説明

水処理システム及び水処理方法

【課題】砂ろ過装置のろ液を検出することで、砂ろ過装置の状態を加味して膜分離装置への悪影響をリアルタイムに低減することができる水処理システム及び水処理方法を提供する。
【解決手段】原水の砂ろ過を行う砂ろ過装置1と、砂ろ過したろ液の膜分離を行う膜分離装置4とを備える水処理システムにおいて、前記砂ろ過装置1の原水側に凝集剤を添加する凝集剤供給装置20を設けると共に、前記砂ろ過装置1のろ液の流路に凝集剤を検出する検出部10を設け、その検出部10からの信号に基づいて、凝集剤の濃度が所定値以下になるように前記凝集剤供給装置20を制御する制御装置15を設けたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原水に凝集剤を添加した後に砂ろ過を行う砂ろ過装置と、砂ろ過したろ液の膜分離を行う膜分離装置とを備える水処理システム及び水処理方法に関し、凝集剤の供給量を自動制御する技術に関する。
【背景技術】
【0002】
逆浸透膜、ナノろ過膜、限外ろ過膜、精密ろ過膜を用いた農業用水、工業用水、生活用水などを作り出す、いわゆる水処理システムは、流体混合物の成分を分離するのに非常に有効である。典型的な仮定では、加圧された流体混合物が膜表面に接触させられ、化学的ポテンシャルの差により、その流体混合物の一つまたは複数の成分が膜を透過し、この膜を透過する質量輸送速度の違いにより分離が可能となる。このような分離膜を用いた造水システムは、分離性能を発揮するために、前処理により分離膜に適切な水の状態に処理される。
【0003】
前処理には、孔径のより大きな分離膜を使用した膜前処理と呼ばれるものと、砂ろ過が一般的に知られているが、コストや装置原理の単純性からも砂ろ過が現在においても使用されている。砂ろ過装置では、原水中の懸濁物質や微生物などを凝集させるための凝集剤が使用されるが、凝集剤の添加量については、原水質が季節変動や温度変動、台風等の一時的な海水状態の変動等に応じて変化するため、添加量の調整が必要である。
【0004】
凝集剤が不足している状況においては、凝集効果が不十分となり、本来、凝集剤と砂ろ過装置で補足されるべき物質が、その後の膜分離装置へ流入し、分離性能を低下させる、あるいは分離膜の寿命を低下させる要因となる。一方、凝集剤添加量が過剰な場合、凝集剤自身が膜分離装置に流入し、分離性能を低下させる要因となる。つまり凝集剤の添加量については、変動する原水質に対して過不足のない添加量が望まれる。しかし、現状の凝集剤の添加量については、最終透過水の水質やプラントオペレーターの経験値に依存して調整されることが多い。
【0005】
上記課題に対して、下記の特許文献1では、膜分離後のろ液中の紫外線吸光度を測定することによる添加量の制御方法が記載されている。この文献では、混和フロック形成池の後、循環タンクを経由して膜分離装置の後で、紫外線吸光度を計測し、その結果に基づき、混和フロック形成池に添加する凝集剤量を調整することが提案されている。
【0006】
また、特許文献2には、砂ろ過装置の上流側であって、凝集剤注入部と沈澱池の下流側で濁度測定を行う方法が提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平8−117747号公報
【特許文献2】特開平5−168819号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1に記載の発明内容においては、紫外線吸光度計が循環タンク、膜分離装置を経た後での検出であるために、以下に述べる不具合が生じる。すなわち、検出部とその結果が反映される部分が遠く離れており、かつその間にタンクによる処理水の滞留があるため、フィードバックが必要なタイミングと検出のタイミングには大きなタイムラグが生じる。つまり、実際には過剰な凝集剤が添加されても、その挙動が検出されるのは、時間的にも工程的にも後になる。また、膜分離装置の後に検出部分が存在するため、検出に必要な有機物質や流入凝集剤は膜分離装置を通過する。すなわち、膜分離装置にとって有害な物質の通過が不可避的な検出システムとなっているため、分離膜の寿命を短縮させる要因を内包した発明内容となっている。
【0009】
