説明

樹脂製環状ワーク用溶融ヒータと溶着機

【課題】融点の高い小径の樹脂製環状ワークであっても所定の高温状態まで加熱して強固に溶着でき、環状ワークの端面形状に適した温度分布に発熱してこれらを均等に溶融して接合でき、全体のコンパクト性を確保して溶着機の小型化も可能な樹脂製環状ワーク用溶融ヒータと溶着機を提供する。
【解決手段】矩形状導電性セラミック製のヒータプレート1の両面の左右方向の両端に電極部2を施した樹脂製環状ワーク用溶融ヒータである。この溶融ヒータは、ヒータプレート1の上下方向に施した電極部2の長さL1がヒータプレートの上下方向の長さL2より短く形成され、ヒータプレート1の発熱領域Tが円錐形状の温度分布になっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂製の環状ワークの管端同士を溶着機で溶着する場合に用いる樹脂製環状ワーク用溶融ヒータに関し、特に、半導体製造分野で用いられる小径の環状ワークを接合する場合に適した非接触型の溶融ヒータと溶着機に関する。
【背景技術】
【0002】
従来より、特に、半導体製造分野の製造ラインで用いられるパイプには、耐薬品性、耐熱性、高いクリーン度などが要求される。これらの要求を満足するパイプとしては、例えば、PFA(パーフルオロアルコキシエチレン共重合樹脂)などのフッ素樹脂が最も適していると言われている。半導体製造ラインの管路で使用されるパイプは、フッ素樹脂製の溶着継手同士、又は継手とチューブの環状熱可塑性樹脂からなるワーク同士を溶着させることで設けられる場合がある。この場合、端面突合せ溶着により環状ワークを接合することが多く、その際には溶着機が用いられる。溶着機でワークを溶着する場合、この溶着機には非接触型のヒータが設けられ、このヒータで両ワークの端面を加熱溶融させてワーク端面が適切な溶融状態になったときにワーク同士を押付けて溶着する。
【0003】
この種の溶着機用のヒータとしては、例えば、2枚のセラミック板からなる発熱板の間に電熱線が配置された構造のヒータが用いられることが多い。このヒータは、電熱線に電圧を印加したときにこの電熱線の発熱がセラミック板に伝熱され、発熱板が発熱してワークを溶融させるようになっている。
一方、特許文献1に開示されている薄板状遠赤外線ヒータは、二重構造のセラミック層を発熱板とし、セラミック層の端部側と側面部とにアルミニウム溶射膜による電極が設けられた構造になっている。このヒータは、ワーククランプにより同軸上にクランプされたパイプの管端面の間に近接して配置され、電極に接続された端子部の導線を介して電圧を印加したときにセラミック層が発熱し、この発熱によりワークが溶融するようになっている。同文献のヒータは、側面部断面電極の溶射長さを変えることで電極の発熱温度を調整して発熱を抑えることが可能になっており、このヒータは、端部側と側面部とにおける電極配置により端子部の発熱を抑えて温度分布の制御を可能にしようとするものである。
また、この種のヒータとして、セラミック板の両側にアルミニウムからなる薄膜状電極が設けられ、更に、発熱板の電極配置側を伸ばしてこの発熱板の左右方向の寸法を上下方向の寸法よりも長くしたヒータが知られている。
【0004】
特に、半導体分野で使用されるパイプの接合後の形状は、接合部が適切な溶融量で全周が均一であることが望ましく、上記のようなヒータを用いてワークを溶着する場合には対向するワーク両端を均等に溶融させて溶着する必要がある。そのため、ヒータは、表裏面のそれぞれの発熱温度が一定で、溶融するワークに適した均一な熱分布であることが要求されている。この場合、PFA等のフッ素樹脂の融点は、ポリエチレンなどの一般的な樹脂に比較して高いため、ヒータの発熱温度を高く設定することが重要になっている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−313156号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、2枚のセラミック板の間に電熱線が配置された構造のヒータにおいては、時間の経過により電熱線が酸化して発熱バランスが崩れたり、電熱線の膨張収縮等により配列が崩れて発熱温度に差が生じることがある。これにより、例えば、ワーク端面の内径側付近の温度が約300℃、外径側付近の温度が約500℃程度になると、円形であるワークに対する発熱温度が均等でなくなってワークの溶融ムラが生じることがある。この溶融ムラにより溶融不足や溶融過多が起き、その結果、接合後のパイプの形状を円形に保つことが難しくなったり、溶着不良を起こす可能性が有る。この場合、溶融不足は強度不足につながり、溶融過多はボイドが生じる可能性がある。特に、小径のワークを溶着する場合にはこれらの傾向がより顕著になって溶融ムラが大きくなり、溶着後のパイプの仕上がりが安定し難くなる。また、発熱板が導電性セラミック板である場合、通常の帯状電極であるときに同一の温度領域を広げるためにワークの直径に対して温度領域を長くとる必要がある。
