説明

気体または液体の媒体中の分析対象種の光音響的な識別および定量化のための方法および装置

レーザと共振光キャビティとを用いて、気体または液体の媒体中に低濃度で存在する1つまたは複数の分析対象種を光音響によって識別および定量化するための方法および装置であり、該共振光キャビティが、該媒体を収容し、かつ少なくとも2つの部分的に透明なミラーを該キャビティの内部に有し、該ミラーのうちの1つがキャビティ結合ミラーであり、かつ、該ミラーのうちの1つが入力信号に応答するアセンブリに移動可能に取り付けられている。


【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気体種の超高感度分析の分野に属し、すなわちより具体的には、例えば高強度の光源から恩恵を受ける光音響分光法(PAS)などの分析の分光学的方法に属する。
【背景技術】
【0002】
PASは、科学研究において、超高感度の分光法のなかでも一般的であるが、これまでのところ、気体検出産業に与える影響は極めて限られている。長年にわたる分析法としてのPASの研究により、光音響効果の性質および光音響セルの適切な構成についての全体的な理解がもたらされている。伝統的なPAS(マイクロホンおよび共鳴音響セル)が、高いレベルの動作性能に到達している。その証拠は、さまざまなグループによる近年の研究(例えば、A.Miklos,et.al.,Rev.Sci.Instr.,72(4),1937-1955(2001)(非特許文献1)、M.Webber,et.al.,Appl.Opt.,42(12),2119-2126(2003)(非特許文献2)、およびV.Kapitanov,et.al.,Appl.Phys.B,90,235-241(2008)(非特許文献3))において実証された最良の結果が、極めて似通っており、正規化雑音等価吸収(normalized noise equivalent absorption)(NNEA)について1.5〜2.5×10-9cm-1W/Hz1/2という値を報告しているという事実である。これは、そのような光音響セルにおいて、検出電子機器の等価雑音帯域幅が1Hzに等しいという条件で、1.5×10-9cm-1および2.5×10-9cm-1の間の吸収係数kを、1Wというレーザ源の出力を使用して、1という信号対雑音比で検出できることを意味する。しかしながら、PASに使用される高感度の汎用マイクロホンは、サンプルセルについて念入りな遮音を必要とし、周囲雑音に対する耐性の低さが、雑音の多い産業環境における使用を妨げる理由となりうる。最近では、石英音叉(QTF)が、新規な光音響センサとして紹介されている。米国特許第7,245,380号(特許文献1)(2002)およびA.Kosterev,et.al,Optics Letters,27(21),1902-1904(2002)(非特許文献4)を参照されたい。QTFは、音叉の腕の間の光吸収に起因する局所的な圧力変化について高感度であるが、平面波の形態で到来する周囲の音響的な動揺に対して高い耐性を有している。この方法は、QEPAS、石英改良型光音響分光法(Quartz Enhanced Photo Acoustic Spectroscopy)と呼ばれている。QEPASは、感度において従来のPASと同じ性能レベルに達している(A.Kosterev,et.al.,Optics Letters,27(21),1902-1904(2002)(非特許文献4)を参照されたい)が、センサのサイズが極めて小さいという重要な利点を有している。しかしながら、驚くべきことに、QEPASの発明から7年後の2009年においても、QEPASに基づく単一の市販の気体検出製品を見つけることはできない。
【0003】
さらに驚くべきことに、レーザを使用するPASがKerrおよびAtwood(Applied Optics,7(5),915-922(1968)(非特許文献4)を参照のこと)によって1968年にすでに紹介されているにもかかわらず、「伝統的」なPASセルに基づく市販の気体センサもわずかな例しか存在しない。理由は簡単であり、つまり、市販のレーザ源の出力が小さすぎ、濃度の検出限界が、他の方法に対して競争力がないからである。現在のところ、1260〜1675nm(O〜Uバンド)のスペクトル範囲において動作する電気通信産業において使用する目的の分布帰還型(DFB)レーザだけが、産業用の気体センサの要件、すなわちロバスト性、使用の容易さ、信頼性、および手ごろな価格を満たすことができる。電気通信の光バンドの周波数範囲は、以下のとおりである。
バンド 名称 ナノメートル(nm)単位の波長
Oバンド オリジナル 1260〜1360
Eバンド 拡張 1360〜1460
Sバンド 短波 1460〜1530
Cバンド 従来型 1530〜1565
Lバンド 長波 1565〜1625
Uバンド 超長波 1625〜1675
【0004】
この範囲を超えて、そのようなレーザの拡張版を、最大2350nmまでの波長について限られた数の供給者から入手することができるが、価格がかなり高くなる。そのようなすべてのレーザの出力は、10〜100mWの範囲にあり、結果として従来からのPASおよびQEPASの両方において、雑音等価吸収(NEA)は2×10-8〜2×10-7cm-1/Hz1/2になる。これは、多くの重要な種について、0.1ppmv/Hz1/2という雑音等価濃度(NEC)に相当し、したがって通信用のDFBレーザを使用するPASは、性能において、約3×10-11cm-1/Hz1/2というNEAを有するキャビティリングダウン分光法(CRDS)などの他の超高感度の分光法に対して、まったく競争力がない。PASは、他の気体検出法と比べていくつかの重要な利点を有しており、感度に関する欠点が克服できるのであれば、最適な方法になると考えられる。これらの利点のいくつかは、中赤外線で動作する量子カスケードレーザ(QCL)の出現により、極めて魅力的になっている。それらの利点として、以下が挙げられる。
・PASは、本質的にベースラインがゼロの技法であり、吸収がなければ信号がない。
・長期平均を許すべき干渉フリンジに対する高い耐性。CRDSおよびICOSに対する大きな利点である。
・極低温に冷却されるMCTフォトダイオードと対照的な検出器としての安価なマイクロホン。低雑音高感度、高い線形性、かつ広い帯域幅の検出器が不要である。すべての強度監視を低コストの検出器で行えることが、中赤外スペクトル範囲における大きな利点である。
・QEPASにおける最小限の検出体積(約1cm3またはそれ未満)が、高速な気体の監視を可能にする。比較すると、CRDSにおいては体積が約20cm3にもなる可能性があり、ICOSにおいては約1リットルになる。
・超高反射ミラーを必要とするCRDSおよびICOSと対照的に、決定的に重要な(したがって、高くつく)光学部品が存在しない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第7,245,380号
【非特許文献】
【0006】
【非特許文献1】A.Miklos,et.al.,Rev.Sci.Instr.,72(4),1937-1955(2001)
【非特許文献2】M.Webber,et.al.,Appl.Opt.,42(12),2119-2126(2003)
【非特許文献3】V.Kapitanov,et.al.,Appl.Phys.B,90,235-241(2008)
【非特許文献4】A.Kosterev,et.al,Optics Letters,27(21),1902-1904(2002)
【発明の概要】
【0007】
本発明の目的は、PAS全般、特にQEPASの感度を数百倍も高め、PASの性能(NEA)を他の超高感度光学検出技法のレベルにまで高めることにある。光音響気体検出器のNEAには、センサの応答性R、センサの雑音N、および光励起力Pという3つの寄与部分が存在する。

【0008】
センサの応答性Rは、V/cm-1・WまたはA/cm-1・Wという単位を有し、1単位の光吸収係数および1単位の光出力あたりの音響信号トランスデューサ(マイクロホンまたは音叉)の電気信号を指す。応答性を、音響信号トランスデューサの周囲に音響共振器を配置することによって10〜50倍高めることができ、これが両方のPASにおいて行われている(A.Miklos,et.al.,Rev.Sci.Instr.,72(4),1937-1955(2001)、M.Webber,et.al.,Appl.Opt,42(12),2119-2126(2003)、およびV.Kapitanov,et.al.,Appl.Phys.B,90,235-241(2008)、ならびにA.Kosterev,et.al.,Optics Letters,27(21),1902-1904(2002)およびA.Kosterev et.al,LACSEA 2006,Incline Village,NV,February 5-9(2006)を参照されたい)。これらの音響共振による改善の技法は、おおむね最適化されており、数十パーセントを超えるようなさらなる応答性の改善は、妥当には期待することができない。式(1)が、単なる応答性Rではなく、単位周波数帯域幅におけるr.m.s.雑音Nに対する応答性Rの比が、NEAを決定することを示している。静かな環境における理想的な音響トランスデューサの雑音の根本的な理由は、周囲の気体分子の熱運動に起因する検出素子の近傍の音圧の無作為な変動であると考えられる。理想的なセンサにおいて、センサの機械騒音などの他の雑音源の寄与は、センサ素子そのものの分子の熱運動に起因し、他の点では、センサの前置増幅器の雑音を無視できると考えられる。これは、PASに使用される高感度の小型マイクロホンおよびQEPASに使用されるQTFの両方に実際に当てはまる。これは、両方のセンサの検出しきい値のさらなる改善が不可能であり、NEAを下げる唯一の方法が励起力を高めることであることを意味している。CバンドまたはLバンドの電気通信の範囲で動作する半導体レーザにおいて、エルビウムドープのファイバ増幅器を使用することによって出力をワットのレベルにまで高めることができる(M.Webber,et.al.,Appl.Opt.,42(12),2119-2126(2003)を参照されたい)が、この技術的解決策は、容認できないほどに価格が高い。光音響セルをレーザの共振空洞内部に配置することによって励起ビームの出力を高める他の方法は、DFB半導体レーザには明らかに適用できず、外部共振器ダイオードレーザにおいても、そのようなレーザの損失の多い共振器では出力の高まりがかなり小さいため、現実的でないと考えられる。最後に残る可能性は、光出力増強キャビティ(OPBC)におけるDFBレーザビームの強度の増強によって励起力を高めることであると考えられる。この方法は、1980年頃から、多数の研究室における原子分光学の実験において使用されている。これらの実証にもかかわらず、本発明者らの知る限りでは、光音響セルに高い光出力を供給するためにOPBCを使用した最初(かつ唯一)の実験は、Rossiとその同僚による報告(A.Rossi,et.al.,(2005),Appl.Phys.Lett.,87,041110(2005))である。Rossiらは、99.0%のミラー反射率を有するキャビティにおける100倍の光出力の増強に一致するPAS信号の100倍の増加を報告している。しかしながら、この業績は、いくつかの理由で、産業用気体OPBC-PASセンサの作成を動機付ける見通しを示していると考えることはできない。第1に、Rossiら(A.Rossi,et.al.,(2005),Appl.Phys.Lett.,87,041110(2005))のデータによって示された