また、特許文献2の方法のように、砂ろ過装置の上流側で濁度を検出する方法では、砂ろ過装置から一時的に漏洩する凝集物に対して、これを検出することができないという問題があった。例えば、砂ろ過装置は定期的に、通常の流れ方向とは逆方向に砂ろ過透過水を流すことにより、砂ろ過槽に堆積した堆積物を排除する逆洗と呼ばれる洗浄工程があり、その際に凝集剤や凝集物が流出してしまうことがあった。また、逆洗を行っている間は該砂ろ過槽を使用できないため、通常は複数の砂ろ過槽を併設しており逆洗中は別の砂ろ過槽を使用して前処理を行うが、この砂ろ過槽の切り替え時にも凝集剤や凝集物が流出してしまう場合も存在し、これらの構造上の問題により膜分離装置に悪影響を与えて、分離性能や分離膜エレメントの寿命を短縮してしまう。
【0010】
そこで、本発明の目的は、砂ろ過装置のろ液を検出することで、砂ろ過装置の状態を加味して膜分離装置への悪影響をリアルタイムに低減することができる水処理システム及び水処理方法を提供することにある。
【課題を解決するための手段】
【0011】
上記目的は、次の如き本発明により達成できる。
即ち、本発明の水処理システムは、原水の砂ろ過を行う砂ろ過装置と、砂ろ過したろ液の膜分離を行う膜分離装置とを備える水処理システムにおいて、前記砂ろ過装置の原水側に凝集剤を添加する凝集剤供給装置を設けると共に、前記砂ろ過装置のろ液の流路に凝集剤を検出する検出部を設け、その検出部からの信号に基づいて、凝集剤の濃度が所定値以下になるように前記凝集剤供給装置を制御する制御装置を設けたことを特徴とする。特に、凝集剤濃度の制御は、膜分離装置に流入する濃度が所定値以下になるように制御されることが好ましい。
【0012】
本発明の水処理システムによると、砂ろ過装置のろ液中の凝集剤を検出部で検出するため、砂ろ過装置の状態を加味して、凝集剤の供給量を制御することができ、砂ろ過装置の上流側で検出する場合と比較して、より確実に膜分離装置への悪影響を低減することができる。また、膜分離装置の下流側で検出する場合と比較して、よりリアルタイムに凝集剤の供給量を制御することができる。その結果、砂ろ過装置の状態を加味して膜分離装置への悪影響をリアルタイムに低減することができる水処理システムを提供することができる。
【0013】
上記において、ろ液の流路の前記検出部を設けた位置よりも下流側の流路に、操作信号により作動する流路切替弁とその流路切替弁を介して流路を分岐させる分岐流路とを設けると共に、前記制御装置は、前記検出部からの信号に基づいて、凝集剤の濃度が所定値を超えた場合に前記流路切替弁を分岐流路側に切替える制御を行うことが好ましい。
【0014】
この水処理システムによると、凝集剤の濃度が所定値を超えないように流路切替弁を分岐流路側に切替える制御を行うため、フィードバック制御による制御の遅れが生じた場合や、逆洗浄後等に凝集剤(凝集体に含有されるものも含む)が漏洩する場合にも、分岐流路からろ液を排出することで、凝集剤が膜分離装置へ流入するのをより確実に防止することができる。
【0015】
また、前記検出部は、光源からの光を受光する受光部を有し、前記ろ液の流路から分岐するバイパス路を設けて、そのバイパス路に沿って前記光源と前記受光部の間の距離が10cm〜3mとなる光路を形成していることが好ましい。
【0016】
通常の配管を使用して流路と垂直に光路を形成する場合、十分な長さの光路が確保できずに感度が十分得られにくいところ、上記の水処理システムによると、バイパス路に沿って光路を形成するため、十分な長さの光路が確保でき、凝集剤の検出感度が良好になる。
【0017】
また、前記凝集剤が塩化第二鉄であり、前記検出部は波長450nm以下の光を使用して凝集剤を検出するものであることが好ましい。塩化第二鉄を凝集剤として使用する場合、波長450nm以下の光を使用することで、塩化第2鉄の吸収スペクトルに適合した検出が可能となる。
【0018】
一方、本発明の水処理方法は、原水の砂ろ過を行った後に、ろ液の膜分離を行う水処理方法において、前記砂ろ過の原水側に凝集剤を添加すると共に、前記砂ろ過のろ液の流路にて凝集剤を検出した信号に基づいて、凝集剤の濃度が所定値以下になるように前記凝集剤の添加量を制御することを特徴とする。
【0019】
