説明

流体供給装置、および流体供給装置を備えた燃料電池システム

【課題】新たなフィルタ装置を別途設けることなく、かつ、流体の供給を停止することなく、フィルタエレメントの交換を行うことができる流体供給装置を提供する。
【解決手段】フィルタ装置11によって不純物が除去された空気を燃料電池C1に供給する配管5aと、フィルタ装置31によって不純物が除去された空気をバーナC3に供給する配管5bとを、フィルタ装置11およびフィルタ装置31より下流側で、配管5cによって接続した。また、フィルタ装置11と配管5cとの間で配管5aにバルブ13を設け、フィルタ装置31と配管5cとの間で配管5bにバルブ33を設けた。フィルタ装置11のフィルタエレメント11aを交換する場合、バルブ33を全開状態にした後にバルブ13を全閉状態にし、フィルタ装置31を通過した空気が燃料電池C1に供給されるようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フィルタエレメント交換時にも流体の供給を中断しない流体供給装置、およびこの流体供給装置を備えた燃料電池システムに関する。
【背景技術】
【0002】
従来、コージェネレーションシステムとして、燃料電池システムが開発されている。燃料電池システムは、燃料電池が発電する際の排熱も有効利用する発電システムである。燃料電池システムには、燃料電池に流体を供給するための流体供給装置が備えられている。
【0003】
図8は、従来の流体供給装置を備える燃料電池システムを説明するためのブロック図である。燃料電池システムAは、流体供給装置B、燃料電池モジュールC、インバータ装置D、および排熱回収装置Eを備えている。
【0004】
流体供給装置Bは、燃料電池モジュールCに原燃料および空気を供給するものである。流体供給装置Bは、外気から空気を取り入れ、フィルタ装置11,31によって粉塵などの不純物を取り除き、不純物除去後の空気をブロワ12,32(以下、場合により、「空気ブロワ12,32」という。)によって昇圧して燃料電池モジュールCに供給する。また、流体供給装置Bは、フィルタ装置21,41によって原燃料(都市ガスや天然ガスなど)から不純物を取り除き、不純物除去後の原燃料をブロワ22,42(以下、場合により、「燃料ブロワ22,42」という。)によって昇圧して燃料電池モジュールCに供給する。
【0005】
燃料電池モジュールCは、流体供給装置Bから供給される原燃料および空気を用いて、電気を生成するものである。燃料電池モジュールCは、水素と酸素の化学反応を利用して発電を行う燃料電池C1、流体供給装置Bより供給される原燃料と別途供給される水とから水素を生成して燃料電池C1に供給する改質器C2、および、燃料電池C1と改質器C2とを加熱するバーナC3を備えている。流体供給装置Bから供給される原燃料は改質器C2とバーナC3とに供給され、流体供給装置Bから供給される空気は燃料電池C1の空気極(カソード)とバーナC3とに供給される。
【0006】
燃料電池C1の燃料極(アノード)には、改質器C2から水素が供給され、空気極(カソード)には、流体供給装置Bから空気が供給される。燃料電池C1は、水素と空気中の酸素とを反応させて、電気エネルギーと熱エネルギーとを生成する。直流電力として取り出された電気エネルギーは、インバータ装置Dに出力される。また、生成された熱エネルギーは、排熱回収装置Eによって回収される。改質器C2は、流体供給装置Bより供給される原燃料に含まれる炭化水素(メタンなど)と別途供給される水との化学反応(水蒸気改質)により水素を生成する。当該化学反応には熱が必要とされる。また、燃料電池C1にはその素材により運転温度(例えば、固体酸化物型燃料電池の場合、750〜1000℃の範囲で設定されている)が設定されており、燃料電池C1を当該運転温度に保つためにも熱が必要とされる。バーナC3は、改質器C2での化学反応を起こさせるため、また、燃料電池C1の温度を運転温度まで引き上げるために、原燃料を燃焼して、改質器C2と燃料電池C1とを加熱する。燃料電池C1はその化学反応において熱を出すので、バーナC3は、主に、燃料電池システムAの起動時に使用される。
【0007】
インバータ装置Dは、燃料電池C1が出力する直流電力を交流電力に変換して出力するものである。インバータ装置Dは電力系統に連系され、出力される交流電力が負荷に供給される。排熱回収装置Eは、燃料電池C1が出す熱、および、バーナC3での燃焼により出る熱を回収するものである。排熱回収装置Eは、燃料電池モジュールCから出る排ガスの熱を用いて、給湯などに利用している。