【0007】
前述の特許文献1におけるヒータは、側面部断面電極の溶射長さを調整することで、発熱温度の調整をすることが可能になっている。しかし、この構造は、電極部の端子部の発熱を抑えるためのものであり、ワークを溶着するための加熱部分の温度調整することはできない。このため、ワークの端部同士を均熱状態に加熱して溶着することは難しい。
一方、薄膜状電極を有する発熱板であり、特に、発熱板の左右を上下よりも長くしたヒータは、ワークを加熱する部分の発熱温度の差を少なくすることは可能になる。しかし、このヒータは全体の寸法が大きくなるというデメリットがある。従って、このヒータの大型化に伴って、溶着機全体の大型化も避けられない。しかも、大型化したヒータにより小径ワークを加熱する場合、セラミック板の中央付近を均熱状態に保持することが難しくなり、フッ素樹脂の融点が高いことからヒータの中央付近を加熱するために大きな電力が必要になる。
【0008】
本発明は、上記の課題点を解決するために開発したものであり、その目的とするところは、融点の高い小径の樹脂製環状ワークであっても所定の高温状態まで加熱して強固に溶着でき、環状ワークの端面形状に適した温度分布に発熱してこれらを均等に溶融して接合でき、全体のコンパクト性を確保して溶着機の小型化も可能な樹脂製環状ワーク用溶融ヒータと溶着機を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するため、請求項1に係る発明は、矩形状導電性セラミック製のヒータプレートの両面の左右方向の両端に電極部を施した樹脂製環状ワーク用溶融ヒータであって、ヒータプレートの上下方向に施した電極部の長さをヒータプレートの上下方向の長さより短く形成してヒータプレートの発熱領域を円錐形状の温度分布とした樹脂製環状ワーク用溶融ヒータである。
【0010】
請求項2に係る発明は、電極部の上下方向の長さをヒータプレートの上下方向両端より短くしてヒータプレートの長さに対する電極部の当該長さを50%〜70%の範囲にした樹脂製環状ワーク用溶融ヒータである。
【0011】
請求項3に係る発明は、ヒータプレート両面の両端部位にアルミニウム溶射蒸着により電極部を施した樹脂製環状ワーク用溶融ヒータである。
【0012】
請求項4に係る発明は、環状ワークをPFAなどのフッ素樹脂から成るチューブとし、この一対のチューブの両端面を均熱状態に加熱させた樹脂製環状ワーク用溶融ヒータである。
【0013】
請求項5に係る発明は、チューブは、肉厚が1〜2.2mmに相当するA呼称又はB呼称のサイズに対応した外径を有するチューブである樹脂製環状ワーク用溶融ヒータである。
【0014】
請求項6に係る発明は、樹脂製環状ワーク用溶融ヒータを搭載し、環状ワークを突き合わせ溶着により溶着可能に設けた溶着機である。
【発明の効果】
【0015】
請求項1に係る発明によると、電極部の長さをヒータプレートの上下方向の長さより短く形成してヒータプレートの発熱領域を円錐形状の温度分布としているので、融点の高い小径の樹脂製環状ワークであっても高温状態まで加熱して溶着でき、ワークの端面形状に適した温度分布に発熱してこれらを均等に溶融させた状態で接合可能となる。特に、不均等な内面ビードの発生を防止し、流路面積の減少を抑えて流路を確保して、汚染物質の付着やバクテリア等の雑菌の発生・繁殖を防止し、マイクロバブルの発生も抑制することができる。本発明の溶融ヒータは、特に半導体産業分野に好適であり、例えば、半導体製造プロセス配管に求められる高度な要求をクリアし、端面突き合わせ溶着による完全シールを実現し、接続部内面に摺動部分が無いためパーティクル特性にも優れ、しかも、その溶着部分は他の部分に比べて高い強度を有している。更に、耐熱性を確保して全体のコンパクト性や軽量化を確保できるため配管スペースの減少にも有効であり、溶着機の小型化にも寄与している。
【0016】
