを高めることができ、特にデータ検出信頼性を改善することができる。本発明は、最尤系列推定器の複雑さを減らすことができおよび/または計算に必要なリソースを減らすことができる。本発明は、必要とするハードウェアを減らすことができおよび/または最尤系列推定器のためのコストを減らすことができる。
【0012】
本発明の発明者は、最尤系列推定を基礎として、信号をプレコンペンセーションすることによって改良されたパフォーマンスが達成できることを見いだした。特に、本発明は、シンボル間干渉による最尤系列推定器のパフォーマンス低下を減少させることができる。本発明は、所与のチャネル・モデル長のシンボル間干渉の感度を減少させることができ、例えば最尤系列推定によって考慮されなければならないシンボル間干渉量の要件を軽減することができ、このことにより複雑さを減少させることができる。本発明は、最尤系列推定の精度を低下させることなく。更にシンボル間干渉を減少させることができ、プレコンペンセーションによりエラーの波及を減少させることができる。
【0013】
最尤系列推定器は、ビタビ最尤系列推定器でもよい。
【0014】
本発明の追加的態様として、前記第1の手段が、前記第1の信号から復号データを得るための復号化手段;前記復号データおよび第1の長さのチャネル・モデルに応答して第2の信号を生成するための第3の手段であって、前記第1の長さは前記最尤系列推定の前記チャネル・モデル・ウィンドウより長いところの第3の手段;および前記第2の信号に応答して、前記補償信号を生成するための第4の手段を有する態様が開示されている。
【0015】
これは、実際的な、効果的な実施および/または高性能を発揮することができる。特に、特徴は、最尤系列推定のパフォーマンスに影響を与えることなく、効率的な干渉除去を達成することができる。
【0016】
ここでの復号化手段は、複雑でなくおよび/または最尤系列推定を実行するための手段より信頼性が高くない復号化手段でもよい。本発明は、エラーの波及の減少を提供することができる。特に、最尤系列推定の復号化に基づく復号化手段による検出エラーの減少が達成される。
【0017】
第2信号は、期待される復号化されたデータおよびチャネル・モデルのための受信信号を表すことができる。
【0018】
本発明の追加的態様として、前記第3の手段として、前記最尤系列推定の前記チャネル・モデル・ウィンドウの中での前記チャネル・モデルと関連した影響を抑制する態様が開示されている。
【0019】
これは、実際的で効果的な実装および/または高性能を達成することができる。特に、複雑さの低減が図れ、最尤系列推定のプレコンペンセーションによる悪影響を低下させる方法を提供する。
【0020】
本発明の追加的態様として、最尤系列推定のチャネル・モデル・ウィンドウの中でのチャネル・モデルの係数が実質的にゼロになるようセットされる態様が開示されている。
【0021】
これは、実際的で効果的な実装および/または高性能を達成することができる。
【0022】
本発明の追加的態様として、前記第1の手段が:前記復号データおよび第2の長さのチャネル・モデルに応答して第3の信号を生成するための第4の手段であって、前記第2の長さは前記最尤系列推定の前記チャネル・モデル・ウィンドウと実質的に同一であるところの第4の手段;および前記第2の信号および前記第3の信号の差に応答して前記補償信号を生成するための手段を有する前記第4の手段を更に有する態様が開示されている。
【0023】
これは、実際的で効果的な実装および/または高性能を達成することができる。特に、これは、複雑さの低減が図れ、最尤系列推定チャネル・モデル・ウィンドウの外側でのシンボル間干渉を減少させ、最尤系列推定チャネル・モデル・ウィンドウの中でのシンボル間干渉へ影響を及ぼすのを効果的に減少させることができる。
【0024】
本発明の追加的態様として、前記第3の手段が第1の基準レベル装置を有し、かつ前記第4の手段が、前記第1の基準レベル装置より少ないタップを持つ、第2の基準レベル装置を有する態様が開示されている。
【0025】
これは、実際的で効果的な実装および/または高性能を達成することができる。特に、基準レベル装置は、受信信号および予測されるシンボル間状況への効果的なおよび自動的な適合を提供することができる。具体的には、基準レベル装置は、チャネル・モデルの自動適合を提供することができる。
【0026】
本発明の追加的態様として、前記第1の基準レベル装置が9つのタップを有し、かつ前記第2の基準レベル装置が5つのタップを有する態様が開示されている。
【0027】