【0008】
燃料電池C1の各セルは、燃料極と空気極の各電極で電解質膜を挟み込んだ構造をなしている。効率よく化学反応を起こさせるためには、各電極全体にそれぞれ水素または酸素が均等に供給されることが望ましい。したがって、各電極に不純物が付着したり、各電極の全体に水素または酸素を供給するための流路に不純物が付着したりすることを可及的に防ぐ必要がある。このため、流体供給装置Bには、ブロワ12,22,32,42に吸入される空気または原燃料から粉塵などの不純物を取り除くためのフィルタ装置11,21,31,41が、それぞれブロワ12,22,32,42の上流側に設けられている。
【0009】
これらフィルタ装置11,21,31,41の内部には、それぞれ、除去しようとする不純物より直径の小さい多数の孔が設けられた素材(例えば、ポリマー不織布、金属メッシュやウレタンなど)からなるフィルタエレメント11a,21a,31a,41aが装着されている。空気または原燃料に含まれる不純物は、当該フィルタエレメント11a,21a,31a,41aを通過する際に除去される。これにより、フィルタ装置11,21,31,41に吸入される空気または原燃料は、不純物が除去されて排出される。
【0010】
フィルタエレメントに不純物が付着して目詰まりを起こすと、フィルタ装置の圧力損失が増大し、当該フィルタ装置の下流側のブロワの動力損失が大きくなる。また、更には、必要な流量を供給できない状態に陥る。したがって、定期的に、または、フィルタ装置の入出力の差圧が所定の閾値を超えた場合に、フィルタエレメントを交換する必要がある。
【0011】
フィルタエレメント11aまたは31aを交換する場合、作業者が手や物を吸い込まれることを防ぐため、また、不純物の吸入を防ぐために、それぞれ空気ブロワ12または32を停止させる必要がある。空気ブロワ12が停止すると、燃料電池モジュールCに空気が供給されなくなり、燃料電池C1に酸素が供給されなくなるので、燃料電池C1は発電を行うことができなくなる。また、フィルタエレメント21aまたは41aを交換する場合、フィルタエレメントの交換口から原燃料が流出することを防ぐために、また、空気および不純物が吸入されることを防ぐために、それぞれ燃料ブロワ22または42を停止させる必要がある。燃料ブロワ22が停止すると、燃料電池モジュールCに原燃料が供給されなくなり、燃料電池C1に水素が供給されなくなるので、燃料電池C1は発電を行うことができなくなる。
【0012】
また、燃料電池システムAの稼働中に空気ブロワ12または燃料ブロワ22が停止されて空気または原燃料の供給が遮断されると、燃料電池C1の温度が急激に変動するので、燃料電池C1の性能および安全面に悪影響を及ぼす。したがって、空気ブロワ12または燃料ブロワ22を停止する前に、燃料電池システムAを停止させる必要がある。つまり、フィルタエレメント11aまたは11aを交換する場合、その交換前に、燃料電池システムAを停止させる必要がある。しかし、燃料電池システムAを停止させると、再起動させて再発電するまでに、燃料電池C1の温度を運転温度まで上昇させるための時間を要する。この間は発電を行うことができないので、燃料電池システムAの運用効率は低下する。したがって、フィルタエレメントを交換する際、交換前に燃料電池システムAを停止させることは好ましくない。
【0013】
ブロワを停止させることなくフィルタ装置のフィルタエレメントを交換するために、並列に接続された2つのフィルタ装置を設けておくという方法がある。例えば、特開2005−63789号公報には、燃料電池の上流に複数系統のフィルタを並列に配して、流路とするフィルタを切り替えることができる燃料電池システムが記載されている。これによると、フィルタ交換時には流路を他方のフィルタに切り替えることができるので、流体の供給が停止されず、燃料電池システムを連続運転することができる。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特開2005−63789号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