というNNEAは、OPBCによる増強なしで半導体レーザを使用した「伝統的な」PASにおいて実証された

という値(V.Kapitanov,et.al.,Appl.Phys.B,90,235-241(2008)を参照のこと)と比べ、大幅に良好というわけではない。第2の重要な理由は、Rossiの論文に記載のキャビティにダイオードレーザの照射をロックする方法が、摂動のない実験室の環境においてさえもほとんど有効でない点にある。また、ダイオードのキャビティへのロックの不安定かつ確実でない動作ゆえ、Rossiの文献の図2から見て取ることができるとおり、時間の関数としての増強強度の依存関係が極めて安定性を欠いている。
【0009】
半導体レーザによるOPBC-PASにおける最近の発展が、Selkerとその同僚による米国特許第7,263,871号に報告されている。この特許は、どのようにして半導体ダイオードレーザの出力のかなりの増強を、種々の構成のキャビティをキャビティ内の共振音響セルと組み合わせて使用して達成できるかを教示している。さらに、半導体レーザを光キャビティとの共振において保つ電子的な方法および光フィードバックを利用する方法の両方を含むいくつかの方法が、この特許に記載されている。
【0010】
上述の先行技術は、受動光キャビティをキャビティ内の光音響センサとともに使用することで、光出力の増強の効果によってレーザ源の出力を高めて、光音響効果を強める、光吸収の光音響測定のためのシステムを記載している。
【0011】
現時点において公知のOPBC-PASシステムは、2つの別個の仲間に分けられる。
(i)参照文献A.Rossi,et.al.,(2005),Appl.Phys.Lett.,87,041110(2005)に記載のシステムなど、断続(chopped)レーザビームをOPBCに組み合わせて使用するシステム。キャビティ内を循環する光出力が、振幅について変調される。レーザをキャビティのピークに共振した状態に保つため、OPBC共振ピーク幅の小さな一部分に等しい振幅を有する小さな周波数ディザがレーザに適用され、このようにして得られる派生信号がロックのために使用される。このような手法の不可避の欠点は、レーザがオフである期間においてはロックを行うことができない点にある。したがって、「レーザオフ」期間のたびにキャビティが共振から外れる。レーザが再びオンにされた後に、大きな誤差信号によってロックシステムの過剰反応が生じ、この過剰反応ゆえにロックが再び失われる可能性がある。結果として、このようなシステムは、外部摂動に対する耐性が低く、出力の増強が極めて不安定であり、現場で使用できるシステムの用途においては本質的に用をなさない。
(ii)米国特許第7,263,871号に記載のシステムなど、キャビティへのレーザのロックを常に維持するシステム。そのようなシステムにおけるロックは、とくには高速な変調のないロック方法が使用される場合に、極めてロバストである。そのようなシステムにおいては、循環する出力がほぼ一定のレベルに保たれ、したがってレーザの波長変調だけを使用することができる。キャビティがレーザにロックされた状態で、キャビティのミラーが振動し、この振動からもたらされる音波が、強力な背景信号の発生源である。
【0012】
本発明は、レーザへのキャビティロックの極めて高い信頼性およびロバスト性を、強い背景音が付随することがない高効率の光音響励起と組み合わせることによって、両方の手法の最良点を特徴とする。
【0013】
発明の概要
本発明は、低パワーのレーザ照射を光パワー増強キャビティにロックすることによって強めることに基づく、気体または液体の媒体中の1つまたは複数の分析対象(analyte)種の光音響による識別および定量化のための方法および装置を説明する。この方法は、OPBA-PASと呼ぶのが相応しい。本発明は、高い感度を有し、長期(例えば、数年)にわたって無人で動作することができるコンパクトかつ低コストの自動センサを作製するためにとくに好都合なOPBA-PAS気体センサのいくつかの特定の構成を提供する。
【0014】
本発明において:
-レーザ照射が光キャビティに注入される。
-レーザの波長が変調させられ、その強度が時間の関数としてほぼ一定である。
-レーザのピークトゥピークの波長偏位が、キャビティ共振幅と比べて大きく、100%に近付くキャビティ内の循環パワーの大きな強度変調がもたらされる。この時間依存性が、第2のキャビティミラーの背後に位置する第1の光検出器によって監視される。レーザの波長の変調からもたらされる強力な振幅変調が、PAS信号の源として使用される。これにより、振幅変調されたPASが、レーザのオン/オフを必要とすることなく波長変調されたレーザによって実行される。
-第1の光検出器信号の基本振動数における位相敏感検出が、レーザの搬送波波長が常にキャビティと共振した状態にあるようにキャビティ長を常に調節するために使用される。このキャビティロックスキームは、キャビティミラーの位置のディザリングを必要とせず、したがってキャビティロックループのための強力かつ中断のない誤差信号をもたらす。
-キャビティ内のパワーの変調からもたらされるPASトランスデューサからのPAS信号が、変調周波数の第2高調波において位相敏感検出器によって検出される。
-第2高調波において動作する第1の光検出器に接続された第2の位相敏感検出器が、PAS励起の効率についての情報をもたらし、キャビティおよびレーザの経年劣化に起因しうる効率の変化、波長変調に付随しうるレーザ強度の振幅変調、この望ましくない振幅変調の高調波成分、非線形性、および振幅の変化、ならびに他のあらゆる原因を自動的に考慮する。
【図面の簡単な説明】
【0015】
本発明の利点が、本発明の詳細な説明および特許請求の範囲を図面とともに読むことによって、明らかになるであろう。
【図1】本発明による気体検出システムの光学的、機械的、および電子的なレイアウトを示す概略図である。
【図2】レーザとキャビティの波長のさまざまな不一致の値についてレーザ波長およびキャビティ内の光学場の時間依存性を示すことによって、レーザと光キャビティとをロックする本発明による方法を図示する。
【図3】LDの波長変調指数の最適化の方法を図示する。
【図4】伝統的な正弦関数の変調よりも良好なPAS信号励起効率をもたらすLD波長変調時間依存性を図示する。
【図5】3つの特別な波長変調波形についてOPBC内の光パワーの時間依存性を図示する。
【図6】特別な変調波形によるキャビティロック範囲の利点を図示する。
【図7】レーザの波長が種々の掃引速度でキャビティ共振を横切って掃引される場合のリンギング効果を示す。
【図8】種々の幅のキャビティ共振を横切る2MHzという所定の線幅のレーザの掃引について、実験データを示す。
【図9】幅が30.1MHzである共振を横切るレーザ掃引の際のレーザ位相雑音の影響を図示する。
【図10】石英音叉(QTF)および光増強キャビティ内でQTFを使用する例を示す。
【図11】QTFがOPBC内部に2種類のマイクロ共振器管システムを有する場合の、本発明の気体検出システムの2つの態様の概略図を示す。
【図12】本発明の改良された単一管式マイクロ共振器の3つの変種の概略図を示す。
【図13】OPBCにおける9個のQTFの積み重ねを示す。
【図14】レーザとキャビティとの間の光アイソレータが部分的に透過性であり、それによりキャビティから現れる光の一部がレーザに再進入することができる、光フィードバックを有する本発明の2つの態様を示す。
【図15】光フィードバック位相の3つの値についての、第1の光検出器の出力における波形の例を示す。
【発明を実施するための形態】
【0016】
発明の詳細な説明
本発明者らはここで、本発明の方法およびこの方法に適用することができる装置のいくつかの態様の詳細な説明を提供する。
【0017】
本発明の気体検出システムの概略図が、図1に示されている。本発明は、好ましい態様において、半導体レーザ源101を含み、好ましくは、いくつかの波数の範囲において関心対象の分析対象種の吸収線の付近にチューニングすることができる単一の輝線を放射する分布帰還型(DFB)レーザを含む。レーザの動作波長を、例えば半導体レーザチップの動作温度および/または駆動電流を変更することによって変化させることができるか、あるいは変調させることができる。これは、ダイオードレーザ温度コントローラ110および/または低雑音ダイオードレーザ電流コントローラ120などの技術的に公知の電子モジュールによって達成される。他の態様においては、レーザが、動作の波長が変更可能または変調可能であるかぎりにおいて、他の公知の種類のレーザであってもよい。そのような他の適切なレーザの種類の一例は、外部共振器型半導体ダイオードレーザ(ECDL)であろう。
【0018】
レーザ動作を維持するために、その動作波長をチューニングするために、レーザの放射波長に周期的なディザ波形(「波長変調波形」とも呼ばれる)を適用するために、およびレーザ出力の変調を実行するために必要な電子要素および機械要素が、「レーザ制御ユニット」と称される。レーザ制御ユニット130が、レーザ制御ユニット電気入力(「変調入力」)に適用されることができる波形(電圧)に従ってレーザの変調を提供する。
【0019】
レーザ出力ビーム140が、モード整合光学セット150を介して光出力増強キャビティ(OPBC)160に光学的に結合させられる。レーザ出力ビームが自由空間ビームであっても、またはそれが光ファイバから出射されてもよいことを、当業者であれば理解できるであろう。モード整合オプティクスは、OPBCの入り口におけるレーザビームの直径、その発散、および/または波面曲率をOPBCの基本TEM00モードビームの対応するパラメータに整合するように変換するレンズ、ミラー、および/またはプリズムなどのいくつかの光学素子を適切に備えることができる。モード整合の構成のさまざまな変種が、技術的に公知である。図1において、平行レンズ151および集光レンズ152が、モード整合オプティクスの適切な構成要素として示されている。OPBCは、米国特許第7,263,871号に記載のものなど、さまざまな種類でもあってよく、2つまたはそれ以上の誘電体ミラーを備えることができる。図1において、好ましい手法を説明するものとして、2つのキャビティミラーM1およびM2が示されている。光アイソレータ155が、レーザビームの経路において、ビームがキャビティの第1のミラー面に衝突する前に適切に存在することができる。その機能は、キャビティからレーザに反射される光ビームの強度を下げることにある。そのような反射ビームが、レーザを不安定にする可能性があるからである。さらに、光アイソレータの別の使用もあることができ、そのような使用は、本明細書においてさらに後述される。光アイソレータは、ファラデーアイソレータまたは直線偏光子と4分の1波長の位相板との組み合わせなどの、任意の適切な種類の光アイソレータであってもよい。これらの種類および他の種類の光アイソレータが、技術的に周知である。レーザビームがキャビティに進入する第1のキャビティミラーM1が、量1-R1が10-1〜10-5の範囲にあるよう、1に近いが1よりも小さいパワー反射率係数R1を有している。キャビティの第2のミラーM2は、R1またはそれ以上のパワー反射率R2を有している。3つまたはそれ以上のミラーを有する光キャビティにおいて、残りのミラーは、好ましくはミラーの製造技術が許すかぎり1に近いそれぞれのパワー反射率R3、R4、などを有する。たとえ高反射率のミラーでも、100万分のいくつかという少なさである場合があるが、いくらか残りの透過を有することを、当業者であれば理解できるであろう。レーザとキャビティとの間の光結合は、レーザ発振モードの電界分布がキャビティの基本TEM00モードの電界分布に可能なかぎり近くなるように構成される(「モード整合」と呼ばれる)。したがって、基本キャビティモードに結合できるレーザ発振モードの出力の割合を表すモード整合係数ηが、1に近付く。実際には、とくに単一モードファイバ出力を有する電気通信DFBレーザダイオードが使用される場合、ηについて0.95までもの値を達成できる。第1の光検出器PDは、ミラーM2の背後に配置され、キャビティ内を循環するパワーPCircの監視を可能にする。なぜなら、第1の光検出器PDの表面に衝突するパワーPTransmは、T2がミラーM2の透過率である式PTransm=PCirc・T2によって決定されるからである。
【0020】
共振光音響セル165(PASセル)は、光キャビティ内ビームがセルの共振要素を横切るように、キャビティの内部に位置している。光音響セルは、例えば米国特許第7,263,871号に記載の光音響セルなど、公知の種類の光音響セルであってもよい。他の態様においては、光音響検出器が、米国特許第7,245,380号に記載のものと同様のマイクロ共振器管を有するかまたは有さない石英音叉である。本発明において提案されるセンサの範囲内での光音響検出器のそのような選択は、より小さなサイズというさらなる利益をもたらすことができる。後述されるとおりの2つまたはそれ以上の石英音叉の組み合わせを共振PASセルとして使用する本発明の範囲における他の態様が、とくに有益であると考えられる。一般に、説明されるキャビティにおいて他の種類の光音響トランスデューサを使用することが依然として本発明の技術的範囲に含まれることが、当業者にとって明らかであろう。PASセル165の増幅された出力は、以下で「第1のADC」と称される高精度アナログ-デジタル変換器(ADC)167に接続される。
【0021】
レーザビームのモードがキャビティに整合している場合に、レーザビームの波長を変化させると、キャビティ内の光パワーは、レーザ光周波数νの関数として一様に隔てられた一連の共振ピーク(キャビティ共振)を有する。周波数におけるキャビティ共振の間隔Δν(キャビティの自由スペクトル領域またはFSRとしても知られる)を
Δν=c/p (1)
として得ることができ、ここでpはキャビティの外周である。共振ピークPcにおいてキャビティ内を循環する光パワーは、入射パワー(レーザ出力)Piよりも大幅に大きくなり、式

によって定めることができる。ここで、量

を、キャビティ内を循環するパワーが使用可能なレーザの出力Piと比べてどの程度大きいかを示す「増強係数」と呼ぶことができる。
【0022】
2つのミラーを有するキャビティにおいて、両方のミラーが同じ透過係数T1、T2=1%を有し、他には損失が存在せず、したがってR1=R2=1-T1=0.99であると仮定し、さらに完璧な結合η=1を仮定し、キャビティ内のサンプル気体のはるかに弱い吸収など他のすべての損失を無視できると仮定すると、式2から、増強係数が100に等しいことが明らかである。実際に、2つのミラーまたは任意の非リングキャビティにおいて、循環するレーザ光は、キャビティの中央においてPASセルを2回通過し、したがってこの例では、PAS効果を含む有効パワーが、レーザのパワーよりも200倍大きくなる。典型的な20mWという電気通信DFBレーザのパワーにおいて、セルへの作用は4Wにもなる。
【0023】
2つのキャビティミラーに同じ反射率を持たせることが自然な選択のように考えられるが、それは最良な選択ではない。このキャビティのミラーM2をR2=0.9999などのより高い反射率のミラーで置き換え、依然として損失は無視でき、したがってT2=1-R2=0.01%であるとすると、増強係数が、ここで100から約390へと増加し、キャビティ内のPASセルに作用する光パワーは15.6Wにもなる。第2のミラーの反射率が第1のミラーの反射率よりもはるかに高いこの構成が、1つの好ましい態様である。
【0024】
第2のミラーM2から現れて光検出器170(以下で「第1の光検出器」と称される)に衝突する出力Pmを、