本発明の水処理方法によると、砂ろ過後のろ液中の凝集剤を検出するため、砂ろ過装置の状態を加味して、凝集剤の供給量を制御することができ、砂ろ過装置の上流側で検出する場合と比較して、より確実に膜分離への悪影響を低減することができる。また、膜分離の下流側で検出する場合と比較して、よりリアルタイムに凝集剤の供給量を制御することができる。その結果、砂ろ過の状態を加味して膜分離への悪影響をリアルタイムに低減することができる水処理方法を提供することができる。
【図面の簡単な説明】
【0020】
【図1】本発明の水処理システムの一例を示す概略構成図
【図2】図1に示す水処理システムの要部の一例を示す要部断面図
【図3】本発明の水処理システムの制御の一例を示すフローチャート
【図4】本発明の水処理システムの他の例を示す概略構成図
【発明を実施するための形態】
【0021】
本発明の水処理システムは、図1に示すように、原水の砂ろ過を行う砂ろ過装置1と、砂ろ過したろ液の膜分離を行う膜分離装置4とを備える。本実施形態では、海水淡水化プラントを例として説明するが、海水淡水化プラントでは、砂ろ過装置1と膜分離装置4との間には、貯水槽2が設けられ、貯水槽2のろ液は、高圧ポンプ3に導かれて、加圧された状態で膜分離装置4に供給される。海水淡水化プラントでは、逆浸透膜が一般的に使用され、逆浸透膜に加圧通水されたろ液は、透過水と濃縮水に分離される。
【0022】
砂ろ過装置1は、ろ材に砂等の粒状物質を使用するろ過装置であり、懸濁物質をろ材である粒状物質の内部に補足するものである。砂ろ過装置1としては、緩速砂ろ過装置と急速砂ろ過装置との何れも使用できる。
【0023】
緩速砂ろ過装置は、例えば深さ2.5〜3.5mのろ過池の下部に、集水装置を設け、その上に砂利層(例えば厚さ40〜60cm)と砂層(例えば有効径0.3〜0.45mm、深さ70〜90cm)を充填し、重力によるろ過を行う。浄化は主に生物作用による。
【0024】
急速砂ろ過装置では、より早い速度でろ過が行われるが、下部集水装置の上に、砂利層(例えば厚さ30〜40cm)と砂層(例えば有効径0.45〜0.7mm、深さ60〜70cm)を充填して、重力によるろ過を行う。
【0025】
これらの砂ろ過装置1は、清澄度や圧力損失が一定値を超えた時点で、ろ材の逆流洗浄(逆洗)を行う。逆洗の直後には、一時的にろ材からの凝集材や凝集物の流出量が増加する傾向がある。
【0026】
貯水槽2は、砂ろ過装置1からのろ液を溜める機能を有する。砂ろ過装置1と貯水槽2とは配管等による流路で接続されており、その間に吸引や輸送のためのポンプ等を設けることも可能である。
【0027】
高圧ポンプ3は、膜分離装置4の原水に一定以上の圧力を付与するものであり、膜分離装置4の分離膜の種類に応じて、ポンプの圧力が適宜設定される。貯水槽2と膜分離装置4とは、配管等による流路で接続されており、その流路に高圧ポンプ3が設けられる。
【0028】
膜分離装置4は、海水淡水化プラントでは、逆浸透膜が一般的に使用されるが、精密濾過膜及び/又は限外濾過膜などの分離膜による前処理を更に行ってもよい。また、逆浸透膜に代えて、精密濾過膜及び/又は限外濾過膜などの分離膜による膜分離装置4を用いてもよい。
【0029】
逆浸透膜を構成する素材は、特に限定されず、例えば、酢酸セルロース、ポリビニルアルコール、ポリアミド、ポリエステル等の各種高分子素材を用いることができる。中でも、ポリアミド系逆浸透膜が好ましく、特に芳香族ポリアミド系複合膜が好ましい。
【0030】
逆浸透膜の膜形態としては、中空糸、平膜、チューブラー膜などがあり、平膜は、スパイラル、フレームアンドプレートのモジュールに組み込んで使用することができ、中空糸は、複数本を束ねたものをモジュールに組み込んで使用することができる。
【0031】
精密濾過膜としては、ポリオレフィン、ポリスルホン、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアクリロニトリル、酢酸セルロース等の高分子有機膜を用いることができる。精密濾過膜の孔径は、0.01μm以上10μm以下であることが好ましい。
【0032】
また、限外濾過膜としては、ポリスルホン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、酢酸セルロース、ポリエチレン等の高分子有機膜を用いることができる。限外濾過膜の孔径は、分画分子量20000以上孔径0.01μm以下であることが好ましい。
【0033】