しかしながら、この場合、フィルタ交換のためだけに、別のフィルタと当該フィルタのための流路を設ける必要がある。図8に記載の燃料電池システムAにおいて、この発明を適用すると、フィルタ装置11,21,31,41のそれぞれに、並列に接続されるフィルタ装置(すなわち、新たな4つのフィルタ装置)を別途設けることになる。また、これらのフィルタ装置を接続するための配管、および、流路を切り替えるためのバルブも必要となる。これにより、流体供給装置Bが大型化し、燃料電池システムA全体としても大型化するという問題がある。また、部品数が増加することで製造コストが増加するという問題もある。
【0016】
本発明は上記した事情のもとで考え出されたものであって、新たなフィルタ装置を別途設けることなく、かつ、流体の供給を停止することなく、フィルタエレメントの交換を行うことができる流体供給装置を提供することをその目的としている。
【課題を解決するための手段】
【0017】
上記課題を解決するため、本発明では、次の技術的手段を講じている。
【0018】
本発明の第1の側面によって提供される流体供給装置は、複数の供給先にそれぞれ流体を供給する複数の配管と、前記各配管にそれぞれ設けられ、前記流体から不純物を除去するフィルタ装置と、前記各フィルタ装置より下流側で、前記各配管にそれぞれ設けられ、前記各フィルタ装置を通過した前記流体の流路を開閉するバルブとを備え、前記各配管が前記バルブより下流側で接続されていることを特徴とする。
【0019】
本発明の好ましい実施の形態においては、前記複数のフィルタ装置のうちの一のフィルタ装置の下流側に設けられているバルブを閉じる前に、他のいずれかのフィルタ装置の下流側に設けられているバルブを開く制御を行う制御手段を更に備えている。
【0020】
本発明の好ましい実施の形態においては、前記各フィルタ装置は、その内部に装着されたフィルタエレメントに前記流体を通過させることにより、当該流体から不純物を除去するものであり、前記各フィルタ装置の上流側と下流側との差圧をそれぞれ検出する差圧検出手段と、前記差圧検出手段によって検出される差圧が所定の閾値以上となった場合に、当該差圧が検出されたフィルタ装置のフィルタエレメントを交換すべき旨を報知する交換報知手段とを更に備えている。
【0021】
本発明の好ましい実施の形態においては、前記各フィルタ装置は、その内部に装着されたフィルタエレメントに前記流体を通過させることにより、当該流体から不純物を除去するものであり、前記各フィルタ装置の上流側と下流側との差圧をそれぞれ検出する差圧検出手段を更に備え、前記制御手段は、前記差圧検出手段によって検出される差圧が所定の閾値以上となった場合に、当該差圧が検出されたフィルタ装置の下流側に設けられているバルブを閉じる。
【0022】
本発明の好ましい実施の形態においては、前記各フィルタ装置の上流側にも、前記流体の流路を開閉するバルブがそれぞれ設けられている。
【0023】
本発明の好ましい実施の形態においては、前記各配管の他の配管と接続されている部分より下流側にそれぞれ設けられ、前記流体としての空気を昇圧して送出するブロワを更に備え、前記複数の配管のいずれかは、燃料電池に空気を供給し、前記複数の配管の別のいずれかは、前記燃料電池または前記燃料電池に供給する水素を生成する改質器を加熱するバーナに空気を供給する。
【0024】
本発明の好ましい実施の形態においては、前記各配管の他の配管と接続されている部分より下流側にそれぞれ設けられ、前記流体としての気体燃料を昇圧して送出するブロワを更に備え、前記複数の配管のいずれかは、燃料電池に供給する水素を生成する改質器に前記気体燃料を供給し、前記複数の配管の別のいずれかは、前記燃料電池または前記改質器を加熱するバーナに前記気体燃料を供給する。
【0025】
本発明の第2の側面によって提供される燃料電池システムは、本発明の第1の側面によって提供される流体供給装置と、前記燃料電池と、前記改質器と、前記バーナとを備えている。
【発明の効果】
【0026】
本発明によれば、複数の配管がバルブの下流側で接続されている。したがって、一の配管の流路をバルブにより閉鎖し、他のいずれかの配管の流路をバルブにより開放することにより、前記一の配管に設けられたフィルタ装置を流体が通過しないようにして、前記他のいずれかの配管に設けられたフィルタ装置を通過した流体を、前記一の配管の供給先に供給することができる。これにより、フィルタ装置に装着されているフィルタエレメントを交換するために当該フィルタ装置を流体が通過しないようにしても、供給先への流体の供給を継続することができる。したがって、流体の供給を停止することなく、フィルタエレメントの交換を行うことができる。