これは、実際的で効果的な実装および/または高性能を達成することができる。特に、これは、複雑さとパフォーマンスとのトレードオフとなっている光ディスクの読取装置に対して提供すると非常に有利である。
【0028】
本発明の追加的態様として、閾値復号でデータ値を測定するための手段を有する態様が開示されている。
【0029】
これは、実際的で効果的な実装および/または高性能を達成することができる。特に、効果的なパフォーマンスを担保すると共に、プレコンペンセーションの複雑さを低く保つことができる。具体的には、本発明によって、単純な検出手段で最尤系列推定ウィンドウの外側でのシンボル間干渉を軽減させ、最尤系列推定でのシンボル間干渉の緩和に対しては重大な性能低下の影響(例えば検出エラー)を与えることがない。
【0030】
本発明の別の態様として、光ディスク読み取り装置であって:光ディスクを読み取ることによって、第1の信号を生成するためのディスク読取装置;および前記第1の信号のデータ復号化のための最尤系列推定器であって:第1の信号を受信するための受信手段、前記第1の信号から補償信号を生成するための第1の手段であって、前記補償信号は最尤系列推定のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表しているところの第1の手段、前記補償信号で前記第1の信号を補償することによって補償された信号を生成するための第2の手段、および前記補償された信号に対して前記最尤系列推定を実行することによって、前記第1の信号のデータ復号化を行う手段を有する最尤系列推定器を有する光ディスク読み取り装置が開示されている。
【0031】
本発明の別の態様として、第1の信号のデータ復号化の方法であって;前記第1の信号を受信するステップ;前記第1の信号から補償信号を生成するステップであって、前記補償信号は最尤系列推定のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表しているところのステップ;前記補償信号で前記第1の信号を補償することによって補償された信号を生成するステップ;および前記補償された信号に対して前記最尤系列推定を実行することによって、前記第1の信号のデータ復号化を行うステップを有する方法が開示されている。
【0032】
これらの、そして他の本発明の態様、特徴および効果は、以下に記載されている実施例から明らかとなるであろう。
【発明を実施するための最良の形態】
【0033】
[発明の詳細な説明]
以下、データ検出のための最尤系列推定器を使用した光ディスク読込ステムに適用できる本発明の実施例に焦点をあてて説明する。なお、本発明はこの用途に限らず、例えば通信システム用のデコーダを含む多くの他の復号化システムに適用できることはいうまでもない。
【0034】
図1に、本発明の実施例における光ディスク読み取り装置の一例を示す。
【0035】
実施例において、光ディスク・データ読み取り装置101は、光ディスク103からデータを読み込む。光ディスク101に格納されるデータは、RLL(Run Length Limitation)符号化が施される。光ディスクから読み込まれるデータサンプルは、光ディスク・データ読み取り装置101から最尤系列推定器に供給される。最尤系列推定器は、具体的にはビタビ検出器105である。光ディスク103から読み込まれたデータ値を推定するために、ビタビ・ビット検出器105は、ビタビアルゴリズムを使用する。検出データは、外部機器とインターフェースを有するデータインタフェース装置107に供給される。例えば、データインタフェース装置107は、パーソナル・コンピュータとのインターフェースを提供する。
【0036】
光ディスク読み取り装置においては、ビタビ推定値のパフォーマンスが予想よりも低い傾向があることが確認されている。特に、ビタビ推定値のエラーのスペクトル特性がビタビ推定値に供給される信号のスペクトル特性から逸脱することが確認されている。例えば、図2は、ビタビ推定値の入力信号のスペクトルアナライザ出力測定結果を示す。例において、曲線201は、書き込まれたトラック、曲線203は書き込まれたトラックの近くの空トラック、および曲線205は範囲が空トラックの近くの空のトラックを示す。
【0037】
図示するように、トラックが空である場合、スペクトルは周波数の増加と共に若干の減少が強調されるにもかかわらず、比較的ホワイト(すなわち一定)であり、媒体ノイズによって支配される。エラースペクトルは、類似の特性を有すると予想されるであろうが、特性は例えば図3の曲線301に示されるように、ビタビ推定値のエラースペクトルは特徴的なものが得られる。