と表すことができ、このパワーが1.56mWに等しい。第1の光検出器170の出力が、「第2のADC」と称される第2の高精度アナログ-デジタル変換器175に接続される。第1のADC 167および第2のADC 175の両者は、データ処理および制御ユニット(DPCU)180に接続される。DPSUは、1つまたは複数のデータ信号プロセッサ(DSP)を備え、また温度、圧力、周囲の空気の湿度、ならびにデジタルおよびアナログ制御出力を含むがこれらに限定されない気体検出システムの動作パラメータを測定するためのモニタ入力も有する。DPSUは、専用のソフトウェアを実行することによって気体検出システムの全機能を提供する。DPSUの機能および動作は、以下で詳しく検討される。上述のとおり、センサの構成は、すでに述べた先行技術のシステムと根本的には違いがないように見受けられる場合がある。しかしながら、先行技術のシステムと比べた場合の大きな相違は、レーザ動作波長の時間平均値が、1つのデータ点の測定の期間を通じて固定されたままである一方で、大きな振幅の周期的な操作が、瞬時レーザ波長に適用される点にある。この用語は、キャビティ共振ピークの半値全幅(FWHM)を指し、レーザ波長のピークトゥピークの偏位が、キャビティ共振ピーク幅よりも大きく、したがってキャビティ自由スペクトル領域(FSR)のかなりの部分を構成できることを指す。先行技術のいくつかの態様(例えば、A.Rossi,et.al.,(2005),Appl.Phys.Lett.,87,041110(2005)を参照)において、伝統的な手法は、キャビティ共振ピークの中心からのレーザ動作波長の逸脱に比例する誤差信号を生成するために、レーザの波長に小さな振幅変調またはディザを適用することにある。「小さい」とは、先行技術に教示のピークトゥピークのレーザ波長偏位が、キャビティ共振ピークのFWHMの数パーセントであることを意味する。先行技術においては、光音響信号を得るために、レーザの放射を周期的に中断するための外部のチョッパが使用されている。そのような中断によって引き起こされるロックのループの乱れが、ループの動作を極めて不安定で信頼できないものにする。そのような不安定を、図3に示されている先行技術の説明に見て取ることができる。そのような不安定が、PAS信号における大きな雑音に加えて、より大きな増光パワーを得ることを実質的に不可能にする。本発明における革新的な段階は、レーザ放射が中断されないだけでなく、振幅変調さえ不要であり、それでもなおキャビティ内を循環するパワーの効率的な振幅変調が達成される点にある。これは、本発明において、波長変調ディザ波形のピークトゥピークの偏位をキャビティ共振ピークの全幅よりも大きい値へと増加させることによって達成される。これにより、キャビティ内のパワーが、一連の大きな振幅の共振ピーク(1つのディザ波形期間につき2つのピーク)になる。このようにして、ピークにおける光パワーの変化が最大増強パワーの100%に達することができ、PASのための効率的な供給源がもたらされる。この2つのピークの波形が、中断のない誤差信号を生成するために同時に使用される。これは、振動する波長を有するレーザへのキャビティ共振の極めてロバストな長時間ロックを達成可能にし、ロックの喪失が本質的に決して生じえない充分にロバストなロックを達成可能にする。たとえロックの喪失が生じても、システムはわずかな遅延で回復する。これは、センサの極めてロバストな長時間動作と、先行技術のシステムでは達成できない非常に優れた信号対雑音比での極めて小さい吸収係数の測定とを確実にする。先行技術と比べた場合の本発明の第2の革新的な段階は、前記2つのピークのキャビティ内パワー波形を、雑音をさらに減らし、センサの応答をレーザのパワーの変動およびドリフトから無関係にするPAS信号正規化係数を生成するためにさらに使用することにある。これは、本明細書においてさらに説明される。
【0025】
ロックシステムの動作の原理が図2に示されている。最初にレーザの中心光周波数が、レーザ光周波数νの関数として図2aに示されるとおりにキャビティ共振ピーク210(キャビティ内を循環するパワー)に一致すると仮定する。レーザの波長は、その光周波数の時間依存性がこの態様においては正弦関数であり、それが
ν(t)=ν0+1/2 mwsin(2πft) (4)
として表されるように変調させられ、ここでfは、波長変調周波数である。レーザ波長変調波形ν(t)は、DPSU 180においてデジタル的に生成され、DPSU 180の内部の一部であるデジタル-アナログ変換器(DAC)185によってアナログ電気信号に変換される。DAC 185は、「WM DAC」と称され、その出力がレーザ制御ユニット130の波長変調入力132に接続される。その時間依存性220が、図2aの下部に、レーザの中心周波数の位置を示すとともに時間軸としても機能する破線225によって示されている。レーザの光周波数の最大の偏位が、変調指数mwによって定められ、図に示した例では、波長変調されたレーザのピークトゥピークの光周波数の偏差が、キャビティ共振の半値全幅δνCavの4倍の大きさである。レーザの波長のそのような操作の結果として、瞬時レーザ周波数が変調周期においてキャビティ共振ピークを2回通過し、結果としてキャビティ内を循環するパワーの時間依存性が、時間において一様に隔てられ、レーザの波長変調周期の2分の1の短さの周期を有する一連のピーク230になる。キャビティ内を循環するパワーのこの時間依存性が、図2aの左側に示されている。見て取ることができるとおり、このようにして、キャビティ内を循環するパワーの振幅変調が、好都合なことにレーザ強度の変調をまったく伴わないレーザの波長の変調の結果として得られる。レーザの波長が関心対象の種または分析対象分子の吸収線に一致する場合、変調されたキャビティ内パワーが分析対象によって吸収されることで、レーザビームに周期的な圧力変化を誘導し、それによって、光音響信号がもたらされる。この光音響信号は、分析対象種によって吸収される光パワーに比例し、したがって分析対象の種の濃度に比例する。
【0026】
何らかの理由でキャビティのミラーの間の光学的距離が変化すると、図2bに曲線215によって示されるとおりにレーザの中心波長225に対するキャビティ共振曲線のわずかなシフトをもたらし、キャビティ内を循環するパワーの時間依存性が、ここで先ほどの対称な形状230とは異なり、図2bに曲線240によって示されるとおり非対称になる。この非対称性は、キャビティのピーク位置とレーザの中央の固定の波長とのデチューニング(detuning)δνの指標であり、図2bに示されている形状は、キャビティ共振ピーク幅δνCavに等しいキャビティのデチューニングδνに相当する。第1の光検出器170によって電気信号に変換されかつDPSU 180内の第2のADC 175によってデジタル化されたPm波形のデジタル処理によって、非対称性を定量的に判断することができる。接続が、図1に概略的に示されている。そのような処理は、デジタル化された波形の2つの正弦関数、すなわち同相関数UX=sin(2πft+φWM)および直角位相関数UY=cos(2πft+φWM)による乗算を含む。乗算は、DPSU 180内のDSPによって行われ、次いでDSPが、UXおよびUYに低域通過デジタルフィルタを適用する。UXおよびUUの時間依存性における周波数fは、波長変調波形ν(t)220と同じである。UXおよびUYにおける位相の項φWMは、UYに適用されたデジタルフィルタの出力を消去するための所定の値を有する。この出力が、直角位相出力またはY出力と呼ばれる。PmおよびUxのデジタルフィルタ処理された積が、同相出力と呼ばれる。
【0027】
位相の項φWMは、本発明の考え方において重要な役割を果たし、したがって本明細書においてさらに詳しく説明される。ここで、正しいφWMの値がすでにDPCUのメモリに保存されていると仮定する。
【0028】
中央レーザ波長からのキャビティピーク位置のデチューニングδνの関数としての同相出力(X出力)の形状が、レーザ波長の操作の正弦関数状の時間依存性およびキャビティ共振幅の4倍のレーザ周波数のピークトゥピークの偏位に対応する波長変調指数mについて、図2cに示されている。縦軸が、第1の光検出器信号のピーク値に対するX出力の振幅を指しており、その2つの例が、曲線230および240によって表されている。出力信号250が、約±2δνCavの周波数区間に広い直線部分260を有している。この直線部分は、キャビティをレーザの中心周波数との正確な整合に戻すフィードバックループのための完璧な誤差信号をもたらす。これは、図1に示されているとおり、やはりDPCU 180の一部である第2のDAC 187においてX出力を電圧に変換し、一方のキャビティミラーが取り付けられた直線トランスデューサ189にこの信号を適用することによって達成される。図2cにおける誤差信号の正の値は、キャビティのピークをより高い光周波数に向かって移動させるべきであることを示す一方で、負の値は、反対方向の移行を適用すべきであることを示している。誤差信号が、第1の光検出器によって測定されるピーク強度のほぼ半分の大きさのピーク値を有するという事実は、極めて高い信号対雑音比を誤差信号において達成できることを意味し、キャビティが万が一にロックから外れた場合に、最も近いピークに自動的に再びロックすることを意味する。実際、再ロックへの「不感帯」が存在しない。キャビティは、何らかのピークから自由スペクトル領域(FSR)の1/2の範囲内のどこかにある場合、このピークに再びロックする。本発明者らの経験では、ロックが外れた後の再ロックは、波長変調波形のわずか数周期しか要さない。
【0029】
ここでレーザの中心波長位置がDPCU 180からレーザ波長制御入力190に適切な信号を送信することによって別の波長にずらされる場合、キャビティは、キャビティロックシステムが機能しているかぎりにおいて自動的にレーザに追従する。PAS信号が、ここで新たな波長における分析対象の吸収を表す。このようにして、レーザが動作波長を決定するマスタであり、キャビティがマスタに追従するスレーブであるこのマスタ-スレーブの構成が、作業者が分析対象サンプルの吸収のレーザ波長への依存性(すなわち、吸収スペクトル)を得ることを可能にする。これは、フィードバックロックループの動作を通じてキャビティのミラーの間隔を調節する直線トランスデューサ189がその動作範囲内にとどまるかぎりにおいて真実である。好ましい態様においては、そのような直線トランスデューサとしてPZTが使用される。PZTは、通常は数マイクロメートルの行程を有する。これは、近赤外線においては数個のキャビティ自由スペクトル領域に相当するが、中赤外線での動作においては、行程が1個のFSRよりも大きいことを確実にするように特別な注意を払わなければならない。いずれの場合も、中央レーザ波長を1つまたは複数のキャビティFSRに対して走査した後で、PZTの限界に達し、この瞬間にシステムが機能を停止する。1つのPZT行程における走査範囲は、約1波数未満のスペクトル間隔に相当する。これは、サンプル吸収スペクトル、したがって分析対象の濃度についての定量的情報を得るために、常には充分でない場合がある。本発明によれば、吸収スペクトルを記録することができるスペクトル範囲を、「リセットモジュール」と呼ぶべきモジュールをDPCUに追加することによって、レーザの全チューニング範囲に広げることができる。そのようなリセットモジュールを、DPCUコードの一部として実現できるか、あるいはDPCU内の別の物理的構造によってもたらすことができる。リセットモジュールは、直線トランスデューサ189について動作範囲の上限または下限への接近を監視し、直線トランスデューサが上限または下限の近傍の所定の限界の範囲内に進入するや否や、DPCUが安全な動作空間に戻る直線トランスデューサ位置の段階的変化を指令する。そのような段階の値は、キャビティの長さの増加または減少を、レーザ動作波長の半分の整数倍にすることに実質的に等しい。また、DPCUは、キャビティのミラーが動かされている間、および次いでロックシステムがロックを回復している間、キャビティロックシステムの動作および第2の部分のデータ取得を許さない。ここでこのように改善された本発明によるシステムは、レーザのチューニング範囲によってのみ限定される波長におけるサンプルの吸収の長い走査を任意に行うことができる。
【0030】
キャビティへのレーザ照射の注入を、レーザにキャビティをロックすることと組み合わせることで、レーザそのものの照射の強度よりも数倍から数桁も大きい照射の強度をキャビティ内部で得る上述の方法が、光音響分光法に限定されず、高強度の光ビームを必要とする任意の他の応用の分野にも適用できることを、当業者であれば明確に理解できるであろう。したがって、そのような応用のすべてが、本発明の技術的範囲に含まれる。本発明が有益であるPAS以外の応用の一例は、液体および気体におけるラマン分光法であり、低出力のダイオードまたは他のレーザの動作波長の強力なビームをキャビティに注入することで、レーザ単独によるよりも数倍から数桁も大きいラマン信号をもたらすことができる。
【0031】
次に、位相の項φWMの所定の値を得る手順を検討する。波長変調波形ν(t)ならびに関数UXおよびUYが、同じDPCUにおいて生成され、完全にコヒーレントにされる。第2のADC 175のサンプリングも、ディザ波形とコヒーレントにされる。波長変調波形ν(t)へのレーザ応答が瞬時であり、レーザ強度の振幅変調がまったく存在しないならば、直角位相出力UYは、常にゼロに等しくなると考えられ、そのような位相の項は必要にならないと考えられる。実際には、レーザ光周波数波形ν(t)は、WM DACによって生成されるレーザ制御ユニットの波長変調入力における電気信号に対して常にいくらかの位相遅れを有している。位相遅れの他に、波形ν(t)は、何らかの非線形成分を確実に有し、レーザ波長変調は、ほぼ確実に望ましくない寄生のレーザ強度変調を伴う。この強度変調は、自身の固有の非線形成分および自身の固有の位相変化を有する。さらに、光キャビティそのものも、単に注入されたレーザの強度を増強するためにキャビティ内を複数回通過しなければならないという理由で、何らかの追加の位相遅れを導入する。最後に、キャビティミラーの層およびキャビティ内の気体における光吸収が、キャビティ内のピークの形状および位置の両方に影響を及ぼす可能性がある。結果として、キャビティからの実際の信号が、図2に示した理想的な場合とかなり著しく異なる可能性がある。幸いなことに、このすべての複雑さのキャビティロックプロセスへの影響を、位相の項φWMの適切な選択によって大きく軽減することができる。この選択は、センサの初期の設定段階において行われなければならず、手順は以下のとおりである。
【0032】
最初にφWMが、最適値ではないがφWM=0に設定され、次いでロックシステムが、PmおよびUXのデジタルフィルタ処理された積を誤差信号として使用してオンにされる。ロックシステムは、非最適な位相においても、φWMの正しい値が+π/2よりも大きいか、あるいは-π/2よりも小さいことが判明しないかぎり、依然として機能する。そのような場合、ロックが機能し始めるまで、π/2に等しいφWMの増加をその都度行うべきである。次に、レーザの波長が、レーザの全チューニング範囲において走査され、PmおよびUXならびにPmおよびUYのデジタルフィルタ処理された積が、光音響信号と一緒に、後の分析のために記録される。前記積の2セットをImおよびQmと呼ぶ。Imは、キャビティロックシステムによってゼロにされるが、一般に、Qmは、全走査範囲において非ゼロの値を有する。PAS信号に吸収線が存在しないことによって判断することができるが、キャビティに吸収の種が存在しない場合、Qmを、位相の項の値φWMの適切な選択によってレーザ波長走査の全体においてゼロにすることができる。これは、走査を繰り返し、Qmの符号が変わるまでφWMを少しずつ増やし、線形補間によって最良のφWMの値を得ることによって、自動的に行うことができる。φWMのこの値を、さらなる使用のためにDPCUメモリに保存すべきである。最適なφWMの値が、構成部品の経年劣化によって時間とともにわずかに変化する可能性があるが、φWMの最適値からの小さな逸脱は、気体検出システムの性能にいかなる影響も有さないことを、当業者であれば理解できるであろう。さらに、保存されたφWMの値の見直しを、システムの定期的な保守のサイクルにおいて上述の手順を繰り返すことによって行うことができる。
【0033】
手順は、何らかの吸収気体がキャビティ内に存在する場合、少しだけ複雑になる可能性がある。そのような場合、光音響信号が、いくつかの吸収線を有する。その場合、Qm信号が、たとえ最適なφWMが得られかつ設定されている場合でも、光音響スペクトル中に存在する吸収線に強く相関したピークを有することを、本発明者らは観測した。本発明者らは、これが光吸収に起因するキャビティ内の媒体の屈折率の変化の瞬間的な影響に起因すると考えている。本発明者らは、この効果だけでも、高感度吸収分光法の新たな方法となることができ、別の発明の主題となることができると考えるが、それについては別の場所で説明されるであろう。本発明の目的においては、走査において吸収のピークが存在する場合に、そのようなピークの範囲内および近傍のImおよびQmのデータ点が、最適なφWMを得る手順において除外されることを述べておけば充分である。
【0034】
本発明者らはここで、サンプルの吸収について正確な情報を得る手順を詳しく説明する。キャビティをレーザにロックするシステムを機能させた状態で、上述のとおりに波長の操作をレーザに適用することで、図2に波形230によって示されるとおりのキャビティ内を循環するパワーの一連のピークがもたらされる。1つの波長操作周期について2つのピークが存在し、ピークが時間領域において等間隔である。したがって、周波数fS=2fの光音響励起として知られるキャビティ内の気体の周期的な膨張および収縮が生じる。これが、レーザ波長操作の周波数fが共振周波数の1/2にされるという条件のもとで、PASセルの共振の励起をもたらす。PASセル165の電気出力が、第1のADC 167に接続され、第1のADCのデジタル化された波形が、同相関数UXS=sin(2πfSt+φS)および直角位相関数UYS=cos(2πfSt+φS)という2つの正弦関数によってDPSU 180において乗算される。本発明によれば、2組の関数[UX、UY]および[UXS、UYS]が、互いにコヒーレントであるように同一のクロックから生成される。さらに、本発明によれば、第1のADCのサンプリングクロックが、第2のADCのサンプリングクロックと同一であり、すでに述べたとおり周波数変調波形と同一のマスタクロックから導出される。フィルタ処理された積IS=fS×UXSおよびQS=fS×UYSが、分析対象によって吸収される周波数fSの循環するキャビティ内のビームパワーPCの部分を表すことを、当業者であれば理解できるであろう。ここでロックシステムを動作させた状態で、所定の範囲においてレーザ波長を操作することで、一連の組ISおよびQSが生成され、各組がキャビティ内の種の光吸収スペクトルの情報を含んでいる。それらは互いに比例し、それらの比は、波形UXSおよびUYSにおける位相の項φSに依存する。位相の項φSの好ましい選択は、レーザ波長ディザ周波数の2倍に位置する第1のADCの直角位相成分を消去する選択である。項φSのこの好ましい選択の値を、装置の初期の設定の段階において決定し、将来のサイクルにおける使用のためにDPCUに保存でき、かつそのようにすべきである。そのような決定のための手順は、以下のとおりである。
【0035】
これらの積の値の各組を、デカルト座標系におけるベクトルの成分と考えることができる。角度φによる座標回転変換を両方のセットに適用することで、新たな位相の項φSNew=φSOld+φによる値ISおよびQSの新たな2セットがもたらされる。初期の設定段階において、位相の項φSの任意の初期値によって所定のチューニング範囲の全体におけるレーザの1つの走査を行い、直角位相成分QSをゼロにする回転角度φの値を得て、和φS+φを位相の項の最良の値としてDPCUに保存すれば充分である。このような決定を、位相の項φWMの最良の値が得られた後で行うべきである。位相の項φSの正しい値が適用されるや否や、波長ディザ周波数の2倍の第1のADC信号の同相成分ISが、キャビティ内の吸収の波長依存性を表す。
【0036】
この時点で、どのようにして低出力のレーザで、その放射を光キャビティに注入することによって、振幅において変調された数百倍または数千倍の大きさのパワーを得ることができ、したがって百倍または千倍の大きさの光音響信号を誘導することができるのかを教示した。また、そのような注入のための最良の条件を、キャビティの共振をレーザにロックし、そのようなロックを無限に長い時間期間にわたって確実に維持することによって、どのように維持するのかを教示した。最後に、レーザを任意に広いスペクトル範囲において走査しつつロックを維持する方法、およびこの走査からキャビティを満たしている媒体の吸収スペクトルを得る方法を教示した。