【0027】
また、別の供給先に流体を供給するために設けられている配管および当該配管に設けられているフィルタ装置を流体の流路として利用するので、フィルタエレメントの交換のためだけに新たなフィルタ装置および配管を別途設ける必要がない。したがって、フィルタエレメントの交換のためだけに新たなフィルタ装置および配管を別途設ける場合と比較して、流体供給装置およびこれを用いたシステムを小型化することができ、また、装置の製造コストを抑制することができる。
【0028】
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
【図面の簡単な説明】
【0029】
【図1】本発明に係る流体供給装置の第1実施形態を説明するためのブロック図である。
【図2】フィルタ1交換処理の処理手順を説明するためのフローチャートである。
【図3】フィルタ1交換処理を説明するためのタイミングチャートである。
【図4】本発明に係る流体供給装置の第2実施形態を説明するためのブロック図である。
【図5】本発明に係る流体供給装置の第3実施形態を説明するためのブロック図である。
【図6】本発明に係る流体供給装置の第4実施形態を説明するためのブロック図である。
【図7】本発明に係る流体供給装置の第5実施形態を説明するためのブロック図である。
【図8】従来の流体供給装置を備える燃料電池システムを説明するためのブロック図である。
【発明を実施するための形態】
【0030】
以下、本発明の実施の形態を、添付図面を参照して具体的に説明する。
【0031】
図1は、本発明に係る流体供給装置の第1実施形態を説明するためのブロック図である。流体供給装置B1は、図8に示す燃料電池システムにおける流体供給装置Bに相当するものである。なお、図1において、流体供給装置Bと同一または類似の要素には、同一の符号を付している。また、図1においては、空気の供給のための要素のみを記載しており、原燃料の供給のための要素の記載を省略している(図4〜図5についても同様)。具体的には、図8に示す流体供給装置Bにおけるフィルタ装置21,41および燃料ブロワ22,42の記載を省略している。
【0032】
流体供給装置B1は、燃料電池モジュールCに原燃料および空気を供給するものである。なお、本実施形態では、燃料電池C1に固体酸化物型燃料電池を用いた場合について説明する。流体供給装置B1は、フィルタ装置11,31、空気ブロワ12,32、バルブ13,33、配管5、制御部6、操作部7、および表示部8を備えている。
【0033】
フィルタ装置11,31は、外気より取り入れた空気から不純物を取り除くものである。フィルタ装置11,31の内部には、それぞれ、除去しようとする不純物より直径の小さい多数の孔が設けられた素材(例えば、ポリマー不織布、金属メッシュやウレタンなど)からなるフィルタエレメント11a,31aが装着されている。空気に含まれる不純物は、当該フィルタエレメント11a,31aを通過する際に除去される。フィルタエレメント11a,31aは、不純物が付着して目詰まりを起こすと下流側の空気ブロワ12,32の動力損失が大きくなり、また、必要な流量を供給できない状態に陥るので、所定の期間が経過する毎に、新しいものと交換される。
【0034】
空気ブロワ12,32は、フィルタ装置11,31によって不純物を取り除かれた空気を昇圧して送出するものである。空気ブロワ12が送出する空気は配管を流れて、燃料電池C1のカソード側に供給され、空気ブロワ32が送出する空気は配管を流れて、バーナC3に供給される(図8参照)。通常、燃料電池システムAの起動開始時などには、燃料電池モジュールCの温度を所定の運転温度(750〜1000℃の範囲で予め設定されている。)まで昇温するために、バーナC3が加熱を行う(以下、この昇温のための工程を「昇温工程」という。)。したがって、空気ブロワ32は、昇温工程において、バーナC3に空気を供給するために、動作状態となっている。しかし、昇温工程の後、燃料電池モジュールCが運転温度を維持できるようになると、バーナC3が加熱を停止するので、空気ブロワ32は停止される。なお、燃料電池システムAが稼動状態の間は燃料電池C1に空気を供給する必要があるので、空気ブロワ12は動作状態を継続する。
【0035】
バルブ13,33は、制御部6から入力される開閉信号に基づいて、流路の開閉動作を行う電動弁である。
【0036】