【0038】
本発明の発明者は、この挙動は、少なくともシンボル間干渉(ISI)に起因するものであり、これは、有色雑音およびビタビ推定値のパフォーマンス低下を少なくとも引き起こすことを見出した。
【0039】
図4は、本発明の実施例に従う最尤系列推定器の一例を示す。最尤系列推定器は、特に図1のビタビ・ビット検出器105であり、これを参照しつつ説明する。
【0040】
ビタビ・ビット検出器105は、光ディスク・データ読み取り装置101から信号を受信する信号受信器401を有している。信号受信器401は、シンボル間干渉プロセッサ403および補償プロセッサ405に接続されている。
【0041】
シンボル間干渉プロセッサ403は、第1の信号から補償信号を生成するように構成される。補償信号は、ビタビ・ビット検出器105の最尤系列推定(MLSE)により用いられるチャネル・モデル・ウィンドウの外にあるデータシンボルから生じているシンボル間干渉を反映する信号である。
【0042】
詳細には、信号受信器401からの信号の所与の信号サンプルに対して、シンボル間干渉プロセッサ403は、最尤系列推定のウィンドウの外にある光データ点に起因する信号成分を推定する。すなわち、この信号成分は、信号の歪みを表し、この歪みは、媒体から生じるものであって、最尤系列推定によって考慮されないものである。これは、最尤系列推定の入力の更なるノイズとして振る舞う信号成分となる。また、この信号成分は、最尤系列推定によって考慮されるウィンドウの中にあるいかなる光学データ・ポイントから生じるものでもない。
【0043】
シンボル間干渉プロセッサ403は、補償プロセッサ405に接続される。補償プロセッサ405は、シンボル間干渉プロセッサ403から補償信号で信号受信器401からの信号を補償することによって補償信号を生成するように構成される。具体例において、補償プロセッサ405は、信号受信器401の信号から補償信号を単に減算する。したがって、理想的なケースでは、その信号サンプルのための最尤系列推定によって考慮されない、光学データ・ポイントからの信号サンプルへのいかなる影響も、補償プロセッサ405によって取り除かれる。
【0044】
補償プロセッサ405は、最尤系列推定を行うビタビ・デコーダ407に接続される。最尤系列推定の実行およびビタビ復号は、例えば光ディスク読み取りシステムにおいて当業者に周知であるため、簡潔性および明確性のために説明し、本願明細書において更なる説明は省略する。
【0045】
図5は、所与の光学データ・ポイントの周囲のシンボル・サンプルからの信号サンプルに対する典型的な影響の一例を示す。(換言すれば、図5は所与のデータ値が、たたみ込まれているチャネルを例示したものと捉えることができる)図示するように、シンボル形状/チャネルは、多くの突出部を有し振幅が減少するSin x/x関数に似ている(しばしばAiry lopesと呼ばれる)。
【0046】
信頼性の高いデータ検出を実現するために、最尤系列推定は、所与のデータ・ポイントのためのチャネルを反映するチャネル・モデルを有する。このチャネル・モデルは、与えられた入力データから予測信号サンプルを決定するために用いられ、したがって、異なる状態遷移のための計量的数値を決定するために用いられる。しかしながら、複雑さを小さく維持するために、チャネル・モデルは、限られたサイズとなる。例えば、光ディスク読取装置の典型的なビタビ検出器は、しばしば5つのシンボル・サンプルのウィンドウを有するチャネル・モデルを使用する。しかしながら、これは、考慮されるシンボル間干渉を現在のシンボルの両側の2つのシンボルに制限する。他のシンボルからの影響が相当程度増加すると、最尤系列推定のパフォーマンスの悪化が起こる。例えば、図5の例で、現在のシンボルから(いずれの方向においても)3、4および5シンボル離れたデータシンボルの影響は、非常に大きい。
【0047】
図4の実施例において、シンボル間干渉プロセッサ403は、個々の信号サンプルに対して最尤系列推定のウィンドウの外にあるデータシンボルからのシンボル間干渉の影響に対応する補償信号を生成する。このように、具体例では、補償信号は、例えば現在のシンボルから(いずれの方向においても)3、4および5シンボル離れたシンボルからの影響を表す。
【0048】