本発明の水処理システムは、図1に示すように、砂ろ過装置1の原水側に凝集剤を添加する凝集剤供給装置20を設けている。凝集剤供給装置20は、凝集剤の溶液を貯留する貯留タンク21と、流量が調節可能なポンプ22とを備える。ポンプ22の代わりに、開度により流量が調整可能な弁等を使用することも可能である。
【0034】
図示した例では、原水を供給する配管へ凝集剤を供給する凝集剤供給装置20が示されているが、砂ろ過装置1に直接供給したり、あるいは、原水と凝集剤を混合するための混合槽を設けて、この中に凝集剤を供給してもよい。
【0035】
貯留タンク21に貯留される凝集剤としては、凝集剤の原液の他、その水溶液、懸濁液などが使用できる。但し、供給量の制御を行う上で、凝集剤の希釈溶液を用いることが好ましい。
【0036】
凝集剤としては、塩化鉄、硫酸バンド、ポリ塩化アルミニウム、酸化アルミニウム、硫酸鉄などの無機系凝集剤、又はポリアクリルアミド、ポリアクリル酸カチオン化ポリマーなどの高分子系凝集剤を用いることができる。凝集剤が塩化第2鉄である場合、現在、もっとも一般的に使用されている凝集剤の添加量最適化が可能となり、汎用性が高くなる。
【0037】
凝集剤供給装置20の供給量調節機構は、電気的な操作信号により、流量を調整できるものが好ましく、操作信号により流量が調節可能な定流量ポンプが好ましい。
【0038】
本発明の水処理システムは、砂ろ過装置1のろ液の流路に凝集剤を検出する検出部10を設け、その検出部10からの信号に基づいて、凝集剤の濃度が所定値以下になるように凝集剤供給装置20を制御する制御装置15を設けたことを特徴とする。凝集剤の検出部10は、砂ろ過装置1と貯水槽2の間に設置されるが、凝集剤のリークを素早くフィードバックする観点から、なるべく砂ろ過装置1に近い部分に設置する方が望ましい。なお、検出部10を設けるろ液の流路としては、砂ろ過装置1内部の砂ろ過後の流路も含まれる。
【0039】
検出部10は、凝集剤の種類に応じて凝集剤の有無または濃度を検出できれば何れでも使用可能である。例えば、吸光度などを利用した光学式センサ類、pHなどを検出する化学式センサ類、電気抵抗等を検出する電気式センサ類など何れでもよい。なかでも、光学式センサ類が好ましく用いられる。
【0040】
光学式センサ類を用いた検出部10は、図2に示すように、光源11からの光を受光する受光部12を有するものが好ましく、また、検出部10は、ろ液の流路から分岐するバイパス路14を設けて、そのバイパス路14に沿って光路13を形成しているのが好ましい。具体的には、光源11、受光部12が光路13を挟み込むように対向させて配置された構造が例示される。
【0041】
検出部10は、砂ろ過装置1と貯水槽2の間の配管から分岐したバイパス路に設けられ、光路13の部分を通水しているため、インラインリアルタイム検出となる。光路13については、検出系が光学検出式である場合、光源11の光以外は、遮断されるような構造が望ましい。
【0042】
光源としては、凝集剤の吸収スペクトルと重なることが必要であるため、塩化第2鉄を用いる場合、450nm以下の波長の光源であることが必要である。紫外線を放出する光源であれば、原理的に使用は可能であるが、強度の観点から、水銀ランプやUV−LED、紫外線レーザーが好ましい。
【0043】
受光部12は受光した光を電気信号に変換する機能を有していれば良く、例えば、フォトダイオードや光電子増倍管などが使用可能であるが、フォトダイオードが価格、簡便性の面からも好ましい。このような光源11や受光部12は直接、液に触れるよう配置されても良いが、光路部分に窓を設けて液に非接触で設置されるのが好ましい。
【0044】
この場合、光路確保用の窓は紫外線を通す材質である必要があり、例えば石英ガラス等が使用される。凝集剤の添加量としては、一般的には数ppmであることから、通常の分光光度計の光路長、すなわち1cmでは検出が困難であるため、検出感度を上げるためにも光路長を長くすることが必要である。本発明では、光路長が10cm以上が好ましく、100cm以上がより好ましい。しかしながら感度を上げるために光路長を長くすると、今度は光学系の構築が難しくなることから、300cm以下が好ましい。従って、光源11と受光部12の間の距離は10cm〜3mが好ましい。
【0045】