バルブ13は、フィルタ装置11の下流側に設けられており、フィルタ装置11を通過する空気の流路を開閉する。バルブ13は、制御部6から開閉信号として開信号(例えば、ハイレベル信号)が入力されている間、流路を開放する。この場合、フィルタ装置11により不純物を除去された空気が、空気ブロワ12および32に吸入される。一方、バルブ13は、制御部6から開閉信号として閉信号(例えば、ローレベル信号)が入力されている間、流路を閉鎖する。この場合、空気がフィルタ11を通過しない。通常、ブロワ12が動作状態の間、バルブ13は、全開状態に維持される。しかし、フィルタ装置11のフィルタエレメント11aを交換するときは、不純物吸入を防ぐためと作業者の安全のために、バルブ13が全閉状態にされる。
【0037】
バルブ33は、フィルタ装置31の下流側に設けられており、フィルタ装置31を通過する空気の流路を開閉する。バルブ33は、制御部6から開信号(例えば、ハイレベル信号)が入力されている間、流路を開放する。この場合、フィルタ31により不純物を除去された空気が、空気ブロワ12および32に吸入される。一方、バルブ33は、制御部6から閉信号(例えば、ローレベル信号)が入力されている間、流路を閉鎖する。この場合、空気がフィルタ31を通過しない。バルブ33は、通常、ブロワ32が動作状態の間、全開状態に維持され、ブロワ32が停止状態の間、全閉状態に維持される。しかし、ブロワ32が停止状態でも、フィルタ装置11および31を併用する場合、バルブ33は全開状態に維持される。この場合、フィルタ装置31のフィルタエレメント31aを交換するときは、不純物吸入を防ぐためと作業者の安全のために、バルブ33が全閉状態にされる。
【0038】
バルブ13,33は、電動弁なので、開閉動作に数秒〜10秒程度の時間を要する。すなわち、制御部6から開信号を入力されてから全開状態になるまで、および、制御部6から閉信号を入力されてから全閉状態になるまでに、数秒〜10秒程度の時間がかかる。バルブ13,33は、全開状態になったことを制御部6に知らせるための全開信号と、全閉状態になったことを制御部6に知らせるための全閉信号とを出力する。
【0039】
本実施形態では、バルブ13,33には、それぞれ、全開状態を感知するためのリミットスイッチ(開)及び全閉状態を感知するためのリミットスイッチ(閉)が設けられている。なお、各リミットスイッチは、図示されていない。バルブ13,33が全開状態の時、リミットスイッチ(開)がオンになり、全開信号が例えばハイレベル信号になる。一方、バルブ13,33が全開状態以外の時、リミットスイッチ(開)がオフになり、全開信号が例えばローレベル信号になる。また、バルブ13,33が全閉状態の時、リミットスイッチ(閉)がオンになり、全閉信号が例えばハイレベル信号になる。一方、バルブ13,33が全閉状態以外の時、リミットスイッチ(閉)がオフになり、全閉信号が例えばローレベル信号になる。
【0040】
なお、バルブ13,33は、リミットスイッチで全開状態および全閉状態を感知するものに限定されない。他の方法で全開状態および全閉状態を感知するようにしてもよい。また、全開信号および全閉信号は、上記のものに限定されない。例えば、ハイレベル信号とローレベル信号とが反対であってもよい。また、全開信号および全閉信号を別々の信号とせず、1つの信号とし、全開状態を感知したときに所定のパルス幅のパルス信号を出力し、全閉状態を感知したときに異なるパルス幅のパルス信号を出力するようにしてもよい。
【0041】
配管5は、フィルタ装置11,31を通過した空気を空気ブロワ12および32に吸入させるための流路を構成するものである。本実施形態において、配管5は、フィルタ装置11の排出口と空気ブロワ12の吸入口とを接続する配管5aと、フィルタ装置31の排出口と空気ブロワ32の吸入口とを接続する配管5bと、配管5aと配管5bとを接続する配管5cとからなる。配管5aはバルブ13とブロワ12の間で配管5cと接続し、配管5bはバルブ33と空気ブロワ32の間で配管5cと接続している。
【0042】
バルブ13が全閉状態の場合、フィルタ31により不純物を除去された空気が、配管5を流れて、空気ブロワ12および32に吸入される。一方、バルブ33が全閉状態の場合、フィルタ11により不純物を除去された空気が、配管5を流れて、空気ブロワ12および32に吸入される。なお、バルブ13および33が同時に全閉状態になると、空気が空気ブロワ12および32に吸入されなくなり、燃料電池モジュールCに空気が供給されなくなる。したがって、制御部6は、バルブ13および33に同時に閉信号を出力することがないように制御している。