請求項2に係る発明によると、ヒータプレートの長さに対する電極部の長さを所定の範囲内に設定でき、この電極部によりワーク端面を均等に溶融して接合できる。しかも、電極部の長さを調整することで発熱領域の円錐形状の温度分布の精度をより向上させ、環状ワーク端面を円周上にさらに均等に溶融させ、接合後のワークの接合状態のバラツキを回避して品質を向上できる。
【0017】
請求項3に係る発明によると、ヒータプレート両面の両端部位にアルミニウム溶射蒸着することで所定長さの電極部を容易に形成できる。そのため、任意の形状のヒータプレートに対しても電極部の大きさを調整して円錐状の発熱領域を設けることができ、電極部によるヒータプレートの均等の伝熱を確実に発揮させることが可能になる。
【0018】
請求項4に係る発明によると、主に半導体製造分野で使用され、特に融点が高く、溶着が困難であるPFAなどのフッ素樹脂から成るチューブを高い精度で均一に溶着でき、内周ビードを最小限に抑えて半導体製造用ガス供給時に不純物の混入やパーティクルの発生を防ぐことができる。
【0019】
請求項5に係る発明によると、肉厚が1〜2.2mmに相当するA呼称又はB呼称の各種のサイズに対応した外径を有する既製チューブを環状ワークとして利用でき、例えば、外径φ6〜φ39mm程度のチューブを溶着する場合に好適である。
【0020】
請求項6に係る発明によると、ワークを均等に溶融させて接合できる溶着機を提供でき、この溶着機により環状ワーク端面を溶融し、付き合わせ溶着により簡単にこれらを溶着して内面ビードが均一で品質の高いチューブを設けることができる。
【図面の簡単な説明】
【0021】
【図1】本発明の樹脂製環状ワーク用溶融ヒータの実施形態を示す斜視図である。
【図2】溶融ヒータの取付け状態を示す正面図である。
【図3】溶融ヒータの取付け状態を示す概略側面図である。
【図4】溶融ヒータの熱伝導状態を示す模式図である。
【図5】電極部を延設した溶融ヒータにおける熱伝導状態を示す模式図である。
【図6】環状ワークの溶着工程を示す概略側面図である。
【図7】溶着機本体を示す概略図である。
【図8】溶着機本体を示す概念図である。
【図9】ヒータプレート比60%の電極部の溶融ヒータの熱画像データ及び温度分布解析結果を示した写真である。
【図10】ヒータプレート比50%の電極部の溶融ヒータの熱画像データ及び温度分布解析結果を示した写真である。
【図11】ヒータプレート比70%の電極部の溶融ヒータの熱画像データ及び温度分布解析結果を示した写真である。
【図12】ヒータプレート比75%の電極部の溶融ヒータの熱画像データ及び温度分布解析結果を示した写真である。
【図13】本発明の溶融ヒータの発熱状態を示した模式図である。
【図14】比較品1のヒータの発熱状態を示した模式図である。
【図15】比較品2のヒータの発熱状態を示した模式図である。
【発明を実施するための形態】
【0022】
以下に、本発明における樹脂製環状ワーク用溶融ヒータと溶着機の好ましい実施形態を図面に基づいて詳細に説明する。図1においては、本発明の樹脂製環状ワーク用溶融ヒータの斜視図を示しており、図2においては、溶融ヒータの取付け状態を示している。
【0023】
図1に示すように、本発明の樹脂製環状ワーク用溶融ヒータ(以下、溶融ヒータという)は、ヒータプレート1と電極部2とを有している。ヒータプレート1は、導電性セラミック製から成り、適宜の厚さによって矩形状に形成されている。電極部2は、ヒータプレート1の両面の左右方向の両端にそれぞれ施されている。ヒータプレート1における電極部2が施される任意の位置には表裏面側に貫通する貫通穴3が設けられている。
【0024】
電極部2は、例えば、アルミニウム製からなり、ヒータプレート1両面の両端にそれぞれ溶射蒸着により施される。この場合、電極部2はヒータプレート1の上下方向に施され、この上下方向の長さL1はヒータプレート1の上下方向の長さL2より短く形成される。これにより、ヒータプレート2において、図2の二点鎖線に示した発熱領域Tが円錐形状の温度分布となる。発熱領域Tは、電極部2に電圧を印加したときに、熱伝導によって電極部2間のヒータプレート1における略正方形状の部位に形成される領域である。
【0025】
ここで、「発熱領域Tが円錐形状の温度分布である」とは、ヒータプレート1の中心部に温度分布の縦軸と横軸とを設定したときに、縦軸と横軸とがそれぞれ山なりの曲線になり、しかも、これらが略同一形状の曲線になる場合をいう。この場合、この上下方向と左右方向との温度分布によりヒータプレート1の中心部が最も高温になり、この中心部から離れるに従って徐々に低温化する円錐形状の温度分布の発熱領域Tが形成される。