補償プロセッサ405は、この付加的なシンボル間干渉の影響を受信信号から減算するが、最尤系列推定のウィンドウの中でのシンボル間干渉の影響については作用を及ぼさない。このようにして、最尤系列推定の処理に影響を及ぼさずに、シンボル間干渉を減少させる。特に最尤系列推定パフォーマンスを低下させるような歪を引き起こすことがない。このように、記載されている実施例では、(従来のシンボル間干渉除去のような)直接の隣接したシンボルからのシンボル間干渉を抑制する代わりに、ビタビ検出器の幅の外側にあるシンボルからの影響だけが抑制される。これはビタビ検出パフォーマンスを著しく高め、その一方で、補償信号を生成に使用した誤ったデータ決定により生じるエラーの波及は、ほとんど発生しない。
【0049】
補償信号を生成する適切な方法またはアルゴリズムであれば、いかなるものも用いることができることはいうまでもない。
【0050】
図4の実施例において、シンボル間干渉プロセッサ403は、受信信号からデータを復号するデコーダ409を有する。実施例において、デコーダ409は、ビタビ・デコーダ407よりも非常に単純な復号化アルゴリズムを使用する。
このように、デコーダ409は、非常に単純なアルゴリズムまたは復号化基準を使用する。これは、非常に単純で、しかもビタビ・デコーダ407が必要とするエラー率よりも潜在的に非常に高いエラー率でもって、推定データを提供する。具体例においては、単純な閾値による検出が使われる。具体的には、現在の単純なサンプルが予め定められた閾値を上回っている場合、データは一方の二進数の値をとり、そして、予め定められた閾値を下回っている場合、データ値が他方の二進数の値をとるように決定される。
【0051】
デコーダ409は、信号推定器411に接続される。信号推定器411には、最尤系列推定により用いられるチャネル・モデルより長いチャネル・モデルを用いる。例えば、図5によって与えられる値に対応するチャネル・モデルを用いることができる。なお、ビタビ・デコーダ407に対応させて、信号推定器411は例えば7、9または、11シンボル値を含むことができる。
【0052】
信号推定器は、復号データおよびチャネル・モデルが与えられると、信号受信器401から信号に対応した予測信号を決定するように構成される。例えば、チャネル・モデルは、畳み込まれた推定データの値から推定された信号を出力するFIR( Finite Impulse Response : 有限インパルス応答 )フィルタとして表現できる。チャネルがチャネル・モデルと同一であり、正しいデータが推定されたデータと同一であり、他のいかなる影響もない場合、推定された信号は信号受信器401によって受信される信号を表す。
【0053】
信号推定器411は、出力プロセッサ413に接続される。出力プロセッサ413は、推定された信号から補償信号を生成し、補償プロセッサ405にそれを供給する。
【0054】
出力プロセッサ413からの出力信号は、最尤系列推定のウィンドウの中のシンボルからの影響は抑制され、ウィンドウの外側での影響を含んでいる。
【0055】
この抑制は、後処理として実行されるか、または処理の中で固有に行われてもよい。最尤系列推定ウィンドウの外側からの影響のみ含むように、予測信号が生成される。
【0056】
本発明の実施例に従うプレコンペンセーションの実施例は、図6に例示される。この実施例は、特に図4の装置によって実装され得る。
【0057】
この例では、検出器601(検出器409に対応する)は、受信信号に基づいて予備的なデータビット(検出データ)を生成する。比較的高いエラー率となる単純閾値の検出が、多くの実施例において利用され得る。検出データは、2つの並列した基準レベル装置(RLU:Reference Level Unit)603、605に入力される。RLUは当業者に既知であるが、明確化のため以下に概説する。
【0058】
RLUは、所与の時間間隔のすべての可能なデータの組合せに係る平均値を計算することによって、測定されたシステムに対してチャネル・モデルを自動的かつ間接的な形で適合させる。基準レベルは、所与の変調ビットシーケンスによる信号の平均値を計算したものととらえることができる。
【0059】
5タップRLUに対して(5つのシンボル値の組合せを考慮する)可能な実装例を図7に示す。(仮の)検出変調ビットαと、同期した受信信号dとが共に入力される。クロックサイクルごとに、5つの変調ビットは4ビット・アドレスに変換される。これは16の基準レベルのうちの1つを示す。次に、この基準値は、例えば下記の式に従って受信されたdの値によって更新される:
RL(k)=(1−α)×RL(k−1)+α×d(k)
ここにおいて、αは、典型的に非常に小さい数値(例えば約0.01)であり、適切なフィルタ係数である。
【0060】