【0043】
制御部6は、流体供給装置B1の制御を行うものである。制御部6は、バルブ13,33に開閉信号を出力して、流路の開閉を行わせる。すなわち、制御部6は、開信号(例えば、ハイレベル信号)を出力することで、バルブ13,33に流路の開放を行わせ、閉信号(例えば、ローレベル信号)を出力することで、バルブ13,33に流路の閉鎖を行わせる。なお、開閉信号は、これに限定されず、ハイレベル信号とローレベル信号とを逆にしてもよい。
【0044】
また、制御部6は、操作部7から入力される操作信号やバルブ13,33から入力される信号に基づいて処理を行い、表示部8に表示を行わせる。また、制御部6は、フィルタエレメントの交換のための処理(以下、「フィルタ交換処理」という。フィルタ交換処理についての説明は、後述する。)を行う。また、制御部6は、ブロワ12,32の出力側に設けられた流量検出器(図示せず)により検出される流量に基づいて、ブロワ12,32の出力制御を行う。すなわち、制御部6は、各ブロワ12,32から出力される流量がそれぞれ目標値となるように、フィードバック制御を行っている。なお、図1においては、当該流量制御の構成の記載を省略している。
【0045】
操作部7は、作業者からの操作入力に基づいて、操作信号を制御部6に出力するものである。操作部7には複数の操作ボタン(図示せず)が配置されており、フィルタ装置11のフィルタエレメント11aを交換するための「フィルタ1交換」ボタン、フィルタ装置31のフィルタエレメント31aを交換するための「フィルタ3交換指令」ボタン、および交換が完了したときに押圧する「交換完了」ボタンも配置されている。作業者が操作ボタンを押圧(操作入力)すると、操作入力に応じた操作信号が制御部6に入力される。
【0046】
表示部8は、流体供給装置B1の状態や操作入力の内容などを表示するものであり、例えば、液晶表示パネルである。表示部8は、制御部6からの指示により表示を行う。制御部6は、流体供給装置B1の稼動状態(稼働中か停止中か)や、操作部7から入力される操作信号に応じた操作入力の内容(「フィルタ1交換」ボタンが押圧された旨など)、作業者に対する指示や案内などを、表示部8に表示させる。
【0047】
次に、フィルタ交換処理について説明する。ここでは、フィルタ装置11のフィルタエレメント11aを交換するためのフィルタ交換処理(以下、「フィルタ1交換処理」とする。)について説明する。
【0048】
制御部6は、作業者が「フィルタ1交換」ボタンを押圧したときに(その旨の操作信号が操作部7から入力されたときに)、フィルタ1交換処理を開始する。以下に、フィルタ1交換処理の処理手順について、図2に示すフローチャートおよび図3に示すタイミングチャートを参照して説明する。なお、ここでは、バルブ13が全開状態でバルブ33が全閉状態のときに、「フィルタ1交換」ボタンが押圧された場合について説明する。
【0049】
図2は、制御部6で行われるフィルタ1交換処理の処理手順を説明するためのフローチャートである。フィルタ1交換処理は、作業者が「フィルタ1交換」ボタンを押圧し、その旨の操作信号が操作部7から入力されたときに開始される。
【0050】
図3は、フィルタ1交換処理を説明するためのタイミングチャートであり、制御部6の入出力信号の波形およびバルブ13,33の開度を表している。同図(a)は制御部6からバルブ33に出力される開閉信号の波形を表しており、同図(b)は制御部6からバルブ13に出力される開閉信号の波形を表している。同図(c)はバルブ33の開度を表しており、同図(d)はバルブ13の開度を表している。同図(e)はバルブ33から制御部6に入力される全開信号の波形を表しており、同図(f)はバルブ33から制御部6に入力される全閉信号の波形を表している。同図(g)はバルブ13から制御部6に入力される全開信号の波形を表しており、同図(h)はバルブ13から制御部6に入力される全閉信号の波形を表している。
【0051】
図2に示すように、フィルタ1交換処理が開始されると、まず、「フィルタ1交換」ボタンの押圧による操作入力を受け付けたことを作業者に知らせるために、表示部8に表示命令が出力される(S1)。これにより、表示部8に、例えば、「フィルタ1の交換処理を開始します。」などの表示がされる。次に、バルブ33に開信号が出力される(S2)。