【0026】
本実施形態では、電極部2の上下方向の長さL1をヒータプレート1の上下方向の長さL2の両端より同寸法に短くし、ヒータプレートの長さL2より電極部の当該長さL1を60%の長さに設けているが、このヒータプレート1の長さL2に対する電極部2の当該長さL1を、50%〜70%の範囲に設定することができる。
【0027】
電極部2には延長部材5が取付けられ、この延長部材5は、例えば、ニッケル等の酸化性に優れ、電極部よりも熱膨張率の低い金属材料により長尺状に設けられている。延長部材5は、貫通穴3を介して一端側がボルトナット6により固着され、自由端側が適宜の材料より成る断熱材7にボルトナット6により固着されている。延長部材5の最も他端部側にはボルトナット6により端子部8が取付けられており、この端子部8には電線4が繋がっている。電線4は、図示しない電源に接続され、後述する溶着機本体20を制御することで、この電線4から延長部材5を介して電極部2に電圧を印加可能になっている。このように、延設部材5を介して電極部2から離間させた位置に端子部8を設けることで、電極部2の高温化による端子部8の消耗を防いでいる。電極部2に電圧を印加した場合には、ヒータプレート1の発熱領域Tの温度が500℃程度になることが望ましい。
【0028】
溶融ヒータは、図2に示すようなヒータプレート1が横長となる向きで使用する以外にも、ヒータプレート1が縦長となる向きで使用することもでき、この場合には、電極部2がヒータプレート1の上下に配設される。更に、ヒータプレート1を斜めにして使用することもでき、溶着機本体20の態様によってその向きを適宜変えることができる。
【0029】
図3に示した本発明の溶融ヒータにより溶融される環状ワーク10は、PFA、変性PTFEなどの熱可塑性を有するフッ素樹脂から成るチューブ又はパイプである。本実施形態では、環状ワーク10として、肉厚が1〜2.2mmに相当するA呼称又はB呼称のサイズに対応した外径を有するチューブを用いている。例えば、この肉厚1〜2.2mmに相当するサイズのチューブとしては、外径φ6〜φ25mmのチューブや外径φ1/8〜φ1・1/2インチのチューブがある。外径φ6mm以下のチューブや、或は、外径φ1・1/2インチ以上のチューブを環状ワーク10として用いることも可能である。
【0030】
更に、環状ワーク10は、熱可塑性を有する樹脂であればフッ素樹脂以外であってもよく、例えば、塩化ビニリデン、塩化ビニル、酢酸ビニル、ポリビニルアルコール、スチロール、ABS、ポリカーボネート、ポリエチレン、超高分子ポリエチレン、ポリプロピレン、アクリル、ブチレート、アセテート、ポリアミド、ポリアセタール、AS、フッ化ビニリデンなどの樹脂材料により形成するようにしてもよい。環状ワーク10をフッ素樹脂により形成した場合には、この環状ワーク10内を流れる半導体製造用の薬液やガスなどの流体に対する耐薬品性や耐熱性を発揮し、パーティクルの発生を防いで高いクリーン度を発揮できるが、この場合には溶融させるための温度を高くする必要が生じる。
これらの何れかを環状ワーク10として用いるようにし、この一対のチューブ10、10の両端面を上記溶融ヒータにより均熱状態に加熱して溶着可能である。
【0031】
続いて、本発明の溶融ヒータを加熱するための溶着機を説明する。
図7(a)においては溶着機本体の概略平面図、図7(b)においては溶着機本体の概略正面図を示している。また、図8においては、溶着機本体の概念図を示している。溶着機本体は、上述した溶融ヒータを搭載し、環状ワークを付き合わせ溶着により接合するものである。
【0032】
同図において、溶着機本体20は、移動機構22、クランプ32、ストッパ31、退避機構23、制御機構24を有している。
移動機構22は、ボールネジ28、モータ29を備え、モータ29により回転するボールネジ28を介して、棒状のガイド部30に沿って前進或は後退可能に取付けられている。クランプ32は、移動機構22とこの移動機構22と対向する部分に設けられており、このクランプ32により左右の環状ワーク10、10を調芯状態で取付け可能になっている。ストッパ31は、クランプ32を前進或は後退させた状態で任意の位置で締め付け可能であり、このストッパ31を緩めることでクランプ32同士の間隔を調整し、締め付けることで溶着作業時にクランプ32を所定位置に固定することができる。