【0037】
本発明によれば、後述されるとおりのいくつかの好ましい特徴が、センサの性能および測定精度をさらに向上させる。すでに指摘したとおり、キャビティロックループの通常の動作のもとでキャビティ内を循環するパワーPCの時間依存性は、図2aに曲線230にて示されているとおりの一連のピークの形態を有する。PASセルの出力は、レーザ中心波長におけるサンプルの吸収に比例するが、循環するパワーのピークのピーク対谷の比およびこれらのピークの特定の形状にも依存する。より詳しくは、正規化係数を、キャビティ内PASセルの出力を表す信号の組ISおよびQSの各々の値に、これらの信号をサンプルの吸収に真に比例させるために好都合に適用することができる。この正規化係数は、信号の検出高調波に等しい周波数fSにおけるPCの実際の時間依存性のフーリエ成分である。すでに第2のADC 175によってデジタル化された第1の光検出器170の信号が、DPCU 180におけるさらなる処理によってこの正規化係数を得るために使用される。この処理は、PCのデジタル化された時間係数を再び同相関数UXN=sin\(2πfSt+φN)および直角位相関数UYN=cos(2πfSt+φN)という2つの正弦関数によって乗算することを含む。これらの関数における周波数fSは、PASセルの出力の処理に使用した周波数と同じであり、レーザの波長変調の周波数fの2倍の大きさである。フィルタ処理された積IN=fS×UXNおよびQN=fS×UYNが、PAS信号を表す量ISおよびQSと同じ方法で正規化信号を表す。PAS信号と同様に、位相の項φNを、直角位相正規化成分QNをゼロにする最適値に設定することができる。PAS信号について今しがた述べた手順と同じ手順が、センサの初期の設定段階において適用され、最適なφNの値が決定されて将来の使用のためにDPCUメモリに保存されることを、当業者であれば理解できるであろう。ひとたび位相の項φNの最適値が設定されると、正規化は、信号ISおよびQSを対応するINの値で除算することを含む。そのような正規化は、PAS信号測定結果へのレーザおよびキャビティの経年劣化ならびにキャビティロックシステムの動作に起因するキャビティ内のパワーの時間依存性の振幅および形状の変化を取り除く。正規化により、PAS信号は光吸収スペクトルに真に比例するようになる。特定の器具の較正定数となる比例係数は、正確に既知の濃度を有する較正用の分析対象サンプルのスペクトルを記録することによって決定可能であり、初期の設定段階において決定され、DPCUメモリに保存される。
【0038】
波長ディザ周波数の第2高調波における第1の光検出器信号の同相成分INの値を測定しているという事実が、長時間にわたるセンサ動作の信頼性をさらに向上させるさらなる機会を提供する。本発明により、本発明者らは、キャビティがロックされた位置にあることを確認する方法を導入する。キャビティ共振ピークがレーザにロックされている場合、信号INはその最大値にある。レーザの全チューニング範囲においてレーザの波長の走査が実行される初期の設定段階において、レーザの動作波長の関数としての一式のIN値がDPCUに保存される。次いで、通常の動作段階において、正規化PAS信号の測定の前に、測定されたINの現在値について、現在のレーザ動作波長における保存されたIN値に対する比が、所定のしきい値以上であるかどうかが確認され、所定のしきい値以上であれば、キャビティ共振ピークが依然としてレーザにロックされていることを示す。そうでない場合、データの取得が一時的に中断され、再ロックの手順が開始される。再ロックは、保存されたINに対する現在のINの比が再びしきい値よりも大きくなるまで、移動可能なミラーアセンブリに直線的なミラー位置の変化を実行するように指令を送信することを含む。次いで、データの取得が再開される。所定のしきい値は、0.9よりも大きいが1.0よりは小さい任意の値であってもよい。
【0039】
所定の波長範囲における1回の波長走査が完了し、かつキャビティ内の気体の吸収スペクトルが測定されるとすぐに、1つまたは複数の分析対象種を特定することができ、それらの濃度を技術的に公知の確立された手順によって明らかにすることができる。
【0040】
本発明の態様のうちの1つにおいて、レーザの動作波長が、分析対象の吸収線の最大値に保たれ、正規化されたフィルタ処理された積ISN=IS/INが、時間の関数としてのサンプルの吸収の変化を連続的にもたらす。レーザへのキャビティロックループおよびリセットモジュールが、このモードにおいてもセンサの連続的な継ぎ目のない動作をもたらす。直線トランスデューサが周囲の条件の変化の影響を補償しようとして自身の動作範囲の端に近付く程度にまで周囲の条件が変化するたびに、リセットモジュールは動作する。
【0041】
同相および直角位相の正弦関数による信号の積の低域通過フィルタ処理による周期信号の位相敏感検出の方法が、デジタルデータ信号プロセッサ(DSP)に基づくロックイン増幅器(LIA)の説明に一致することを、当業者であれば確実に理解できるであろう。この所見は正しく、上述の機能を、その信号がより単純なDPCUによって処理される3つの汎用デジタルロックイン増幅器の組み合わせによって実現することができる。しかしながら、本発明に記載の手法を好ましいものにする多数の理由が存在する。1つの理由は、本発明者らの技術的解決策の方が、はるかに安価かつ大幅にコンパクトである点にある。第1の光検出器の信号が、最初にロック目的のためにレーザの波長変調周波数の基本振動数においてLIAによって処理され、同じ信号を、正規化信号をもたらすために第2高調波において別のLIAによって処理する必要がある。レーザへのキャビティロックを、第3のLIAによって実行しなければならない。多数のLIAによる手法が実際に無駄が多いという事実の他に、正規化された吸収信号の精度が、そのような場合に顕著に悪化する。その理由は、独立した各々のLIAが、内部の位相ロックループによって外部の変調(ディザ)信号に同期させなければならないそれぞれのサンプルクロックを有するからである。3つのLIAが3つの位相ロックループを有し、各々がそれぞれの位相ジッタを有する。したがって、PAS信号ならびに変調周波数の基本振動数および第2高調波における第1の光検出器信号のサンプリングが、異なる時点で行われる。これは、PASチャネルと正規化チャネルとの間の相互雑音に悪影響を及ぼし、したがって正規化の精度に悪影響を及ぼす。さらに、レーザの波長変調波形を、やはり3つの別々の独立したLIAの3つのサンプルクロック発生器のどれとも同期していない自身の独自のクロックを有する外部の直接デジタル合成器(DDS)によって生成しなければならない。これが、LIAサンプルクロックとDDSクロックとの間のビート雑音をさらに持ち込む。
【0042】
第1および第2のADCならびにディザ波形DDSの両方を駆動する単一のクロックに基づくDSPは、すべてのサンプリング事象を真に同期させ、ADCサンプリングとディザとの間のあらゆるビート現象を本質的に回避する。
【0043】
最後に、本発明の実施に関して、アナログLIAの使用およびデジタルLIAの使用について、いくつかのコメントを述べることができる。キャビティロックにアナログLIAを使用することは、デジタルLIAに対していくつかの利点を呈することがありえる。なぜならば、デジタル処理は、ロックシステムの応答の素早さに悪影響を及ぼしかねない追加の遅延を引き起こすからである。しかしながら、本発明の好ましい態様においては、キャビティが極めてコンパクトであり、したがって外部摂動の影響を受けにくい。換言すると、キャビティは、フィードバックループが無効になった場合に、高速な振れよりもむしろゆっくりとしたドリフトの形態で、レーザとの共振から外れる。したがって、キャビティロックループの高速性は、この方法にとって重要な因子ではない。対照的に、アナログLIAによる正規化は、デジタルLIAと比べて性能が低くなる可能性がある。その理由は、アナログLIAにおいては、信号が、真のデジタルのロックインにおける正弦波による乗算と対照的に、(断続的な)方形波によって乗算されるからである。結果として、積が高次高調波からの寄与を含む。PASセル信号および第1の光検出器の信号の高調波成分が同じでないため、結果として正規化の精度が低下する。要約すると、PASチャネルおよび正規化チャネルにおいてアナログロックイン増幅器を使用することは、妥当なロックのスペクトルを生成できるという事実にもかかわらず、好ましくない。
【0044】
上述の気体検出システムは、本発明の好ましい態様を代表する。上述のシステムは機能的であり、気体の弱い吸収を高い精度、安定性、および感度で測定することを可能にする。
【0045】
次に、本発明のさらなる特徴を説明する。気体検出システムの動作の原理および性能を高めるためのさらなる方法が、さらに開示される。本発明によるセンサの極めて有用な特徴は、関心対象の分析対象の吸収線へのレーザ動作波長のロックを自然に可能にする点にある。たとえ現代の半導体DFBレーザが比較的安定であるにせよ、レーザ動作温度および電流の所定の設定に対応するレーザ動作波長が、経年劣化ならびに周囲の条件の変化に起因して、時間の関数としてドリフトする可能性がある。そのようなドリフトは、通常は1ナノメートルの数分の1程度であるが、関心対象のいくつかの分析対象種の狭い吸収線と比べて大きすぎ、センサの精度を悪くする可能性がある。これは、吸収線のピークにおいて連続的に動作するセンサにとってとくに重要であり、レーザを吸収ピークにロックすることが必要な理由である。例えばA.Rossi,et.al.,(2005),Appl.Phys.Lett.,87,041110(2005)に記載の変種などのOPBC増強PASの他の変種においてこれを行うことは、キャビティをレーザにロックすることと同じ理由のために容易ではない。
【0046】
本発明によってもたらされる波長変調レーザセンサアーキテクチャを有するOPBC増強振幅変調PASは、レーザ波長の経年劣化によるドリフトを補償する機会を提供する。これは、DFBレーザパワーのわずかな部分(通常は、数パーセント以下)を切り出し、波長基準によって第2の光検出器に案内することによって達成される。好ましい態様においては、そのような波長基準が、関心対象の分析対象気体でより高い濃度において満たされた小さな吸収セルであるが、半導体ファブリーペローエタロンまたは体積ブラッグ格子などの狭帯域光フィルタであってもよい。本発明の振幅変調PASシステムのレーザ波長が周期的に変化するという事実が、波長変調分光法を、レーザの基準波長からの逸脱およびその程度を判断し、レーザをそのような基準波長にロックさせるための追跡ツールとして使用することを可能にする。これは、さらなるLIA(「波長基準LIA」)を、レーザ波長ディザ周波数fの基本振動数、第3高調波、または他の奇数次の高調波で動作する第2の光検出器の出力に接続することによって達成される。ここでレーザを、技術的に公知の方法によって波長基準ピークにロックすることができる。
【0047】
本発明の基本原理の説明において、キャビティ共振ピーク幅よりも大きい振幅を有する波長変調がレーザに適用され、そのような波長変調がキャビティ内部のレーザ場の高深度な振幅変調をもたらすことを、すでに説明した。次に、気体検出器の好ましい実現において最適なレーザ変調振幅(レーザ波長ディザ振幅または変調指数)を決定する方法を説明する。この方法の重要なパラメータは、PASセル応答の最大化である。
【0048】
図2aにおいて、曲線230が、キャビティがレーザにロックされ、δν≒0である場合について、特定の変調パラメータmの値、すなわち、m=2におけるキャビティ内パワーの時間依存性を示している。分析対象分子によって吸収される熱に起因する気体の圧力の周期的な変化が、PASセルにおいて出力信号を誘導し、この出力信号が、すでに説明したとおりに、DPCU 180においてすでに説明した方法で処理され、信号ISおよびQSが生成される。この信号は、キャビティ内パワーの時間依存性の特定の形状230に依存し、第1の光検出器の出力信号のキャビティディザ周波数の第2高調波から導出される出力信号INに比例する。波長変調指数mの最適化方法を、本発明によれば、以下のとおりに実現することができる。
-1に近い変調指数mを有する波長変調を適用する。mの値の特定の選択は重要でない。
-レーザへのキャビティのロックシステムを作動させ、正規化信号INおよびQNを観測する。これ以降、すべての動作はロックシステムを有効にして実行され、曲線230によって示されるとおりのキャビティ内パワーのピークの対称形状が維持される。
-Y信号を消去するように正規化信号φNの位相を調節する。これを行うことで、IN信号が所与の波長変調係数mにおける最大値となる。
-ロックシステムを稼働させた状態で、IN信号の最大値に達するまで波長変調振幅を変化させることによって、変調指数mを最適化する。これは、現在の動作条件のもとで最大のPASセル出力をもたらす波長変調指数mの最適値をもたらす。これをDPCUによって自動的に実行できることを、当業者であれば理解できるであろう。
-ひとたび波長変調指数の最適値が得られると、DPCUが変調指数の最適化を周期的に保つことで、構成部品の経年劣化が考慮される。
【0049】
そのような最適化の例が、図3aおよび3bに示されている。図3aの曲線310が、波長変調指数mWの関数としてのPAS信号励起効率を示している。mW=2.197においてピーク315に達している。ダイオードレーザの正弦関数の波長操作について、ピークにおけるPAS信号励起効率は0.343である。図3bが、変調指数mWの3つの値について、ピーク値に対して正規化したキャビティ内パワーの時間依存性を示している。破線320が、mW=1に相当し、実線330が、mW=2.197という最適値を表し、最後に一点鎖線340が、mW=4についてである。この図は、mWの2つの辺境の値においてなぜPAS信号励起効率が低いのかについて、直観的な理解をもたらしている。振幅変調を有するPASにおいて、強度変調関数の正弦関数形状について、PAS信号励起効率が0.5に等しいことを、当業者であれば理解できるであろう。曲線320は、正弦関数形状に極めて近いように見受けられるが、変調深度が、わずか50%である。したがって、PAS信号励起効率は0.25に近くなるはずであり、実際にそのとおりである。これに対し、曲線340は、最大の変調深度を示しているが、ピークが狭すぎる。曲線330が、最良の妥協を示しており、すなわち変調深度が少なすぎず、かつピークが狭すぎない。
【0050】
本発明による気体検出システムにおいて、LDの波長操作波形は、DPCU 180においてデジタル的に生成され、このデジタル波形が、WM DAC 185によってアナログ変調信号に変換される。伝統的に、波長変調分光法においては、正弦関数の変調関数が使用されている。本発明によれば、本発明者らは、正弦関数である必要はないが、任意の周期的な形状であってもよいということに注目させたい。DSPに基づく本装置においては、任意の波形をDDSメモリに保存でき、その後に出力に送信することができる。本発明に従い、非正弦関数の周期的な波長変調波形の例を提示し、どのように非正弦関数のレーザ波長操作波形をより良好なPAS信号励起効率をもたらすように最適化できるのかを、レーザへのキャビティのロック範囲の拡大という追加の利点とともに示す。
【0051】
すでに説明したとおり、PAS信号励起効率を、変調深度をより大きくすると同時に、キャビティ内のパワーのピークをより幅広く保つことによって、高めることができる。この態様をさらに説明するために、3つのダイオードレーザ波長変調波形が、図4aに示されている。実線で示されている波形410は、変調指数mW=1の正弦関数の波長変調である。第2の波形420(一点鎖線で示されている)は、鋸歯状の時間依存性を有している。正弦関数と同様に、この波形を、変調指数mW=1を有する鋸歯変調がキャビティ共振ピークの1つのFWHMに等しいピークトゥピークの振れを有するよう、ν(t)=ν0+1/2mW saw(2πft)と称する。波形420は、ゼロと交わる場合の傾斜が正弦関数と等しくなるよう、1.57という変調指数値を有する。最後に、第3のダイオードレーザ変調波形430(図4aに破線で示されている)は、関数によって
ν(t)=ν0+1/2mW[a・saw(2πft)+(1-a)・saw3(2πft)] (4)
として記述することができる。変調指数mW=5.6において、この第3の波形は、ゼロとの交差において正弦関数と同じ傾きを有するが、ピークの近くにおいてはるかに大きい傾きを有する。ピークの鋭さは、図示の場合には0.25に等しい「シャープネス」パラメータαによって制御される。
【0052】
図2aを参照し、正弦関数の波長変調関数210を曲線420または430の1つで置き換えることによって、これらの波形が使用される場合にキャビティ内パワーの時間依存性がどのように変化するのかを容易に理解することができる。波形410、420、および430に対応する3つのキャビティ内パワーの時間依存性が、図4bにおいてそれぞれの曲線440、450、および460によって示されている。波形460は、最大の変調深度を有し、ピーク間の時間間隔に対するキャビティ内パワーのピーク幅の比が、約1/2である。第3の波形における最大PAS励起効率が、3つの波形のうちで最大となり、0.5という最大値に近付くことを、当業者であれば予想するであろう。
【0053】
実際、それぞれ鋸歯状の波形470および特別な波形480について波長変調指数へのPAS励起効率の依存性を示している図4cおよび4dにおいて、特別な波形480によってmW=5.59において0.5という最大PAS励起効率に達することを、見て取ることができる。鋸歯状の波形470における最大PAS励起効率も、正弦励起の場合と比べて高く、ピーク値は、mW=2.79において0.391である。図5が、レーザダイオード波長変調波形の変化の影響をさらに示している。図5における3つの曲線が、3種類の波長変調について、時間の関数としてのキャビティ内増強パワーを示しており、いずれもPAS励起効率が最大となる波長変調指数の値において得られた曲線である。実線520が、正弦関数による変調におけるキャビティ内パワーを示しており、一点鎖線520が、鋸歯状の変調についてであり、破線530が、特別な変調波形に相当する。特別な変調波形が、あくまでも例として式(4)によって記述される関数として与えられていることを、当業者であれば理解できるであろう。特別なレーザダイオード波長変調波形の重要な特徴は、その傾斜が、レーザ波長がキャビティピークを横切る領域におけるゼロとの交差の付近で最小値となり、キャビティ共振ピーク領域の外側でより大きい傾斜を有することにある。これは、さまざまな関数の形態において達成可能であるか、あるいは表にされたいくつかの値の補間として与えることができる。これらすべての代案は、本発明の技術的範囲に包含される。
【0054】
PAS励起効率を0.343から0.5までとほぼ1.5倍に増加させる他に、特別な変調波形の適用は、さらなるプラスの効果を有し、すなわちダイオードレーザへのキャビティのロック範囲が大きくなる。図6において、痕跡610が、レーザ波長変調波形が正弦関数の形状を有する場合について、キャビティをレーザにロックするために使用される正規化された誤差信号を示している。痕跡620は、特別な変調波形に相当する。特別な変調においては、誤差信号のピークの半値全幅が2.25倍も大きく、これに対応してロック範囲がより大きく、外部摂動に対するロックの耐性がより高いことを示している。
【0055】
本発明による気体検出方法は、レーザおよびキャビティのパラメータの相互の値について、考慮すべき特定の要件を有する。すでに述べたとおり、レーザの波長がキャビティの共振ピークの周囲を周期的に掃引され、掃引周波数は、PASセルの共振周波数の半分に等しい。第1の制限は、掃引の速度に関して生じる。レーザの線幅がキャビティの共振ピークの幅よりもはるかに狭いと仮定すると、実際に、キャビティ内のレーザパワーの時間依存性は、レーザの波長がピークを横切って調節されるため、キャビティのピークの形状に従う。しかしながら、レーザの掃引が速すぎると、キャビティへのレーザパワーの注入が非効率的になる可能性がある。走査が速すぎないかどうかの基準は、レーザ波長がキャビティピーク幅を横切るために要する時間と、キャビティ内でのレーザ照射の減衰時間との比較からもたらされる。
【0056】
レーザ光周波数として表されるキャビティ共振ピークの半値全幅δνCavを、共振キャビティの長さLCおよびミラーの反射率から