いうまでもなく、この例では、16の基準レベルだけが、5つのデータビットの組合せのために考慮される。なお、光読み取りシステムで典型的に用いられるRLL(Run Length Limitation)のため、有効データの数は、組合せが可能なデータの数より小さくなる。
【0061】
このように、RLUは、ローパスフィルタに通した、すなわち異なるデータビット組合せの平均信号値を生成し維持する。例えば、11111の入力系列のために、RLUは、このビット組合せ以前に計算された平均信号値に対応する基準値を維持する。このように、RLUは、所与のビット組合せのためのチャネルから予測信号値出力を示すチャネル・モデルを固有に実装する。この値は、RLUに以前に得られた値にローパスフィルタを施した値として自動的に生成され維持される。そしてこれは、本質的にチャネル・モデルを自動的におよび適応的に生成する。
【0062】
図6の実施例において、第1のRLU603(これは出力プロセッサ413によって実装される)は最尤系列推定のチャネル・モデル・ウィンドウに対応する多くのタップを有する。具体例では、5タップRLUが用いられる。このように、第1のRLUの基準レベルは、復号データの信号および最尤系列推定のチャネル・モデル・ウィンドウに対して予測される(平均値としての)信号を示す。換言すれば、基準レベルは、最尤系列推定により用いられる5つのデータシンボルに対応する5つのデータシンボルの長さを有するチャネルのために決定される。
【0063】
第2のRLU605(これは出力プロセッサ413によって実装される)は、より大きい数のタップ有し、チャネル・モデルのための予測信号を生成する。これは、最尤系列推定チャネル・モデル・ウィンドウの外側のシンボルを考慮する。具体的には、9タップRLUが使われる。
【0064】
このように、RLU603、605の出力は、受信器401を経て検出器601で測定される入力ビット信号の移動平均信号値である。なお、一方の出力が最尤系列推定によって考慮されるシンボルを考慮するだけであるのに対して、他方の出力はより多くのシンボルを考慮に入れ、多くのシンボル間干渉の影響を表す。これは、具体的には、光学点のAiry lopesによる影響を包含することになる。
【0065】
第1のRLU603の出力は、第1の減算器607(これは出力プロセッサ413によって実装される)によって、第2のRLU605の出力から減算される。これは、結果として最尤系列推定のウィンドウの外側でのシンボル間干渉を反映した補償信号になり、ウィンドウ内からの影響は抑制される。このように、この信号は、特にAiry lopesからのシンボル間干渉影響を反映することになる。
【0066】
第1の減算器607は、補償信号を信号受信器401からの原信号から減算する第2の減算器609(補償プロセッサ405によって実装される)に接続される。このように、第2の減算器609の出力は、原信号に対応するが、最尤系列推定によって考慮されるウィンドウの外にあるシンボル間干渉を補償したものとなる。これは、ビタビ検出器109に対して、雑音がより少ない入力信号となる。したがって、エラー率の低下およびパフォーマンスの改善が図れる。
【0067】
特に、上記のアプローチは、Airy lopesのシンボル間干渉を最尤系列推定への入力から取り除くことができるだけでなく、9タップ基準レベルによって抽出される得る非線形性を減少させることができる(これは、5タップ基準レベルでは抽出不可能である)。(例えば短いI2/I3/I4のランレングスに依存するエッジシフト)
シミュレーションは、特にエラースペクトルが媒体ノイズにより似ている結果を示している。さらにまた、9シンボルのプレコンペンセーション・ウインドウと組み合わさった、5シンボルの最尤系列推定ウィンドウ(5つおよび9つのタップRLUの使用に対応する)は、光ディスク読み取りシステムのための非常に有利なパフォーマンスを提供することがわかった。
【0068】
図6の実施例において、RLUは、基準レベルの測定によって予測データ値を生み出すために用いた。このように、実施例では、明確なチャネル・モデルは現れない(むしろ、これは現実のチャネルに依存する基準レベルによって暗黙に表される)。
【0069】
他の実施例では、シンボル間干渉プロセッサ403がシンボル間干渉を表しているチャネル推定を明示的に生成することができる。例えば、明確なチャネル・モデルはいかなる周知の技術(例えば最小自乗平均)に従っても決定することができる。そして、結果として生じるチャネル・モデルは推定された信号を決定するために用いることができる。
【0070】