【0033】
退避機構23は、ハンドル33、ヒータ取付け部34を有し、このヒータ取付け部34に前述した溶融ヒータを取付け可能になっている。退避機構23は、ガイド部30に対して横移動並びに枢着回転可能に取付けられ、ガイド部30を介して定位置に設置された状態で微調整でき、ガイド部30を介して任意の位置まで横移動させ、ハンドル33を手動で操作回転することでクランプ32に把持された左右の環状ワーク10、10の間に溶融ヒータを持ち上げて配置し、或は、この環状ワーク10、10の間から溶融ヒータを退避させて溶着機本体20に形成された図示しない収納ボックスに収納可能になっている。図示しないが、退避機構23は、自動操作機構により回転操作することもできる。
【0034】
制御機構24は、工程歩進スイッチ35、操作パネル36を有している。制御機構24は、工程歩進スイッチ35のオンにより動作可能となり、操作パネル36を介して移動機構22の動作を制御したり、溶融ヒータの加熱を制御して環状ワーク10、10を溶融させて溶着することが可能になっている。
上記した溶着機本体20は、あくまでも例であって、溶融ヒータを所定温度まで加熱して環状ワーク10を溶着可能な構造を有していれば、突き合わせ溶着機以外のあらゆる溶着機を用いることが可能である。
【0035】
図3、6において、溶着機本体20を用いて環状ワーク10、10を溶着する場合は、予め、図示しないヒータ電源スイッチを溶着作業前にオンにして溶融ヒータを適切な温度に加熱すると共に、クランプ32に環状ワーク10を調芯状態で取付け、移動機構22を調整して、溶融ヒータに対して環状ワークの端面10a、10aを適切な位置に配置し、この状態でストッパ31によりクランプ32を位置決め状態で固定する。このとき、環状ワーク端面10aと溶融ヒータは、非接触状態であることが重要である。その際、環状ワーク端面10aと溶融ヒータとが近接しすぎると、ワーク端面温度が高くなり、分解ガスの発生量も増えることになる。環状ワーク端面10aと溶融ヒータとの隙間は、例えば、1.0〜1.2mm程度であることが望ましく、この場合にはワーク端面温度を400℃前後に加熱しやすくなる。
【0036】
溶融ヒータは、操作パネル36により設定された状態で、常に適切に制御されており、印加された電圧が電線4、延長部材5を介して電極部2に印加されて図2の発熱領域Tを中心にヒータプレート1が発熱する。
この状態で、工程歩進スイッチ35をオンにし、操作パネル36により制御しながら図6(b)に示すように、ヒータプレート1の発熱領域Tにおいて環状ワーク端面10aを所定時間加熱して溶融させる。このとき、ヒータプレート1の上下方向に施した電極部2の長さをこのヒータプレート1の上下方向の長さより短く形成して発熱領域Tを円錐形状の温度分布にしているため、環状ワーク端面10aの円周上を均等に溶融させることができる。溶融ヒータの表裏面は、略同様の発熱の分布形状になっており、電極部2の近傍は、熱放射によって発熱領域Tの中心よりも温度が下がった状態となる。環状ワーク端面10a部位を溶融させる場合、例えば、この端面側から0.8〜1.2mm程度の溶融深度(溶かし代)であるとよく、このときには全周を適切な状態で溶着しやすくなる。
【0037】
環状ワーク端面10aが溶着に適した溶融状態まで到達した場合には、ハンドル33の操作により環状ワーク端面10aから溶融ヒータを退避させる。続いて、図6(c)に示すように、移動機構22を押付け方向に移動させて環状ワーク端面10a、10a同士を密着させる。この場合、制御機構24により移動機構22の動作を制御しながら環状ワーク端面10a、10a同士を所定の距離及び速度で押付け圧接させ、この接合状態を一定時間加圧保持することで環状ワーク10を適切な状態に溶着することができる。
【0038】
更に、この一定時間の加圧保持前に、例えば、本件出願人が出願した特許第3910567号の溶着方法を用いて、溶融接合したチューブを突き合わせ方向と逆方向に引き伸ばす工程を経るようにしてもよい。
その後、クランプから接合したチューブを取外し、適宜の設備により冷却することで管路等に利用可能な所定形状のチューブを設けることができる。
【0039】