と得ることができ、ここで

は、キャビティフィネス(finesse)と呼ばれ、

は、キャビティ自由スペクトル領域(「FSR」)と呼ばれる隣り合うキャビティ共振ピークの間の周波数間隔である。キャビティ内のレーザ照射の減衰時間τCavの値も、

としてキャビティの長さおよびミラーの反射率に依存する。
【0057】
レーザ光周波数を掃引しつつ、キャビティの全共振幅を通過するレーザ周波数の通過時間τδνがキャビティの減衰時間τCavに近付く場合の励起へのキャビティ有限応答の影響を調べる。これらの過渡的な影響の分析の検討において便宜上、走査速度パラメータξWM=τCavδνを導入する。
【0058】
走査速度パラメータの限界値は、ξWM=1の付近にあるべきであると予想することができる。そのような走査速度について算出したキャビティ内循環パワーの時間依存性が、図7aに実線710によって示されている。理想化されたローレンツ応答が、破線720によって示されている。曲線710は、注入効率の低下を示しているだけでなく、レーザへのキャビティロックシステムの動作を困難にすると考えられる有意なリンギングおよび遅延も示している。したがって、走査はより低速でなければならない。本発明による限界走査速度パラメータ値は、ξWM=0.15である。そのような走査速度において、リンギングおよびピークの遅延は容認できる水準であり、注入効率は約11%の低下にすぎない。
【0059】
例として、典型的な長さ6cmのPASセルを収容することができる長さLC=10cmのキャビティを考える。さらに、両方のキャビティミラーについて同じ反射率R1=R2=99%を仮定し、したがって損失を無視できると仮定すると、そのようなキャビティは、100という増強係数、フィネスF=312.6、共振ピーク幅δνCav=4.96MHz、および減衰時間τCav=33.0nsを有する。わずか10mWのレーザパワーをキャビティに結合させた場合に、1Wの循環パワーが得られる。さらに、鋸歯状の変調波形がmW=2.79という最適値で使用されるということを仮定すると、キャビティの全共振幅を通過するレーザ周波数の通過時間τδνは、2600HzというPASセル共振周波数の半周期をmWで除算したものになり、すなわちτδν=276μsであり、キャビティの減衰時間ξWM=1.2×10-4よりも3桁ほど低速である。
【0060】
そのようなξWMの値は、キャビティの応答に関するかぎりにおいて、ミラーの反射率を約1000倍に高め、1000倍も大きいパワー増強を得ることができることを示している。R1=R2=99.999%とすることによって、F=3.1×105、δνCav=4.8kHz、およびτCav=33.3μsが得られる。波長変調指数mW=2.79の同じ値を保つことが、実際のレーザ波長のピークトゥピークの行程が、ここで先の例よりも1000倍も小さいことを意味する。ここでξWM=0.12であり、これは限界値にかなり近く、10mWをキャビティに結合させて、印象的な1kWのキャビティ内循環パワーが得られる。
【0061】
損失が10ppm未満のミラーは市販されており、ここで示されるとおり105に極めて近い増強係数は得られることができる。
【0062】
本発明者らは、容認可能な最大走査速度に起因するキャビティパラメータの制限を説明し、この種の制限が、105にもなる強度増強を可能にすることも実証した。制限が、キャビティとレーザの線幅との間の関係から生じ、場合によっては、上述した制限が効果を発揮し始めるよりも前に生じうる。
【0063】
これまでに、気体検出システムの動作の分析を、レーザの線幅δνLasがキャビティ共振幅δνCavよりも大幅に小さいと仮定して行った。この条件は、短い空洞および小さな強度増強係数においては容易に満たすことができる。しかしながら、より大きなPASセルを収容するためにキャビティの長さを大きくし、さらには/あるいはより高い循環パワーをキャビティ内に達成する意図でキャビティミラーの反射率を高めると、δνLasがδνCavに近付く状況につながる可能性がある。ミラーの反射率を高め続けると、キャビティ内パワーがキャビティの共振プロフィルに断熱的に従うδνLas<<δνCavという状況から、δνLas>>δνCavという状況になる。この限界において、式(2)および(3)はもはや有効でなく、過渡的キャビティ応答関数ならびに位相雑音を有するレーザのモデルを、システムの挙動を理解するために使用しなければならない。レーザがキャビティ共振よりもはるかに幅広い状況は、キャビティリングダウン分光法(CRDS)において典型的であり、この状況の分析は、先行技術に記載されているキャビティ共振を通るレーザ光周波数の通過を含む。レーザの線幅が、拡散状のプロセスにおいて電界をそれ自身との位相の不一致へと駆動する無作為の自然発生的な光子によって引き起こされるレーザ電界の位相雑音によって決定されることを知ることが重要である。結果として、レーザスペクトルを、時間においてドリフトする位相を有する単色波と考えることができる。この位相のドリフトを、レーザの所定の線幅におけるレーザの無作為な周波数ドリフトと解釈することができる。
【0064】
これは、図2に示されているとおり滑らかなレーザ波長変調波の形態220の代わりに、その波形に重ねられる無作為なレーザ周波数変動を仮定しなければならないことを意味する。その無作為な周波数変動の広がりが、レーザの線幅である。結果として、δνLas<<δνCavという領域においてさえも、キャビティ増強の痕跡が、曲線230に示されているようには平滑ではなく、何らかの雑音を有する可能性がある。この雑音の可視性は、δνLasおよびδνCavの相対的な大きさに依存する。
【0065】
δνLasは、レーザの特性によって決定され、さらに正確には自発的な放射によって無作為に駆動される放射の位相のコヒーレンス時間τPhによって決定される。コヒーレンス時間は、この時間のうちにレーザモードの位相Φ(t)が平均で1ラジアンだけ初期の値からドリフトすることを意味する。レーザの線幅を、そのコヒーレンス時間から

と表すことができ、ここでαは「線幅増大係数」である。分光気体センサに一般的に使用されるDFBダイオードレーザにおいては、αが2〜5の範囲にあることができる。また、この位相雑音の影響を、特徴時間τPhを有するローレンツ線形状におけるレーザ周波数の乱歩と考えることもできる。
【0066】
高感度気体分析における最も一般的なレーザ源である半導体DFBダイオードレーザは、多数の供給者から入手可能である。供給者の仕様によるそれらの線幅は、数百kHzから、典型的な高フィネスキャビティにおけるδνCavの値に近い約10MHzまで、さまざまでありうる。99%のミラー反射率を有する長さ10cmの増強キャビティは、共振幅δνCav=4.8MHzを有する(充分に市販DFBレーザの線幅の値の範囲内である)。他方で、99.999%の反射率の使用可能なミラーを有する同じキャビティは、市販のDFBレーザの線幅よりも数桁も狭い4.8kHzの線幅を有する。レーザの線幅のキャビティ共振幅に対する比κ=δνLas/δνCavが1よりも大きい場合、レーザパワーの注入効率が劇的に低下する。たとえキャビティ共振を横切るレーザ線の通過がξWM<<1と遅い場合でも、平均注入効率がほぼ1/κとして低下し、PASセルに作用する有効レーザパワーを大きくするための手段としてのミラーの反射率のさらなる増大を、無用にしてしまうことが知られている。さらに、図2a〜2bならびに図7a〜7bに示した滑らかなパワー増強時間プロフィルが、もはや得られなくなる。これらの滑らかなプロフィルの代わりに、むしろ雑音のバーストが予想される。この雑音は、レーザの基本特性、すなわち位相雑音の直接的な結果であり、無作為な性質ゆえにフィードバックループによる除去が不可能である。
【0067】
これは、共振の高速な通過(ξWM>>1)およびキャビティ共振幅よりもはるかに幅広いレーザ線幅(κ>>1)を有するキャビティリングダウン分光法に典型的な状況である。本発明におけるキャビティ-レーザシステムの動作モードは異なり、後述されるさらなる分析を必要とする。上述のとおり、通過は低速でなければならない(ξWM<0.15)。これに加え、強度の増強を最大にすべく可能な最大の程度までキャビティミラーの反射率を大きくし続けながら、レーザへのキャビティピークロックの動作を妨げないことが求められる。
【0068】
キャビティミラーの反射率の制限と同等のパワー増強係数の制限のための制約条件の決定を説明するために、図8を参照すべきである。製造者によって指定される線幅が2MHzである半導体DFBレーザ(NEL社が製造するNLK1C5JAAA)を、3つの異なるキャビティに結合させ、各々のキャビティの共振ピークを横切って鋸歯状の波形を適用することによって、レーザ動作波長を周期的に掃引した。変調指数を、この波形についての最適値mW=2.79に設定した。これら3つのキャビティはすべて、反射係数R=1-4.4×10-3を有する2つの同一な球面ミラーを使用して製作されているが、1mm、7mm、および21mmという異なるキャビティ長を有する。この反射係数に対応するフィネスは706に等しく、したがってキャビティは、それぞれ212Mhz、30Mhz、および7.9Mhzという異なる共振幅δνCavを有した。図8の痕跡a、b、およびcが、各々のキャビティにおける第1のフォトダイオード信号(キャビティ内の循環パワーに比例する)を示している。
【0069】
図8aに示されている最短のキャビティ増強の痕跡810について、DFBレーザは、同じ波長変調条件について算出された図5の理想化された痕跡520によく似ている。レーザ線幅は、212MHzのキャビティ共振幅よりも約100倍も小さく、期待されるとおり、実質的な位相雑音を痕跡に見て取ることができない。30MHzの帯域幅を有する長さ7mmのキャビティについての図8bの痕跡820では、レーザ位相雑音がかなり目立つようになる。最後に、長さが21mmで帯域幅が7.9MHzであるキャビティにおける図8cの曲線830については、雑音が極めて強力になる。レーザへのキャビティのロックは、3つのすべての場合において確実に動作している。キャビティ長をさらに増加させる企ては、レーザへのキャビティロックシステムの間欠的な動作につながる。このように、レーザ線幅のキャビティ帯域幅に対する関係が、制限の事例を呈する。
【0070】
図8a〜cの痕跡の分析は、所与のレーザ線幅について許される最大のキャビティ帯域幅の定量的基準をもたらす。図8bの痕跡820が、レーザ帯域幅の評価を可能にする。分析をさらに発展させるために、図9を参照する。この図においては、図8bの1つのピークが、実際のデジタル化された第1のフォトダイオード信号を表す点910によって示されている。実線920が、キャビティ内循環パワー共振ピークのローレンツフィットであり、曲線930がフィット残差を示している。キャビティ共振ピーク920が、レーザが共振ピークを横切って掃引されている場合の位相雑音に起因するレーザ光周波数の無作為な偏差についての周波数弁別器として機能することを、当業者であれば理解できるであろう。レーザ周波数の偏差が、キャビティによってフィット曲線からの強度偏差に変換される。曲線920の中ほどの領域940において、総強度の0.1の強度増加は、3.0MHzの周波数偏差に相当する。キャビティが周波数弁別器として機能するために、キャビティ減衰時間τCavがレーザの位相相関時間τPhよりも短くなければならず、実際そうである。長さ7mmのキャビティについて、τCav=5.3nsである一方で、2MHzとう指定のレーザ線幅において、τPh=1/πδνLas=159nsである。ピークトゥピークのレーザ周波数の偏差を、ここで図9のフィット残差930の最大傾斜領域940の部分から決定することができる。曲線930におけるピークトゥピークの強度変化は、総強度の0.44であり、平均位置からの13.2MHzまたは±7.6MHzのピークトゥピークのレーザ周波数振幅を意味している。このピークトゥピークの偏位は、2MHzのレーザ線幅に矛盾しない。
【0071】
ここで図9を参照すると、キャビティ内循環パワーピークの総面積を、フィットされたローレンツ型の振幅から求めることができること、および、図8aの理想に近いピークの約95%であることを見て取ることができる。これは、レーザ位相雑音に起因する注入効率の低下を示している。
【0072】
ここで、7.9MHzの帯域幅を有するキャビティについての図8cの雑音の多い痕跡830に目を向けると、ピークの顕著な二重ローブの外観を見て取ることができる。例えば、レーザがキャビティ共振曲線の傾斜の真ん中に位置する場合、7.6MHzの偏位が、レーザの瞬時の周波数をピークの他方の側まで持っていく。共振ピークの面積(注入効率)がさらに低くなり、ここで狭い線幅のレーザにおける理想の値の約84%である。
【0073】
分析を要約すると、本発明によれば、ミラーの反射率をOPBC帯域幅δνCavがレーザ線幅δνLasの3倍を超えないように選択すべきであることがここで示され、これは数式δνCav≧3δνLasと同等である。この制限が、ひとたびPASトランスデューサが選択されると達成可能なパワー増強に限界を設定する。例として、A.Rossi,et.al.,(2005),Appl.Phys.Lett.,87,041110(2005)によって説明されているとおりの長さ6cmのPASセルおよび上述の例からのDFBレーザを挙げることができる。増強キャビティは、そのようなセルを収容するために8cmという最小長さを有するべきである。レーザ線幅が、6MHzというキャビティ帯域幅の限界を設定し、これがミラーの反射係数の最大値をR1=R2=0.99に設定する。キャビティに結合させられる10mWのレーザパワー、ならびに上述のとおりに84%になるレーザ線幅に起因する注入効率の低下において、1.68Wというキャビティ内増強パワーを期待することができる。さらに、PASについてこれまでに報告されている