制御装置15は、検出部10からの信号に基づいて、凝集剤の濃度が所定値以下になるように凝集剤供給装置20を制御するものである。図示した例では、検出部10より出力される信号は、凝集剤添加量のフイードバック制御を行う制御装置15に送られ、凝集剤供給装置20のポンプ22と連動して供給量の制御を行う。
【0046】
制御装置15による制御は、検出部10からの信号(データを含む)をコンピュータを介して処理してもよく、その制御方法は、オンオフ動作、比例操作、積分操作、微分操作、これらの組合せ、例えばPID制御など、いずれでもよい。これらの制御は、市販の調節計を用いて行うことも可能である。
【0047】
例えば、凝集剤の濃度を測定値及び目標値とし、その偏差に基づいてポンプ22の操作信号を出力することが可能な市販の調節計を用いて、目標値を微小な濃度に設定することで、凝集剤の濃度が所定値以下になるように凝集剤供給装置20を制御することができる。設定する微小な濃度としては、下流側の分離膜に影響を与えない範囲の上限値濃度(例えば0.1ppm)を設定するのが好ましい。なお、このような調節計ではPID制御が行われるのが一般的である。
【0048】
一方、本発明では、砂ろ過装置1を通過した後のろ液中の凝集剤の濃度により、フィードバック制御を行うため、砂ろ過装置1を通過する間のタイムラグを考慮した制御を行うことが好ましい。また、凝集剤の供給量は、原水の懸濁物質の凝集を好適に行うために、砂ろ過装置1から漏洩しない限り、できるだけ多量になるように制御することが好ましい。このような制御の例を図3に示す。以下、この制御について説明する。
【0049】
この制御では図3に示すように、まず、凝集剤の供給量の初期値を原水の濁度等に応じて予め決定しておく。また、カウンタに相当する変数をリセットしておく(N=0,M=3)。
【0050】
常時、検出部10により凝集剤の濃度の検出を行い、一定時間毎に検出した濃度の平均値を算出して、一定時間毎に入力データ(サンプリングデータ)とする。制御装置15では、このデータに対して入力待ちの状態とし、入力により演算が開始するように構成する。データの入力後、まず変数Mに1を加算する。次に、この入力データが、凝集剤の濃度の設定値(例えば0.1ppm)以下であるか否かを判定し、以下であると、変数Nに1を加算する。次いで、変数Nが5以上か否かを判定し、サブルーチンにより、凝集剤の濃度の設定値を超えない場合、この変数Nが5以上になるまで、データ入力から変数Nの加算までが繰り返し行われる。
【0051】
変数Nが5以上になると、このサブルーチンを抜けて、凝集剤の供給量が増加するように、相当する操作信号の変更が行われる。図示した例では、凝集剤の供給量が5%増量される。なお、変数Nが5以上でサブルーチンを抜けるようにしているのは、凝集剤の供給量の増加が検出した濃度に反映されるのに、タイムラグが有るためである。また、一定の待ち時間の間、検出した濃度が設定値を超えない場合、凝集剤の供給量が不足していると考えられるためである。
【0052】
一方、凝集剤の濃度の設定値を超えた場合、更に変数Mが3以上か否かを判定し、3以上であれば、左側のサブルーチンを抜けて、凝集剤の供給量が減少するように、相当する操作信号の変更が行われる。このとき、変数N=0,M=3にリセットされる。図示した例では、凝集剤の供給量が10%減量される。なお、変数Mが3以上でサブルーチンを抜けるようにしているのは、凝集剤の供給量の減量が検出した濃度に反映されるのに、タイムラグが有るためである。
【0053】
つまり、凝集剤の供給量の減量を行った後においても、砂ろ過装置1を通過する間は、検出した濃度が低下しないため、その間は、凝集剤の供給量を維持した方がよく、この期間を考慮して、変数Mが3以上を供給量の減量の条件としている。ただし、変数Mは、データ入力毎に加算されるため、濃度の平均値が設定値以下の状態が続いた場合には、常に変数Mが3以上となり、最初に濃度の平均値が設定値を超えた場合、直ちに供給量の減量が行われる。
【0054】
以上のような制御によって、砂ろ過装置1から漏洩する凝集剤の濃度を0に近づけながら、凝集剤の供給量をほぼ最大になるように制御することができる。つまり、凝集剤の漏洩が発生しない最大限の濃度を適正濃度として添加しながら、膜分離装置への影響を最小化する水処理システムを提供することができる。
【0055】