例えば、信号推定器411は、最尤系列推定ウィンドウの中の信号成分を抑制した形で、推定された信号を補償信号として直接決定することができる。
【0071】
これは、例えば最尤系列推定のウィンドウの中でのすべての係数をゼロにセットして、チャネル・モデルを修正することによって達成できる。図5の実施例においては、現在のシンボルのための係数および両側の2つの周囲のシンボルは、ゼロにセットすることができる。修正されたチャネル・モデルで、検出器409からの検出データビットをたたみ込み演算することにより、直接的に補償プロセッサ405に供給される補償信号を生成することができる。
【0072】
明確化のため、前記説明は異なる機能単位およびプロセッサを参照して本発明の実施例を記載している場合がある。なお、異なる機能単位またはプロセッサに機能を適切に分配することにより、本発明の機能を損なわずに実施することができることは言うまでもない。例えば、別々のプロセッサまたはコントローラによって実行されることが示される機能性は、同じプロセッサまたはコントローラによって実行されることができる。したがって、論理構造、物理構造または組織を厳密に表すよりはむしろ、特定の機能単位の参照は、記載されている機能を提供するための妥当な手段の参照とみるべきである。
【0073】
本発明は、あらゆる適切な形を含んでいるハードウェア、ソフトウェア、ファームウェアまたはこれらのあらゆる組合せにより実現することができる。本発明は、一つ以上のデータプロセッサおよび/またはデジタルシグナルプロセッサ上のコンピュータソフトウェアで、少なくとも部分的に任意に実施することができる。本発明の実施例の要素およびコンポーネントは、適切な方法で物理的に、機能的に、そして、論理的に実施することができる。実際、機能は、単一ユニット、複数の装置、または、他の機能単位の一部として実施することができる。本発明は、単一ユニットで、または、異なる装置およびプロセッサの間に物理的にあるいは機能的に分配する形で、実施することができる。
【0074】
本発明のある実施例と関連して記載されていても、それは本願明細書において記載される特定の形に限られていることを目的としているわけではない。むしろ、本発明の範囲は、添付の請求の範囲のみによって限定される。加えて、特徴は、特定の実施例と関連して記載されているようにとらえることができるが、当業者は、記載されている実施例のさまざまな特徴が本発明に従って結合することができると認識する。請求項において、「有する(comprising)」という用語は、他の要素またはステップの存在を除外しない。
【0075】
さらに、複数の手段、要素または方法ステップが個々にリストされているにもかかわらず、これらは、例えば単一ユニットまたはプロセッサで実装することができる。加えて、個々の特徴が異なる請求項に含まれるにもかかわらず、これらは都合よく結合することができる。そして、異なる請求項への記載は、複数の特徴の組合せが可能でなくおよび/または有利でないことを意味するものではない。また、請求項の1つのカテゴリにおける特徴の包含は、このカテゴリへの制限を意味するものではなく、特徴が他の請求項カテゴリに適当に等しく適用できることをむしろ示す。さらに、請求項の特徴の順番は、固定された順番を示すものではない。そして、特に方法クレームにおける個々のステップの順序は、ステップがこの順序で実行されなければならないことを意味するものではない。むしろ、ステップは、適切ないかなる順序でも実行することができる。加えて、単一の特徴は、複数を除外しない。すなわち、「a」「an」「第1」「第2」などの付加は、複数を排除するものではない。請求項における参照番号は、単に実施例の明確化のためのものであって、いかなる形であれ請求項の範囲を制限するものとして解釈されることはない。
【図面の簡単な説明】
【0076】
【図1】本発明の実施例に従う光ディスク読取装置の実施例を示す図である。
【図2】光ディスク読取装置からの信号のスペクトルの一例を示す図である。
【図3】光ディスク読取装置のビタビ推定器の誤差スペクトル整形の一例を示す図である。
【図4】本発明の実施例に従う最尤系列推定を実行する装置を示す図である。
【図5】光ディスク読取装置のチャンネル応答の一例を示す図である。
【図6】本発明の実施例に従う最尤系列推定のためのプレコンペンセーションを実行する装置を示す図である。
【図7】基準レベル装置の一例を示す図である。

【特許請求の範囲】
【請求項1】
第1の信号のデータ復号化のための最尤系列推定器であって:
前記第1の信号を受信するための受信手段;