という最良のNNEAを仮定すると、そのような気体検出器が、1Hzの検出帯域幅において7.1×10-10cm-1という低い吸収係数を検出できるはずであると予想できる。上述したとおり、キャビティ帯域幅が同じままであるように、入力ミラーについてR1=0.98であり、キャビティ端ミラーについてR2=0.99998である異なる反射率のキャビティミラーを使用し、増強パワーがさらなる係数2によって3.36Wまでさらに増やされ、結果として検出限界が2倍良好になり、ここで

となる。反射率の等しくないミラーを備えるそのようなキャビティの構成が、好ましい態様である。そのような感度はかなり競争力があり、最も高感度(ただし、かなり複雑になる)な現場システムのうちのただ2つ、すなわちCRDSおよびICOSについて、約3×10-11cm-1という感度が報告されている。
【0074】
より狭い帯域幅および/またはより高い出力を有するDFBレーザを使用することによって検出限界をさらに改善することができるが、出力パワーが大きくなってもそれに比例して線幅が大きくなるならば効果がないことを、確認すべきである。また、例えば外部共振器ダイオードレーザ(ECDL)などの本質的に線幅の狭いレーザを使用するという選択肢も存在する。50kHzを下回る線幅の値が、市販のECDLについて報告されている。残念ながら、そのようなレーザは、通常は多くの現場用途にとって信頼性が低く、極めて高価である。上述の分析から、キャビティ内により高い光パワーを実現するうえでの限界が、PASセルそのもののサイズから生じることが明らかである。そうでないならば、キャビティの長さを10分の1に減らすことで、OPBC/PAS気体分析システムの感度を、他のあらゆる分光法について報告されている最良の値にすることができる。残念ながら、A.Miklos,et.al.,Rev.Sci.Instr.,72(4),1937-1955(2001)に記載のとおり、伝統的な共振PASセル内部の種々の損失機構が、上述のはるかに小さいセルを一般的には商業的に非現実的にしている。
【0075】
石英改良型光音響センサ(QEPAS)(米国特許第7,245,380号(2002)およびA.Kosterev,et.al.,Optics Letters,27(21),1902-1904(2002)を参照)における小型センサによって、1ミリメートルの何分の1かにすぎない厚さの石英音叉(QTF)を極めて短いキャビティに挿入でき、伝統的なPASセルにおいては単にそれらの長さが大きいがゆえに達成することが困難である感度における大きな追加の利点を提供することができる。しかしながら、QTFだけではNNEAが古典的な共振PASセルの約20分の1にすぎず、極めて小さいキャビティにおいて単一のQTFを使用する利益が多少なりとも少なくなることを忘れてはならない。
【0076】
QTFとマイクロ共振器管との組み合わせが、QFTの感度を伝統的な共振PASセルの水準まで高めるが、長さが長くなり、周囲雑音に対する耐性が低くなるという代償を伴う。しかしながら、そのようなセルの長さは、伝統的な共振PASセルの長さよりも依然として短い。
【0077】
次に、QTFを有するOPBCのいくつかの適切な構成を、QTFの特徴および特性の概要に続いて説明する。実際のQTF 1001をわずかに簡単にした図が、光ビーム1005の一部分とともに、図10aに示されている。QTFは、光ビーム1005によって生じる音波のトランスデューサとして動作する。断続的な(振幅変調された)レーザビームの例について説明を行うが、当業者であれば、それらの説明をレーザの波長の変調の場合へと容易に拡張できるであろう。断続ビーム1005が、QTFの2つの腕1011および1012の間を通過する。レーザの波長が関心対象の分析対象分子の吸収線に一致する場合、レーザのオン期間においてビーム領域1005の温度が上昇し、レーザのオフ期間において低下する。気体が、周期的な様相で半径方向に膨張/収縮しようとし、この気体の周期的な膨張/収縮が、2つの腕1011および1012の対称振動モードの励起を、励起がQTFの共振周波数に一致するかぎりにおいて達成する。バランスの良好なQTFにおいては、この対称モードの運動から音叉の根元への機械的な反作用が存在せず、したがってそのような運動が極めて高いQファクタを有する。換言すると、QTFの腕の間の光ビームにおける気体の熱励起が、QTFの高Q共振器によって大いに増強される。他方で、平面波に近い形態で遠方の発生源からQTFに到来する周囲の音波は、両方の腕を同じ方向に曲げようとする傾向を有するため、有用な対称振動モードの励起を非効率的にする。これが、周囲の音響雑音に対するQTFの高い耐性を説明している。対照的に、極めて高感度のマイクロホンは、遠方の発生源からの弱い音波を取得するように設計され、レーザビームが注入される小体積の空気の円柱から現れる乱れを検出するようには最適化されておらず、気体の小さな不純物の高感度分析器に必要な性質と正反対である。QTFは、その名前から明らかであるとおり、結晶石英で製作され、したがって振動するQTFは、圧電効果によって電流を生じさせる。この目的のために、電極構造がQTFに付着させられる。簡単にするため、図10aにおいて、2つの接点パッド1015および1016だけが図示されている。QTFの腕に位置する電極パターンは、図示されていない。QTFの寸法は、製造者ごとにさまざまである場合があるが、標準的な32kHzの時計用QTFの全長は8mmを超えず、約10mmである波長よりも小さい。後述の実施例において使用した特定のQTFは、全長が6.75mmであり、腕の長さLtが4.0mmであり、腕の幅wtが0.62mmであり、腕の厚さttが0.33mmであり、腕の間のすき間gtが0.29mmであった。光音響励起に対するQTFの応答は、すき間におけるビームの位置に依存し、腕の幅に近い腕の端部からのビーム距離において極大に達し、極大の両側へと急激に減少する(米国特許第7,245,380号を参照されたい)。光音響励起トランスデューサとしてのQTFの性能は、QTFの応答性および雑音の関数である。QTFの雑音特性の詳細な分析によって、QTFの雑音が周囲の気体分子の熱運動によって決定され、したがって音波の検出の根本的な限界を呈することが示されている。QTFの光音響応答を測定するための最良の方法は、パッド1015および1016の間を流れる電流を測定することであり、標準的なトランスインピーダンス増幅器(TIA)によって行われる。QTF振動および雑音特性を、抵抗/インダクタンス/キャパシタンス(RLC)直列回路との電気機械的な類似性を使用してモデル化することができ、インダクタンスLが、音叉の腕の有効質量を表し、1/Cが力定数を表し、Rが損失および雑音を表す。これらのパラメータを、電気励起に対するQTFの応答の周波数依存性を測定することによって決定することができる。この目的のために、QTFの接点パッドのうちの1つを、正弦関数電気信号発生器に接続すべきである。他方のパッドは、TIAの入力に接続されたままである。TIAの出力電圧の振幅および位相によって、QTFの等価回路のすべてのパラメータL、C、およびR、ならびに音叉のパッケージおよび接続線の寄生容量CPを決定することができる。これらの測定パラメータから音叉の共振周波数f0およびそのクオリティファクタQを

として決定することができるだけでなく、その雑音電流スペクトル密度も、電気等価回路のパラメータによって決定されることに注目すべきである。雑音は、幅がQTFの電気応答の幅に等しく、ピーク値が等価抵抗の電流雑音密度

に等しいローレンツ形状を有する。
【0078】
これは、QTFに基づくPAS気体検出器の特性を予測可能にし、QTFに基づく気体センサの設計、最適化、およびさらなる発展における大きな利点である。ただ1つのQTFだけが2つの球面ミラーM1およびM2によって形成されたキャビティの内部に位置するOPBC/QEPASの最も単純な構成が、図10bに示されている。例えばA.Kosterev,et.al.,Optics Letters,27(21),1902-1904(2002)を参照されたい。QTFおよび直径7.75mmのミラーが、正しい互いの縮尺で描かれている。この特定の態様においては、キャビティの長さが6.2mmであるが、他の態様においては、QTFが2つのキャビティミラーの間に納まる限りにおいて、1mmまたはそれ以下の小ささにすることもできる。
【0079】
この場合に制約条件δνCav≧3δνLasを適用すると、δνLas=2Mhzの同じレーザにおいて、6MHzという許容される最小のキャビティ帯域幅を得るために、R1=0.9984の結合ミラーおよびR2=0.99999の第2のより高い反射率のミラーを使用できることを理解することができる。最悪の場合の予測として、結合ミラーの損失が(1-R1)の10%であるとさらに仮定することができる。上述の実施例と同じ条件のもとで、10mWのレーザパワーをキャビティに注入して、ここで約22.2Wの循環パワーを得ることができる。これは、このキャビティのパワー増強係数が2220になるという状況である。ここで、この構成について感度の評価を行うことができる。本発明者らの測定によれば、図10aに示したQTFは、RQTF=7.2μA/(cm-1W)という外気中の水蒸気に対する二重経路応答を有し、これは1cm-1という吸収係数を有する媒体について、QTFを2回通過する1Wのレーザパワーによる光音響励起によって、7.2μAのQTF電流がもたらされることを意味する。QTF電流雑音を、このQTFの等価抵抗から得ることができ、84.8kΩに等しい大気圧において

になる。次いで、大気中の水の検出におけるこのQTFの正規化雑音等価吸収(NNEA)を、NNEA=InQTF/RQTF=6.07×10-8cm-1w/Hz1/2のとおりに得ることができる。ここで、本発明者らの高いキャビティ内パワーPCを考慮に入れると、雑音等価吸収NEAを、