上述したように、本発明の樹脂製環状ワーク用溶融ヒータは、ヒータプレート1の発熱領域Tを円錐形状の温度分布に加熱しているので、溶融時の環状ワーク端面10aの円周上の温度のバラツキを解消し、溶融ムラを防いだ状態でこの環状ワーク10、10同士を均一に溶着することができる。
【0040】
このときの溶着過程におけるメカニズムを詳述すると、導電性セラミック製ヒータであるヒータプレート1は、両電極部2、2に電圧が印加されたときに、この電極部2に直線的に電気が流れる性質がある。この場合、電極部2の幅を広くすると電流面積が大きくなるため発熱量が多くなり、ヒータプレート1全体が発熱する。一方で、この状態から電極部2の幅を狭くした場合、電流面積が小さくなり発熱面積が小さくなる。その際、ヒータプレート1における電流が流れていない部分は電流が流れている(発熱している)部分からの熱伝導により発熱して、図4に示すように電極部2に近い部分においては発熱が放射される。
【0041】
本発明の溶融ヒータにおいては、電極部2の幅を変えることにより発熱領域Tの発熱形状を変えて環状ワーク10の溶着に適した円錐状の温度分布を形成可能にしている。しかも、電極部2の上下方向の長さをヒータプレート1の上下方向の長さの50%〜70%の範囲としていることで、このヒータプレート1のサイズを最小寸法に維持しながら環状ワーク端面10aを溶融させる温度に加熱できる。
【0042】
そのため、溶融ヒータのコンパクト化が可能であり、これにより溶着機本体20を小型化することもできる。溶着時には環状ワーク10を適切な溶融状態にして溶着できるため、環状ワーク端面10aを溶かし過ぎることがなく、この環状ワーク端面10aの全域を均熱状態で加熱して溶着して略均等な厚さのビードを形成することができる。このとき、延長部材5を介して電極部2に電圧を印加していることで、端子部8の劣化による経年変化を抑えて長期に亘ってヒータプレート1を所定の温度分布に加熱して安定した溶着を実施できる。
【0043】
更に、特許第3910567号の溶着方法を用いて溶融接合したチューブを突き合わせ方向と逆方向に引き伸ばした工程を経ることにより、内面ビードを引き伸ばしてチューブ内面を滑らかな状態にすることが可能になる。
【0044】
なお、図5に示すように電極部11を延設し、この電極部11をヒータプレート1の上下方向の長さと同じ長さL3に設けた場合には、この電極部11の上下方向においては電極部位が存在しないためヒータプレート1の温度分布は略一定になる。しかし、電極部11の左右方向においては非発熱であり、この電極部11に近づくにつれて温度が下がる性質があることから、ヒータプレート1の中心から電極部11に向けて温度が下がることになる。そのため、ヒータプレート1の上下方向と左右方向との温度分布が極端に変わり、円錐形状の温度分布の発熱領域を得ることができない。従って、環状チューブ端面10aを溶融させるときの温度にバラツキが生じる。
【実施例1】
【0045】
次に、樹脂製環状ワーク用溶融ヒータに電圧を印加してヒータプレートの表面温度を実験により測定し、その評価をおこなった。
この実験に用いる溶融ヒータのヒータプレートの上下長さを50mm、左右幅を80mm、厚さを5mmとした。ヒータプレートの両面部位には、左右幅が15mmであり、上下長さをヒータプレート上下長さの60%、50%、70%、75%に設けた電極部をアルミニウム溶射蒸着によりそれぞれ設けた。このうち、60%の電極部の間の発熱領域は、一辺が50mmの略正方形になる。これらは、何れも両面の電極部が側面で繋がっている。溶融ヒータは、クランプにより上記した溶着機に取付けられ、電源からの電圧印加により発熱し、移動機構、退避機構、制御機構を用いて環状ワークが加熱される。
【0046】
これらの溶融ヒータを、ヒータプレートの中心部が好ましくは500℃程度になるように制御機構で制御しながら溶着機により加熱し、所定時間経過させて温度を安定させ、このときの熱画像データと温度分布を解析した。図9〜図12においては、ヒータプレートの一端側の熱画像データと温度分布解析とをそれぞれ示している。これらは、ヒータプレートの他端側においても略同様の結果である。
【0047】
図9(a)、図10(a)、図11(a)、図12(a)に示す熱画像データにおいては、ヒータプレートの中心部から離れるに従って温度が下がり、略同一の温度部分が環状に示される。