【0052】
フィルタ1交換処理が開始される前は、図3(a)に示すバルブ33に出力される開閉信号は、閉信号(ローレベル信号)となっており、同図(b)に示すバルブ13に出力される開閉信号は、開信号(ハイレベル信号)となっている。t=t1でフィルタ1交換処理が開始されると、制御回路6は、同図(a)に示す開閉信号を開信号(ハイレベル信号)に切り替える。なお、実際にはタイムラグが生じるが、説明の簡略化のためタイムラグがないものとして説明する(以下同様)。開信号を入力されたバルブ33は、開動作を行い、t=t2で全開(開度100%)となる(同図(c)参照)。このとき、バルブ33からの全開信号がローレベル信号からハイレベル信号に切り替えられる(同図(e)参照)。
【0053】
次に、バルブ33からの全開信号がハイレベル信号であるか否かが判別される(S3)。全開信号がハイレベル信号になるまで、入力待ち状態が継続され(S3:NO)、全開信号がハイレベル信号になると(S3:YES)、バルブ13に閉信号が出力される(S4)。すなわち、制御回路6は、図3(e)に示す全開信号がハイレベル信号になると、同図(b)に示す開閉信号を閉信号(ローレベル信号)に切り替える。閉信号を入力されたバルブ13は、閉動作を行い、t=t3で全閉(開度0%)となる(同図(d)参照)。このとき、バルブ13からの全閉信号がローレベル信号からハイレベル信号に切り替えられる(同図(h)参照)。
【0054】
なお、フィルタ1交換処理開始時にバルブ33が全開状態(ブロワ32が動作状態)である場合、ステップS2,S3は省略され、すぐに、バルブ13に閉信号が出力される(S4)。
【0055】
次に、バルブ13からの全閉信号がハイレベル信号であるか否かが判別される(S5)。全閉信号がハイレベル信号になるまで、入力待ち状態が継続され(S5:NO)、全閉信号がハイレベル信号になると(S5:YES)、表示部8に交換可能の旨を表示させる命令が出力される(S6)。すなわち、バルブ33が全開状態になりバルブ13が全閉状態になったことにより、空気がフィルタ装置11を通過することがなく、フィルタエレメント11aの交換が可能となったので、表示部8に、例えば、「フィルタ1の交換が可能になりました。」などの表示をさせる。作業者は、当該表示を見て、フィルタエレメント11aの交換を行う。交換が完了した場合、作業者は、操作部7に配置されている「交換完了」ボタンを押圧する。操作部7は、これに応じた操作信号(以下、「交換完了信号」)を制御部6に出力する。
【0056】
次に、交換完了信号が入力されたか否かが判別される(S7)。交換完了信号が入力されるまで、入力待ち状態が継続され(S7:NO)、交換完了信号が入力されると(S7:YES)、バルブ13に開信号が出力される(S8)。すなわち、t=t4で交換完了信号が入力されると、制御回路6は、同図(b)に示す開閉信号を開信号(ハイレベル信号)に切り替える。開信号を入力されたバルブ13は、開動作を行い、t=t5で全開(開度100%)となる(同図(d)参照)。このとき、バルブ13からの全開信号がローレベル信号からハイレベル信号に切り替えられる(同図(g)参照)。
【0057】
次に、バルブ13からの全開信号がハイレベル信号であるか否かが判別される(S9)。全開信号がハイレベル信号になるまで、入力待ち状態が継続され(S9:NO)、全開信号がハイレベル信号になると(S9:YES)、バルブ33に閉信号が出力される(S10)。すなわち、制御回路6は、図3(g)に示す全開信号がハイレベル信号になると、同図(a)に示す開閉信号を閉信号(ローレベル信号)に切り替える。閉信号を入力されたバルブ33は、閉動作を行い、t=t6で全閉(開度0%)となる(同図(c)参照)。このとき、バルブ33からの全閉信号がローレベル信号からハイレベル信号に切り替えられる(同図(f)参照)。
【0058】
次に、バルブ33からの全閉信号がハイレベル信号であるか否かが判別される(S11)。全閉信号がハイレベル信号になるまで、入力待ち状態が継続され(S11:NO)、全閉信号がハイレベル信号になると(S11:YES)、表示部8にファイル交換処理終了の旨を表示させる命令が出力され(S12)、フィルタ1交換処理が終了される。すなわち、バルブ13が全開状態になりバルブ33が全閉状態になったことにより、空気がフィルタ装置11を通過する元の状態になったので、表示部8に、例えば、「フィルタ1の交換処理が完了しました。」などの表示をさせる。