で得ることができる。
【0080】
文献(米国特許第7,245,380号)において報告されている別の態様が、OPBCなしでのこれまでの最高のQEPAS感度に相当する。この特許において、H2O分子についてのNNEAは、60Torrという最適な圧力においておよびQEPASセルを2回通過する経路で、2.5×10-9cm-1W/Hz1/2である。大気圧の近く(800Torr)では、NNEAが約2分の1に低下し、5.5×10-9cm-1W/Hz1/2になるが、すでに報告されているとおりのQTF単独よりも約10倍も良好である。この感度の改善は、マイクロ共振器の使用によるものと考えられるべきである。米国特許第7,245,380号、A.Kosterev,et.al.,Optics Letters,27(21),1902-1904(2002)、およびA.Kosterev et.al,LACSEA 2006,Incline Village,NV,February 5-9(2006)を参照されたい。
【0081】
2つの小さな管が、QTFのすぐ近くに配置される。管の長さ(約5mm)を、空気中の音波の半波長に近付けた。マイクロ共振器管を有するQTFを用いることは簡単明瞭であり、先の実施例に対する唯一の相違は、ここでキャビティの長さをQTFおよび管を収容するために充分に長くしなければならない点にある。OPBC内にマイクロ共振器を備えるQTFの概要が、図11aに示されている。これは、マイクロ共振器管とキャビティミラーとの間に約1mmのすき間が存在するようにここでキャビティの長さが12.4mmである点を除いては、図10bの構成と同様である。小見出し3.5.1の実施例よりも2倍大きいキャビティ長ゆえに、δνCav≧3δνLasという要件を満たすためにミラーM1の反射率を再び下げる必要がある。他方のミラーを変えない場合、M1=0.9968においてキャビティの帯域幅は6.2MHz>3δνLasのままであり、ここで増強係数が1200となって当然ながら2分の1になり、キャビティ内の循環パワーは12.3Wである。このQTF-管の組み合わせについてのNNEA(A.Kosterev et.al,LACSEA 2006,Incline Village,NV,February 5-9(2006)を参照)において、雑音等価吸収は2.0×10-10cm-1Hz1/2になると推定される。この構成の水の検出限界は、A.Kosterev et.al,LACSEA 2006,Incline Village,NV,February 5-9(2006)によって実証された90ppbvを超え、約1000倍の改善を得ることができ、したがって0.09ppbvに達することができる。キャビティおよび単独のQTFの最も単純な組み合わせさえも、水について約0.9ppbvという極めて目覚ましい検出限界をもたらすことができる。
【0082】
上述の構成が例として提示されているにすぎず、信号増強ツールを備えるQTFの任意の現在または将来の標準的なあるいはキャビティを持たない構成を、キャビティへの挿入によってOPBC内部で使用することができ、したがってそのような構成が本発明の技術的範囲に含まれることを、当業者であれば確かに理解できるであろう。例えば、単一管共振器を、本発明の技術的範囲においてキャビティ内に使用することができる。この構成は、後述のとおりOPBC/QEPASにとくに適することができる。ある著者が、単一の小さなマイクロ共振器管の中ほどにスリット状の開口を切り込み、QTFを開口の近くに配置することを提案している。管の長さ以外のこの組み合わせの最適化パラメータは、管の内径および外径、スリットの深さおよび幅、ならびに開口に対するQTFの位置である。著者は、考えられるいくつかの構成およびサイズを実験によって評価し、いくつかの好ましい構成およびサイズを試行錯誤によって見つけている。報告された最良の結果は、0.45mmの内径および0.70mmの外径を有する長さ8mmの管において達成され、単一のQTFと比べて、常温および常圧での大気中の水についての応答の15.2倍の改善である。
【0083】
しかしながら、本発明者らは、OPBC/QEPASについて別の構成を選択することが好ましく、そのような構成は、応答の改善は10倍であるが、管の長さが5.84mmにすぎないため、すでに述べたとおりの短いキャビティに収容でき、したがって2200倍の強度増強を完全に利用できることを発見した。10mWの注入レーザパワーにおいてこの構成の推定雑音等価吸収は、45pptvという水についての容認できる検出限界を有するNEA=1.0×10-10cm-1Hz1/2を与える。
【0084】
この構成が、図11bに示されている。より短い管の使用に加えて、OPBC/QEPASのためのいくつかの他の重要な利点がもたらされる。
-より短いキャビティ長および大きな管内径ゆえに、管について、キャビティ内の強力な放射の電磁界モードとの重なり合いが少なくなり、結果として管壁での吸収に起因して生じうる背景信号が小さくなる。
-この利点は、キャビティのTEM00モードのサイズが波長の平方根として増加するため、より長い波長においてますます重要になる。6.2mmのミラー半径を有する共焦点のキャビティにおいて、1/e2の強度レベルにおけるTEM00モードの胴径は、1550nmのレーザ波長について0.078mmであるが、10μmの波長においては0.199mmまで増加する。そのようなビームについて、かなりのクリッピングが、腕の間のすき間が0.29mmである典型的なQTFそのものにおいて生じると考えられる。好ましい態様の管の内径は、ビーム強度の低下が1/e8倍であるように約0.8mmであり、外径は1.20mmである。
-QTFがキャビティ内のミラー表面からの散漫散乱などの散乱レーザ照射に応答する可能性があり、これがOPBCの極めて高いレベルの光パワーにおいて有意になりうることが知られている。この構成においては、QTFが完全に光ビームの外に位置し、管によって散乱放射から遮蔽されているため、望ましくない背景信号のレベルがより低い。
-2管式マイクロ共振器の構成における応答性の改善は、管前面とQTFとの間のすき間の関数である。すき間の最適値は、わずか数十マイクロメートルとなりうる。2管式の構成における音叉および管の整列は、難易度が高く、好ましくはPAS信号の大きさを監視することによって能動的に行われるべきである。スリット状の切り欠きを有する単一管は、約100μmというはるかに大きい公差の余裕を有し、これは気体センサの大量生産にとって極めて有益である。
【0085】
この構成は、1つの好ましい態様である。
【0086】
すでに述べた実施例は、自由空間レーザビームにおいてこれまで使用されてきた公知のQTF構成の増強キャビティへの新規な適合を呈している。次に、OPBC内のQTF-マイクロ共振器構造のさらなる改善および最適化方法を説明するが、それらは本発明の技術的範囲に包含される。
【0087】
単一管式マイクロ共振器の性能を、QTFと管の開口を流入および流出する振動する気体の流れとの間の相互作用の面積を増やすことによって、さらに改善することができる。本発明によれば、これを、管1202の壁に平たい面1201を切り欠き、図12aの上部に示されているとおり平たい面1201を切れ目1203の底に平行になるようにすることによって達成することができる。OPBC内での管を有するQTF1204の位置が、図12aの下部に示されている。第2のキャビティミラーは図示されていない。QTFと管との間のすき間が小さくなることで、気体の逃げ出しが防止され、QTF-管の組み合わせの光音響応答が向上する。
【0088】
ここで、QTF-マイクロ共振器の組み合わせのすべての設計パラメータの最適化の方法を説明する。マイクロ共振器管の開口の形状が、必ずしもスリット状でなくてもよいことを、当業者であれば理解できるであろう。図12bに示されているとおりの円形1205または楕円形などの他の形状ならびに面取りされた開口も、振動する気体をQTFの腕に届ける効率を改善するために使用することができる。さらに、平たい面1201を、任意の形状の開口と組み合わせて使用することができる。
【0089】
振動する気体の逃げ出しをさらに防止するとともに、マイクロ共振器内の気体の振動運動をさらに高い効率でQTFの腕に伝えるために、平たい端部を有するピン1206が、図12cに示されるとおり、ピンの軸が開口の領域の範囲内に位置し、ピンの平たい端部が平たい面1201およびQTF 1204に平行になるように、QTFの近くに適切に配置される。
【0090】
式(9)から次のとおりであり、QTFのセンサ雑音は、QTFの抵抗Rの平方根の逆数によって決定される。QTFをマイクロ共振器またはマイクロ共振器の付近に配置し、あるいは単に何らかの物体をQTFに充分に近接して配置すると、QTFの光音響励起に対する応答(RQTF)が変化するだけでなく、QTFの等価抵抗も変化し、したがって雑音InQTFが変化する。これは、主要な気体検出システムの性能パラメータNNEA=InQTF/RQTFに直接的に影響する。2つのマイクロ共振器管の間にQTFを配置すると、QTFの等価抵抗Rが増加し、クオリティファクタQが減少することが、実験において観察されている。QTFと管との間の距離が過度には短くない場合、応答RQTFが隔離されたQTFよりも大きくなる。おおむね周囲の気体の粘性境界層の厚さの距離において、応答が低下し始める。そのような低下について考えられる理由は、管が粘性摩擦によって腕の運動を遅くすることである。同様の挙動は、1つのマイクロ共振器管または2つの管によってQTFの応答を向上させるために用いることができるあらゆる方法に特有である。結論として、真のQTF感度最適化プロセスおよびQTFの応答の測定は、雑音の評価および比InQTF/RQTFの最大化を含むべきである。本発明者らは、これを以下のとおりに達成できることを発見した。
-例えばQTFとマイクロ共振器管との間のすき間などの最適化パラメータの特定の値について、較正されたパワーを有する波長または振幅変調のレーザ照射による励起によって、標準状態(濃度、温度、圧力)の較正気体についてのQTF/マイクロ共振器システムの応答RQTFを測定する。
-電気励起周波数の関数としての電気励起に対するQTF/マイクロ共振器システムの振幅応答の周波数依存性を測定する。
-先の工程において測定された電気応答からQTF/マイクロ共振器システムの等価電気回路パラメータを決定する。
-式(9)を使用して雑音電流密度InQTFを算出し、NNEA=InQTF/RQTFを算出する。
-最適化時のパラメータの最良の値は、最小のNNEAを与える値である。
-次いで、プロセスを他の最適化パラメータについて適切に繰り返すことができる。
【0091】
このプロセスの重要性は、2つの管/QTFのシステムの最適化プロセスにおいて、応答のみにおける最高の利得が18.6倍である一方で、感度における利得と同等のNNEAの利得が、単一のQTFと比べて26.0倍であったという事実によって示されることができる。
【0092】
ここで、複数のQTFの組み合わせを使用してQTFの感度を高めるための本発明の別の態様を説明する。本発明者らは、2つまたはそれ以上のQTFの組み合わせを作成し、それらを、個々のQTFの電流がTIAにおいて足し合わされるように電気的に並列接続し、隣り合うQTFの間の距離をQTFを囲む気体の境界層の厚さよりも小さくすることで、組み合わせの応答が単一のQTFと比べて大きく向上することを観測した。さらに、組み合わせQTFの応答が、組み合わせられるQTFの数につれて非線形に増加することも発見した。2つのQTFの応答は、2つのうちのいずれかの応答よりも2.4倍大きく、4つのQTFの応答は、9.3倍大きく、6つのQTFの応答は、15.2倍大きく、単一のQTFとマイクロ共振器管との組み合わせを用いて得られる上述の応答の最大の利得に近い。しかしながら、6つのQTFの組み合わせの全体の厚さが、2.2mmにすぎない一方で、最良のQTFおよび2つの管の組み合わせの全長は、約10mmである。3〜4倍短いキャビティを、複数の音叉の組み合わせにおいて使用することができ、3〜4倍高いパワーの増強およびそれに対応した高い感度を可能にすることができる。長さ6mmのキャビティ内の9つのQTFの概略図が、図13に示されている。
【0093】
QEPASセンサの感度の改善を、2つまたはそれ以上のQTFを以下の方法で組み合わせることによって得ることができる。
-波長または振幅変調のレーザビームを各々のQTFのすき間を通って送信し、レーザの波長をQTFを囲む較正気体の吸収線に調節することによって、いくつかのQTFの音響応答を測定する。QTF電気信号の極性に注意し、それらの電気応答信号と同じ極性に対応するQTFの接点パッドに印を付ける。
-光ビームが組み合わせ後のすき間を単一のQTFの場合と同じ様相で通過できるよう、腕およびすき間を整列させることによって、2つまたはそれ以上のQTFを一緒に配置する。
-極性の印がすべて、すべてのQTFの同じ側に位置することを確認する。
-一態様において、隣り合う音叉の間のすき間が境界層の厚さ以下であるように、すべての音叉を接着剤または機械的な固定具で一緒に固定する。
-別の態様においては、隣り合う音叉の根元および隣り合う音叉の腕の向かい合う先端を、エポキシ接着剤などによって一緒に接着することができる。
-すべてのQTFを並列接続する。極性の印が揃えられているため、これは、すべてのQTFの信号電流が加算されることを確実にする。ここで、音叉の組み合わせを、感度が改善されたPASAセンサとしてすぐに使用することができる。
【0094】
ここで、光フィードバックの存在における動作のための本発明の好ましい態様を説明する。光アイソレータ155が、レーザ101に戻るキャビティ160からの反射光の伝達を大きく減少させて、この光によるレーザの動揺を防止するために、図1に示したとおりの本発明の好ましい態様において使用される。ファラデーアイソレータに基づく極めてさまざまな小型かつ安価な光アイソレータが、スペクトルの可視範囲、とくには近赤外範囲について、入手可能である。通常は、レーザの動作波長が長いほど、高性能な光分離を達成することが難しくなる。これは、より長い波長を吸収する種の検出において、キャビティ内に閉じ込められた光のレーザへの反作用を回避することが不可能でありうることを意味する。次に、気体センサの高性能な動作をそのような反作用または光フィードバックの存在下で保つことを可能にするだけでなく、この性能を実際に改善する手段を説明する。
【0095】
光フィードバックが存在する場合、キャビティの光伝達特性によってフィルタ処理されてレーザに再注入される放射がわずかでも、再注入される放射の位相が正しいならば、レーザの放射スペクトルを大きく狭めることができる。これは、キャビティ共振幅よりもはるかに大きい自励線幅を有するレーザでも、極めて高い注入効率を有することを可能にする。さらに、光フィードバックの存在下での増強係数が、もはやレーザの線幅によって制限されることがなく、したがって極めて高くすることができる。したがって、光フィードバックは、前向きな現象となることができる。しかしながら、再注入される放射の位相が誤っていると、注入効率が悪くなる。キャビティを共振において保つと同時に正しい位相を保つことが難しいことが、光フィードバックを用いるOPBCを有する光音響システムが、これまでに報告されていない理由であろう。本発明において、本発明者らは、再注入される放射の位相を正しい値に維持する方法および光フィードバックのすべての利点を利用する気体検出器を作製する方法を、説明することができる。
【0096】
本発明の原理を説明するために、光フィードバックの理論に言及すべきである。光フィードバックの条件下でのダイオードレーザの動作は、1980年代の後半に実験および理論の両方において研究されている。光キャビティ内の強度ならびに光フィードバックの位相および強度の関数としてのダイオードレーザの光周波数の時間依存性を予測する理論モデルが、論文(Ph.Laurent,A.Clairon.and Ch.Breant,IEEE J.Quantum Electronics,V.25,No.6.(1989),pp1131-1142)において開発されている。
【0097】
光フィードバックの存在における気体検出器の光学部分のレイアウトが、図14aに示されており、3つのミラーのキャビティ(Vキャビティ)を有する別の実施例が、図14bに示されているが、どちらのレイアウトも極めてよく似た様式で動作する。レイアウト14aは、図1のレイアウトと実質的に同一であり、相違点は、レーザ101とキャビティ入力ミラーM1との間の光路差を変更できる要素1401が追加されていることである。さらに、キャビティ160から到来する共振光放射の一部がここで、光アイソレータ155を通ってレーザ101まで通過することができる。光路を変えることで、キャビティ入力ミラーM1を通してキャビティ160からレーザ101に戻る放射の位相が変化する。したがって、光学要素1401を位相子と呼ぶ。そのような位相子が、適用される電界の関数として変化する屈折率を有する電気光結晶であってもよいか、圧電トランスデューサに取り付けられたミラーであってもよいか、または光路差を温度依存性の屈折率の変化によって変化させることができるように熱電クーラに取り付けられた透明な材料の板であってもよいことを、当業者であれば理解できるであろう。光フィードバックの存在における気体検出器の動作も、ここでディザ周波数における第1の光検出器170の時間変化する出力信号の直角位相成分の大きさおよび符号が、光フィードバック位相の最適値からの逸脱の大きさおよび符号を示す点を除き、上述したとおりのフィードバックなしでの動作とほぼ同一である。本発明によれば、DPCUの追加のモジュールが、この信号の大きさおよび位相を定期的に監視し、直角位相成分を消去するよう、この信号に比例した値を位相子1401の入力に送信している。これにより、気体センサの動作のすべての時点において光フィードバックの正しい位相が維持される。フィードバック位相ロックの動作の原理を、図15の図からより容易に理解することができる。この図におけるすべての波形は、キャビティから現れる放射のうちのわずかに2×10-4の部分だけがレーザに再び進入する事例に相当するが、そのような弱いフィードバックでも、レーザの挙動および注入効率に大きな影響を有する。
【0098】
図15aが、光フィードバックの理想的な位相ΔφOFB=0の場合に関し、ダイオードレーザ光周波数の線形ディザの1回の上下サイクルについて、Laurentらのモデルを使用して算出されたキャビティ内の光強度を示している。2つのピークを見て取ることができ、ピーク1501が、乱れのないダイオードレーザ周波数が増加する場合に生じ、ピーク1502が、乱れのないダイオードレーザ周波数が減少する場合に生じている。これらのピークの形状は、図2に示されているとおりの光フィードバックなしで得られたピークから大きく異なっている。光フィードバックによるダイオードレーザ周波数の引っ張りゆえに、もはやローレンツ形状を有していない。さらに、図2の乱れのないレーザ周波数のピークトゥピークの偏差が、キャビティのFSRの極めて小さな割合である一方で、この例では、キャビティのFSRの半分に近い。やはり、これも周波数の引っ張りに起因する。しかしながら、レーザおよびキャビティのデチューニングへの応答は、図2aおよび2bに示したものと同じである。レーザとキャビティとの周波数の不整合がゼロである場合、2つのピーク1501および1502は、図2aのとおりに上りおよび下りの傾斜の真ん中に対称に位置する。キャビティおよびレーザのいくらかのデチューニングが生じると、ピークがまさに図2bと同様にお互いに向かって移動するか、あるいはお互いから離れるように移動する。これが、ディザ周波数における第1の光検出器の時間変化する出力信号の同相成分を、正確に非光フィードバックの場合のようにレーザおよびキャビティを互いにロックするために使用できる理由を説明している。光フィードバック位相のデチューニングがゼロである場合、2つのピーク1501および1502が同じ形状および面積を有し、したがってディザ周波数における第1の光検出器の時間変化する出力信号の直角位相成分がゼロに等しくなる(直角位相信号を得るために、ピーク1501が余弦波の正の半周期によって乗算され、ピーク1502がこの波の負の半周期によって乗算される)。
【0099】
光フィードバック位相φの小さな負のデチューニング-δにおいては、ピークの形状が図15bに示されるとおりに変化している。ここで上り傾斜におけるピーク1503が、下り傾斜におけるピーク1504よりも小さな面積を有する。したがって、直角位相信号が負になり、位相ロックのための光フィードバック位相偏差または誤差信号の方向および大きさを示している。同様に、光フィードバック位相φの小さな正のデチューニング+δにおいては、ピークの形状が図15cに示されているとおりになる。ここで上り傾斜におけるピーク1505の面積が、下り傾斜におけるピークの面積よりも大きい。