図9(b)、図10(b)、図11(b)、図12(b)に示す温度分布解析では、ヒータプレートの中心部から上下方向で25mmまでの範囲の温度分布を解析した結果を示している。図9(c)、図10(c)、図11(c)、図12(c)に示す温度分布解析では、ヒータプレートの中心部から左右方向で25mmまでの範囲の温度分布を解析した結果を示している。これらを組合わせることで、φ50mm発熱領域内の温度分布を解析できる。図中、一点鎖線で示した垂線はヒータプレートの中心部から直径1インチの仮想円の位置、二点鎖線で示した垂線はヒータプレートの中心部から直径1・1/4インチの仮想円の位置、破線で示した垂線はヒータプレートの中心部から直径1・1/2インチの仮想円の位置をそれぞれ示している。これらの仮想円の所定の径のチューブを配置して溶融させることになる。
【0048】
図の結果より、溶融ヒータの温度分布は中心部の温度が最も高く、中心部から離れるにつれて徐々に温度が下がる、発熱領域が円錐形状の温度分布になることが確認された。溶融ヒータの一つの温度領域内に環状チューブの肉厚部分を配置し、この肉厚部分の端面を溶融することによりこの端面を均熱状態で溶融し、環状チューブ内面を均一状態に溶着できる。
【0049】
図9においては、ヒータプレートの上下方向の長さに対して電極部の上下長さを60%に設けた溶融ヒータの熱画像データ及び温度分布解析結果を示している。この場合、図9(a)に示すように、熱画像による温度分布はほぼ中心部から円錐形状になっており、図9(b)、図9(c)に示すように、何れの仮想円においてもそれぞれ温度が略等しくなっている。更に、直径1インチの仮想円の内側においても略円錐形状の温度分布になっている。
【0050】
図10においては、ヒータプレートの上下方向の長さに対して電極部の上下長さを50%に設けた溶融ヒータの熱画像データ及び温度分布解析結果を示している。図10(a)に示すように、熱画像による温度分布は、円錐形状熱分布が横にやや潰れた形状になってはいるが、図10(b)、図10(c)において、何れの仮想円においてもそれぞれの温度を略等しく維持できる。
【0051】
図11においては、ヒータプレートの上下方向の長さに対して電極部の上下長さを70%に設けた溶融ヒータの熱画像データ及び温度分布解析結果を示している。図11(a)に示すように、熱中心域がヒータプレートに対してやや上方に寄っているが、熱画像による温度分布は円錐形状熱分布に近い形状になる。そのため、図11(b)、図11(c)に示すように、直径1インチ程度の環状ワークであれば略等しい温度分布で端面を溶融できる。
【0052】
図12においては、ヒータプレートの上下方向の長さに対して電極部の上下長さを75%に設けた溶融ヒータの熱画像データ及び温度分布解析結果を示している。この場合には、図12(a)に示すように、縦長状の熱分布となり、図12(b)、図12(c)において何れの仮想円においても温度を均等に維持することが難しくなる。そのため、環状ワークの溶融には不適当となる。
【0053】
これらの実験結果から、ヒータプレート比60%の長さの電極部を有するヒータプレートの発熱領域の温度分布が円錐状に最も近くなり、環状パイプを溶融する際に特に有効であることを確認できた。電極部の長さとしては、ヒータプレート比60%を中心として±10%程度が円錐状に近い熱分布ができる範囲となり、このようなヒータプレート比50%〜70%の電極部の長さが環状ワークを均等に溶融させながら溶着できる臨界値であるといえる。
【0054】
同図の結果より、左右の溶融ヒータの温度分布は、ともに中心部の温度が最も高く、この中心部から離れるにつれて徐々に温度が下がる略同形状の円錐形状の温度分布になっていることが確認された。これにより、この溶融ヒータで環状チューブを溶融した場合には、チューブ端面を均熱状態の加熱で溶融させて均一な溶融状態で溶着できる。
【実施例2】
【0055】
続いて、前記のヒータプレート比60%の電極部の長さの溶融ヒータにおいて、電極部を施した範囲も含んだヒータプレート全体の長さの表面温度を実験により測定した。また、この溶融ヒータの温度分布と比較するために比較品1、2を設け、これらの比較品1、2についても同様にヒータプレート全体の表面温度を測定した。本発明の溶融ヒータの発熱状態を図13に示し、比較品1、2のヒータの発熱状態を図14、図15にそれぞれ模式図により表している。
【0056】
図14における比較品1は、ヒータプレートの左右方向の長さが図13の溶融ヒータと同じ長さであり、電極部の間に略正方形状の発熱領域が形成されている。一方、電極部の上下方向の長さは、図13の溶融ヒータとは異なり、ヒータプレートの上下方向の長さまで延長されている。