次に、本発明のより好ましい実施形態について、図4に基づいて説明する。この実施形態では、図4に示すように、ろ液の流路の検出部10を設けた位置よりも下流側の流路に、操作信号により作動する流路切替弁25とその流路切替弁25を介して流路を分岐させる分岐流路26とを設けると共に、制御装置15は、検出部10からの信号に基づいて、凝集剤の濃度が所定値を超えた場合に流路切替弁25を分岐流路側に切替える制御を行う。
【0056】
流路切替弁25を切替える制御を行う際の所定値は、凝集剤供給装置20を制御する際の所定値と、同一であっても異なっていてもよい。例えば、両者を同一にする場合、流路切替弁25の切替が頻繁に生じ得るが、例えば、後者の所定値を前者の所定値の2倍にした場合、流路切替弁25の切替の頻度を小さくすることができる。
【0057】
分岐流路26から分岐されたろ液は、廃棄することも可能であるが、砂ろ過装置1の原水の流路、又は砂ろ過装置1内にリサイクルすることも可能である。
【0058】
この実施形態は、特に砂ろ過装置1の逆洗を行った後に漏洩する凝集剤や凝集物が、下流側に流入しないようにするのに有効である。また、凝集剤供給装置20の制御のみでは、原水の懸濁物質の量の変化に対応できない場合があるが、その場合でも、即座に凝集剤の増加に対応して、流路切替弁25を分岐流路側に切替えることができる。
【0059】
以上に詳述したとおり、本発明の水処理システムでは、最大限に凝集効果を発現しつつ、膜分離装置への影響を最小化し、かつ、季節や温度、天候等により変動する最適添加量を、オペレーターの経験に依存せずに制御できる。
【0060】
一方、本発明の水処理方法は、原水の砂ろ過を行った後に、ろ液の膜分離を行う水処理方法において、前記砂ろ過の原水側に凝集剤を添加すると共に、前記砂ろ過のろ液の流路にて凝集剤を検出した信号に基づいて、凝集剤の濃度が所定値以下になるように前記凝集剤の添加量を制御することを特徴とする。本発明の水処理方法は、前述した本発明の水処理システムを用いて好適に実施することができる。
【符号の説明】
【0061】
1 砂ろ過装置
4 膜分離装置
10 検出部
11 光源
12 受光部
13 光路
14 バイパス路
15 制御装置
20 凝集剤供給装置
25 流路切替弁
26 分岐流路

【特許請求の範囲】
【請求項1】
原水の砂ろ過を行う砂ろ過装置と、砂ろ過したろ液の膜分離を行う膜分離装置とを備える水処理システムにおいて、
前記砂ろ過装置の原水側に凝集剤を添加する凝集剤供給装置を設けると共に、
前記砂ろ過装置のろ液の流路に凝集剤を検出する検出部を設け、その検出部からの信号に基づいて、凝集剤の濃度が所定値以下になるように前記凝集剤供給装置を制御する制御装置を設けたことを特徴とする水処理システム。
【請求項2】
ろ液の流路の前記検出部を設けた位置よりも流路に、操作信号により作動する流路切替弁とその流路切替弁を介して流路を分岐させる分岐流路とを設けると共に、前記制御装置は、前記検出部からの信号に基づいて、凝集剤の濃度が所定値を超えた場合に前記流路切替弁を分岐流路側に切替える制御を行う請求項1記載の水処理システム。
【請求項3】
前記検出部は、光源からの光を受光する受光部を有し、前記ろ液の流路から分岐するバイパス路を設けて、そのバイパス路に前記光源と前記受光部の間の距離が10cm〜3mとなる光路を形成している請求項1又は2に記載の水処理システム。
【請求項4】
前記凝集剤が塩化第二鉄であり、前記検出部は波長450nm以下の光を使用して凝集剤を検出するものである請求項1〜3いずれかに記載の水処理システム。
【請求項5】
原水の砂ろ過を行った後に、ろ液の膜分離を行う水処理方法において、
前記砂ろ過の原水側に凝集剤を添加すると共に、前記砂ろ過のろ液の流路にて凝集剤を検出した信号に基づいて、凝集剤の濃度が所定値以下になるように前記凝集剤の添加量を制御することを特徴とする水処理方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−201335(P2010−201335A)
【公開日】平成22年9月16日(2010.9.16)
【国際特許分類】
【出願番号】特願2009−49335(P2009−49335)
【出願日】平成21年3月3日(2009.3.3)
【出願人】(000003964)日東電工株式会社 (5,557)
【Fターム(参考)】