【特許請求の範囲】
【請求項1】
以下の段階を含む、レーザと、気体または液体の媒体を収容しかつ少なくとも2つの部分的に透明なミラーを内部に有する共振光キャビティとを用いる、該媒体中に存在する1つまたは複数の分析対象(analyte)種の光音響的な識別および定量化のための方法であって、該ミラーのうちの1つがキャビティ結合ミラーであり、かつ該ミラーのうちの1つが、入力信号に応答するアセンブリに移動可能に取り付けられている方法:
(a)キャビティ共振幅が、該光キャビティに向けられたレーザビームの周波数帯域幅と等しくなるようにまたはそれ以上になるように、キャビティパラメータを選択する段階、
(b)該キャビティの基本TEM00モードの空間分布に一致するように該ビームの空間分布を変換し、かつ結合している該キャビティミラーを通して、変換された該ビームを該キャビティに向ける段階、
(c)該結合ミラー以外のキャビティミラーから現れる該ビームの経路中に第1の光検出器を配置し、かつ該第1の光検出器をDPCUに接続する段階、
(d)周期的なディザ波形を、初期ピークトゥピーク光周波数偏差を有する該レーザビームの周波数に適用する段階であって、該初期ピークトゥピーク光周波数偏差が、この偏差について保存された値がない場合には該キャビティ共振幅に等しいか、または該保存された値に等しい段階、
(e)移動可能に取り付けられた該キャビティミラーを、一連のピークおよび谷の形態の該第1の光検出器の出力信号まで移動させ、それによって、レーザディザ周波数の中間点をキャビティ共振ピークに近付ける段階、
(f)該ディザ周波数と同じ周波数を有しかつ該ディザ波形の位相に対して一定の位相を有する正弦基準関数および余弦基準関数によって該第1の光検出器の出力信号を乗算することで、該ディザ周波数における該第1の光検出器の出力信号の同相成分および直角位相成分の大きさを得る段階、
(g)該同相成分に比例しかつ負のフィードバックをもたらす極性を有する電気入力信号を、移動可能な該キャビティミラーのアセンブリに向けることによって、フィードバックループで該キャビティ共振を該レーザにロックする段階、
(h)該直角位相成分の値を最小にするように該正弦基準関数および該余弦基準関数の位相を調節し、かつ得られた位相値を後の動作サイクルにおいて一定の位相として用いるために該位相値を保存する段階、
(i)-該ディザ周波数の第2高調波における該第1の光検出器の出力信号の該同相成分および該直角位相成分の大きさを得ること、
-該直角位相信号を消去する第2高調波正弦および余弦基準関数の位相を決定し、かつこの決定した位相値に該ディザ波形の位相に対する一定の位相を設定すること、
-レーザ波長ディザ周波数の第2高調波における該第1の光検出器の時間変化する信号の該同相成分の最大値をもたらす最適レーザ波長ディザ振幅を決定すること
を繰り返すことによって、該ディザ振幅を最適化する段階、
(j)後の動作サイクルのために段階(d)において該最適ディザ振幅を用いるために、該最適ディザ振幅の値と、該第1の光検出器の時間変化する出力信号の第2高調波の同相成分の最大の大きさとを保存する段階、
(k)該ディザ周波数の第2高調波において該キャビティの内部に位置する光音響トランスデューサからの光音響信号の同相成分および直角位相成分の大きさを周期的に測定する段階、
(l)該ディザ周波数の第2高調波における該第1の光検出器の信号の該同相成分の大きさに対する該光音響信号の比を算出して、それによって該媒体の光吸収に比例する正規化光音響信号を決定する段階、
(m)該正規化光音響信号を所定の較正係数によって乗算することで、レーザ信号波長における該媒体の光吸収を測定する段階、
(n)レーザ動作波長を増加的に走査し、かつ各々の波長について段階(f)〜(m)を繰り返す段階、
(o)移動可能な該キャビティミラーの位置をその変位範囲内に維持し、かつ、該ミラーの位置がその範囲限界のいずれかに近付いた場合に該ミラーの位置を該キャビティの自由スペクトル領域1つ分だけ戻して再設定する段階、
(p)該第1の光検出器の時間変化する信号の第2高調波の該同相成分の大きさを測定し、段階(i)において得られかつ段階(j)において保存された値と該大きさを比較し、かつ、これら2つの値の比が所定のしきい値を下回って低下する場合に段階(e)を繰り返すことによってロックを再び確立させることで、該キャビティが該レーザに対してロックされた位置を維持することを確実にする段階。
【請求項2】
前記レーザと前記キャビティ結合ミラーとの間に位置する光アイソレータが部分的に透過性であり、それにより、該キャビティ結合ミラーから現れる前記レーザビームの光パワーの一部がレーザキャビティに再進入し、かつ該レーザと該キャビティ結合ミラーとの間の光路差を変化させる光学素子もまた存在する方法であって、以下のさらなる段階を一連の段階(f)〜(m)の最中のある時点においてさらに含む、請求項1記載の方法:
(i)前記ディザ周波数における前記第1の光検出器の時間変化する出力信号の前記直角位相成分の大きさを周期的に確認する段階、および
(ii)該ディザ周波数における該第1の光検出器の時間変化する出力信号の該直角位相成分の大きさに比例する値を、該直角位相成分の大きさがゼロになるまで、該レーザと該キャビティ結合ミラーとの間の該光路差を変化させる光学素子に入力することによって、該レーザと該キャビティ結合ミラーとの間の該光路差を増加または減少させる段階。
【請求項3】
所定の範囲のレーザ波長の前記走査が完了しかつ前記レーザ動作波長に対する前記光吸収の値のセットが得られた場合に、該値のセットに基づいて前記分析対象種を識別および定量化をする段階をさらに含む、請求項1記載の方法。
【請求項4】
所定のレーザ波長範囲の前記走査を続け、かつ前記分析対象種の濃度の時間依存性を判定する段階をさらに含む、請求項3記載の方法。
【請求項5】
以下を備える、1つまたは複数の分析対象種の光音響的な識別および定量化のための装置:
(a)単一の輝線を放射し、放射波長を気体分析対象の吸収線に一致するようにチューニングすることができ、かつ少なくとも第1および第2の部分的に透過性であるミラーを有する閉経路の光キャビティに光学的に整合させられ、それによってレーザビームが第1のミラーを通して該キャビティに進入する、連続波レーザ、
(b)いずれか一方のキャビティミラーに機械的に接続され、それによって位置アクチュエータの電気入力に電圧を印加することで該キャビティの長さを変化させることができる、該位置アクチュエータ、
(c)該レーザを動作させるためにならびにレーザ制御ユニットの変調入力に適用される電圧波形に応じたレーザ動作波長および/またはレーザ出力パワーの変調を実行するために必要な電子要素および機械要素と、少なくとも第1および第2のアナログ-デジタル変換器とを備える、該レーザ制御ユニット、
(d)該キャビティの内部に位置し、それにより光キャビティ内ビームが、共振光音響セルの出力に接続された該第1のアナログ-デジタル変換器を伴う該共振光音響セルの共振要素を横断する、該共振光音響セル、
(e)該キャビティから現れる光ビーム内に第2のミラーを通して配置され、モニタ光検出器の出力に接続された該第2のアナログ-デジタル変換器を有する、該モニタ光検出器、
(f)データ処理および制御ユニットの入力に接続された該第1および第2のアナログ-デジタル変換器の両方と、該データ処理および制御ユニットの出力に接続された該レーザ制御ユニットとを有する、該データ処理および制御ユニットであって、
i.出力が該レーザ制御ユニットの波長変調入力に接続された、レーザ波長変調波形発生器と、
ii.波長変調波形の第2高調波における該第1のアナログ-デジタル変換器の信号の同相出力および直角位相出力を有し、かつ該波長変調波形の基本振動数における該第2のアナログ-デジタル変換器の信号の同相出力および直角位相出力をさらに有し、かつ該波長変調波形の第2高調波における該第2のアナログ-デジタル変換器の信号の該同相出力および該直角位相出力をさらに有する、該アナログ-デジタル変換器信号のデジタルプロセッサと、
iii.キャビティのレーザへのロックモジュールの入力に接続された該第2のアナログ-デジタル変換器のレーザ波長変調波形の基本振動数における該同相信号、および該ロックモジュールの出力に接続された位置アクチュエータ電気入力を有する、キャビティのレーザへの該ロックモジュールと、
iv.該第1のアナログ-デジタル変換器の該波長変調波形の第2高調波における信号の該同相出力および該直角位相出力、ならびに該分析対象吸収モジュールの入力に接続された該第2のアナログ-デジタル変換器の該波長変調波形の第2高調波における信号の該同相出力および該直角位相出力、ならびに該分析対象吸収モジュールの出力に向けられた該第2のアナログ-デジタル変換器の信号の大きさに対する該第1のアナログ-デジタル変換器の信号の大きさの比を有する、該分析対象吸収モジュールと
を備える、データ処理および制御ユニット。
【請求項6】
前記レーザ変調波形発生器が、任意のあらかじめロードされた波長変調波形を単一の基準クロックから生成する直接デジタル合成器であり、該あらかじめロードされた波長変調波形が正弦関数でない、請求項5記載の装置。
【請求項7】
前記第1のアナログ-デジタル変換器および前記第2のアナログ-デジタル変換器の両方のサンプリングクロックが、同一であり、かつ両方のアナログ-デジタル変換器サンプルクロックの整数倍であるような直接デジタル合成器クロックとコヒーレントである、請求項5記載の装置。
【請求項8】
光アイソレータが、前記第1のミラー前方のレーザビーム経路中に位置している、請求項5記載の装置。
【請求項9】
キャビティ帯域幅がレーザ線幅の少なくとも3倍であるように各々の前記ミラーの反射率が選択される、請求項5記載の装置。
【請求項10】
前記第2のミラーが、前記第1のミラーよりも高い反射率を有する、請求項5記載の装置。
【請求項11】
前記光アイソレータが部分的に透過性であり、かつ前記装置が、前記レーザと前記第1のキャビティミラーとの間の光路差を変化させる光学素子をさらに備える、請求項5記載の装置。
【請求項12】
前記光音響トランスデューサが石英音叉である、請求項5記載の装置。
【請求項13】
前記光音響トランスデューサが、石英音叉とマイクロ共振器との組み合わせである、請求項5記載の装置。
【請求項14】
前記光音響トランスデューサが、電気的に並列接続された少なくとも2つの石英音叉(QTF)を含むパッケージを備え、かつすべての隣接するQTFの表面が、該パッケージ内の直前にあるQTFに平行であるように、該少なくとも2つのQTFが互いに隣り合わせて取り付けられており、かつ任意の2つの隣接するQTFの間の距離が、周囲の気体の境界層の厚さよりも小さい、請求項5記載の装置。
【請求項15】
すべての隣り合うQTFが互いに機械的に直接接触している、請求項14記載の装置。
【請求項16】
以下の段階を含む、レーザと、気体または液体の媒体を収容しかつ少なくとも2つの部分的に透明なキャビティミラーを有する共振光キャビティとを用いる、該媒体中に存在する1つまたは複数の分析対象種の識別および定量化のための方法であって、該ミラーのうちの1つがキャビティ結合ミラーである方法:
モード整合オプティクスを用いてレーザビームを該キャビティに結合させる段階;
入射レーザビームの光周波数にまたは該レーザそのものに、周期的なディザまたは変調波形を適用して、それによって該キャビティ内の光パワーの変調を誘導する段階;ならびに
適用した該ディザもしくは該変調波形またはそれらの高調波の周波数において、圧力トランスデューサを用いて該キャビティ内の該分析対象種の変化する圧力を検出する段階。
【請求項17】
前記圧力トランスデューサが光音響トランスデューサを含む、請求項16記載の方法。
【請求項18】
レーザの平均周波数を変調信号の基本振動数または他の奇数次の高調波を用いてキャビティ伝達ピークの周波数にロックするのに使用するためのキャビティの外部に位置する光検出器を用いて、キャビティ内光強度を監視する段階をさらに含む、請求項16記載の方法。
【請求項19】
キャビティミラーから現れる光強度を検出することによって、キャビティ内光強度に比例した電子波形を得る段階をさらに含む、請求項16記載の方法。
【請求項20】
以下を備える、気体または液体の媒体に存在する1つまたは複数の分析対象種の識別および定量化のためのシステム:
レーザビームを発するレーザ、
該媒体を収容しかつ少なくとも2つの部分的に透明なキャビティミラーを有し、該ミラーのうちの1つがキャビティ結合ミラーである、共振光キャビティ、
該レーザビームを該キャビティに結合させるように構成された、モード整合オプティクス、
入射レーザビームの光周波数にまたは該レーザそのものに周期的なディザまたは変調波形を適用して、それによってキャビティ内光パワーの変調を誘導するための手段、ならびに
適用した該ディザもしくは該変調波形またはそれらの高調波の周波数において、該キャビティ内の該分析対象種の変化する圧力を検出するための、圧力トランスデューサ。
【請求項21】
前記圧力トランスデューサが光音響トランスデューサを含む、請求項20記載のシステム。
【請求項22】
前記レーザの平均周波数を変調信号の基本振動数または他の奇数次の高調波を用いてキャビティ伝達ピークの周波数にロックするのに使用するための前記キャビティの外部に位置する光検出器をさらに備える、請求項20記載のシステム。
【請求項23】
キャビティミラーから現れるキャビティ内光強度に比例した電子波形を得るのに使用するための前記キャビティの外部に位置する光検出器をさらに備える、請求項20記載のシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公表番号】特表2013−521504(P2013−521504A)
【公表日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2012−556224(P2012−556224)
【出願日】平成23年3月2日(2011.3.2)
【国際出願番号】PCT/US2011/026922
【国際公開番号】WO2011/109557
【国際公開日】平成23年9月9日(2011.9.9)
【出願人】(508247040)リ−コール インコーポレーティッド (5)
【Fターム(参考)】