前記第1の信号から補償信号を生成するための第1の手段であって、前記補償信号は最尤系列推定のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表すところの第1の手段;
前記補償信号で前記第1の信号を補償することによって、補償された信号を生成するための第2の手段;および
前記補償された信号に対して前記最尤系列推定を実行することによって前記第1の信号のデータ復号化を行う手段
を有する最尤系列推定器。
【請求項2】
請求項1に記載の最尤系列推定器であって、前記第1の手段が、
前記第1の信号から復号データを得るための復号化手段;
前記復号データおよび第1の長さのチャネル・モデルに応答して第2の信号を生成するための第3の手段であって、前記第1の長さは前記最尤系列推定の前記チャネル・モデル・ウィンドウより長いところの第3の手段;および
前記第2の信号に応答して、前記補償信号を生成するための第4の手段
を有する最尤系列推定器。
【請求項3】
前記第3の手段が、前記最尤系列推定の前記チャネル・モデル・ウィンドウの中での前記チャネル・モデルと関連した影響を抑制する請求項2に記載の最尤系列推定器。
【請求項4】
第3の手段が、最尤系列推定のチャネル・モデル・ウィンドウの中でのチャネル・モデルの係数が実質的にゼロになるようセットされる請求項3に記載の最尤系列推定器。
【請求項5】
請求項2に記載の最尤系列推定器であって、前記第1の手段が:
前記復号データおよび第2の長さのチャネル・モデルに応答して第3の信号を生成するための第4の手段であって、前記第2の長さは前記最尤系列推定の前記チャネル・モデル・ウィンドウと実質的に同一であるところの第4の手段;および
前記第2の信号および前記第3の信号の差に応答して前記補償信号を生成するための手段を有する前記第4の手段
を更に有する最尤系列推定器。
【請求項6】
請求項5に記載の最尤系列推定器であって、前記第3の手段が第1の基準レベル装置を有し、かつ前記第4の手段が、前記第1の基準レベル装置より少ないタップを持つ第2の基準レベル装置を有する最尤系列推定器。
【請求項7】
前記第1の基準レベル装置が9つのタップを有し、かつ前記第2の基準レベル装置が5つのタップを有する請求項6に記載の最尤系列推定器。
【請求項8】
前記復号化手段が、閾値復号でデータ値を測定するための手段を有する請求項2に記載の最尤系列推定器。
【請求項9】
光ディスク読み取り装置であって:
光ディスクを読み取ることによって、第1の信号を生成するためのディスク読取装置;および
前記第1の信号のデータ復号化のための最尤系列推定器であって:
前記第1の信号を受信するための受信手段、
前記第1の信号から補償信号を生成するための第1の手段であって、前記補償信号は最尤系列推定のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表すところの第1の手段、
前記補償信号で前記第1の信号を補償することによって補償された信号を生成するための第2の手段、および
前記補償された信号に対して前記最尤系列推定を実行することによって前記第1の信号のデータ復号化を行う手段を有する最尤系列推定器
を有する光ディスク読み取り装置。
【請求項10】
第1の信号のデータ復号化の方法であって;
前記第1の信号を受信するステップ;
前記第1の信号から補償信号を生成するステップであって、前記補償信号は最尤系列推定のチャネル・モデル・ウィンドウの外側でのシンボル間干渉を表しているところのステップ;
前記補償信号で前記第1の信号を補償することによって補償された信号を生成するステップ;および
前記補償された信号に対して前記最尤系列推定を実行することによって前記第1の信号のデータ復号化を行うステップ
を有する方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2009−532816(P2009−532816A)
【公表日】平成21年9月10日(2009.9.10)
【国際特許分類】
【出願番号】特願2009−503707(P2009−503707)
【出願日】平成19年3月29日(2007.3.29)
【国際出願番号】PCT/IB2007/051108
【国際公開番号】WO2007/113747
【国際公開日】平成19年10月11日(2007.10.11)
【出願人】(590000248)コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ (12,071)
【Fターム(参考)】