図15における比較品2は、ヒータプレートの左右方向の長さが図13の溶融ヒータよりも長く形成され、電極部の間に長方形状の発熱領域が形成されている。一方、電極部の上下方向の長さは、図13の溶融ヒータと同じ長さに設けられている。
【0057】
これらの温度分布を測定した結果、図に示すように、本発明の溶融ヒータは、ヒータプレートの中央部における上下方向の温度分布と左右方向の温度分布とが山なりの曲線になり、しかも、これらが略同一形状の曲線となった。このことから、この溶融ヒータでは、ヒータプレートの発熱領域が円錐形状の温度分布に形成されることが確認できた。
【0058】
一方、比較品1、2においては、上下方向の温度分布と左右方向の温度分布とが略同一の形状になっていない。具体的には、比較品1では上下方向の温度分布が左右方向の温度分布よりも平均して高くなっており、このため発熱領域の温度分布が円錐形状にならない。比較品2では、上下方向の温度分布が左右方向の温度分布よりも平均して低くなっており、このため発熱領域の温度分布が円錐形状にならない。この場合、ヒータプレートの左右方向において電極部の端部から約30mm付近から温度が低下している。
【0059】
以上の結果より、電極部の上下方向の長さをヒータプレートの上下方向両端より短くして電極部の長さをヒータプレートの長さの50%〜70%、好ましくは60%に設けて電極部の間の発熱領域を略正方形状にしたときに発熱領域を円錐形状の温度分布にできることが確認された。この場合には円錐形状の温度分布は環状ワークの溶融に適した熱分布となり、環状ワークを均等に溶融させて溶着することが可能になる。
なお、溶融ヒータを上記実施例で示した寸法以外に設けることも可能であり、電極部の上下方向の長さをヒータプレートの上下方向の長さの50%〜70%の範囲、好ましくは60%に設けるようにすれば、全体を大型化して大径チューブやパイプを溶融させることも可能になる。この場合、チューブ又はパイプ径が大きくなるにつれて悪影響が生じやすくなるため注意する必要がある。
【産業上の利用可能性】
【0060】
本発明の樹脂製環状ワーク用溶融ヒータは、半導体製造分野以外の各種産業で使用される環状ワークを溶着する溶融ヒータとして用いることができ、様々な熱可塑性を有する樹脂ワークの溶着に用いることが可能となる。
【符号の説明】
【0061】
1 ヒータプレート
2 電極部
10 チューブ(環状ワーク)
20 溶着機本体
L1 電極部の上下方向の長さ
L2 ヒータプレートの上下方向の長さ
T 発熱領域

【特許請求の範囲】
【請求項1】
矩形状導電性セラミック製のヒータプレートの両面の左右方向の両端に電極部を施した樹脂製環状ワーク用溶融ヒータであって、前記ヒータプレートの上下方向に施した電極部の長さをヒータプレートの上下方向の長さより短く形成してヒータプレートの発熱領域を円錐形状の温度分布としたことを特徴とする樹脂製環状ワーク用溶融ヒータ。
【請求項2】
前記電極部の上下方向の長さをヒータプレートの上下方向両端より短くしてヒータプレートの長さに対する電極部の当該長さを50%〜70%の範囲にした請求項1に記載の樹脂製環状ワーク用溶融ヒータ。
【請求項3】
前記ヒータプレート両面の両端部位にアルミニウム溶射蒸着により電極部を施した請求項1又は2に記載の樹脂製環状ワーク用溶融ヒータ。
【請求項4】
前記環状ワークをPFAなどのフッ素樹脂から成るチューブとし、この一対のチューブの両端面を均熱状態に加熱させた請求項1乃至3の何れか1項に記載の樹脂製環状ワーク用溶融ヒータ。
【請求項5】
前記チューブは、肉厚が1〜2.2mmに相当するA呼称又はB呼称のサイズに対応した外径を有するチューブである請求項4に記載の樹脂製環状ワーク用溶融ヒータ。
【請求項6】
請求項1乃至5の何れか1項に記載の樹脂製環状ワーク用溶融ヒータを搭載し、前記環状ワークを突き合わせ溶着により溶着可能に設けた溶着機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−135956(P2012−135956A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2010−290125(P2010−290125)
【出願日】平成22年12月27日(2010.12.27)
【出願人】(501417929)株式会社キッツエスシーティー (22)
【Fターム(参考)】