【0059】
なお、フィルタ1交換処理開始時にバルブ33が全開状態(ブロワ32が動作状態)であった場合、ステップS10,11は省略され、バルブ33を閉じることなく、ファイル交換処理終了の旨を表示させる命令が出力される(S12)。
【0060】
なお、フィルタ装置31のフィルタエレメント31aを交換するためのフィルタ3交換処理もフィルタ1交換処理と同様に行われる。すなわち、バルブ13を全開状態としバルブ33を全閉状態とした上で、作業者にフィルタエレメント31aの交換をさせる。その後、バルブ33を全開状態としバルブ13を全閉状態とする。なお、燃料電池システムAの通常運転時は、バルブ13が全開状態(ブロワ12が動作状態)でバルブ33が全閉状態(ブロワ32が停止状態)になっている。この場合は、フィルタ3交換処理を行うことなく、フィルタエレメント31aを交換することができる。
【0061】
次に、流体供給装置B1の動作について説明する。
【0062】
流体供給装置B1は、燃料電池システムA(図8参照)が稼動状態のとき、空気ブロワ12を動作させて、燃料電池C1に空気を供給する。このとき、制御部6がバルブ13を全開状態にすることにより、フィルタ装置11を通過して不純物が除去された空気が空気ブロワ12で昇圧されて、燃料電池C1に供給される。また、流体供給装置B1は、燃料電池システムAの起動時などの昇温工程において、空気ブロワ32を動作させて、バーナC3に空気を供給する。このとき、制御部6がバルブ33を全開状態にすることにより、フィルタ装置31を通過して不純物が除去された空気が空気ブロワ32で昇圧されて、バーナC3に供給される。通常運転時は、バーナC3に空気を供給する必要がないので、空気ブロワ32は停止される。このとき、通常は、バルブ33が全閉状態とされる。
【0063】
バルブ13が全開状態でありバルブ33が全閉状態であるときに、フィルタ装置11のフィルタエレメント11aを交換する場合、流体供給装置B1は、バルブ33を全開状態とした後に、バルブ13を全閉状態とする。作業者は、バルブ13の全閉状態を確認した上で交換作業を行う。交換作業が終了すると、流体供給装置B1は、バルブ13を全開状態とした後に、バルブ33を全閉状態として、元の状態に戻す。
【0064】
次に、流体供給装置B1の作用について説明する。
【0065】
流体供給装置B1は、燃料電池システムAが稼動状態のとき、空気ブロワ12を動作させて、燃料電池C1に空気を供給する。このとき、フィルタ装置11のフィルタエレメント11aを交換する場合、制御部6は、バルブ33を全開状態とした後に、バルブ13を全閉状態とする。このとき、フィルタ装置11の排出口と空気ブロワ12の吸入口とを接続する配管5aと、フィルタ装置31の排出口と空気ブロワ32の吸入口とを接続する配管5bとが、配管5cにより接続されているので、フィルタ装置31を通過した空気が配管5cを通って、空気ブロワ12に吸入される。これにより、流体供給装置B1は、フィルタエレメント11a交換時にも燃料電池C1に空気を供給することができる。
【0066】
また、流体供給装置B1は、バーナC3に供給する空気から不純物を除去するために設けられているフィルタ装置31を、フィルタエレメント11a交換時に、燃料電池C1に供給する空気の不純物の除去に用いる。したがって、フィルタエレメント11aの交換のために、新たなフィルタ装置を別途設ける必要がない。また、新たなフィルタ装置を別途設ける場合と比べて、配管やバルブの数も抑制することができる。したがって、フィルタエレメント11aの交換のために新たなフィルタ装置を別途設ける場合と比較して、流体供給装置B1およびこれを用いた燃料電池システムAを小型化することができ、また、装置の製造コストを抑制することができる。
【0067】
なお、上記第1実施形態においては、バルブ13,33が全開信号および全閉信号を出力する場合について説明したが、これに限られない。バルブ13,33に全開信号および全閉信号を出力する機能がない場合、制御部6は、開閉信号を出力してから所定の時間(バルブ13,33の開閉動作にかかる時間から予め設定された時間であり、例えば、10秒)が経過したことをもって、全開状態または全閉状態になったと判断するようにしてもよい。すなわち、図2に示すフローチャートにおけるステップS3,S5,S9,S11の処理を、全開信号または全閉信号がハイレベル信号であるか否かを判別する処理に代えて、所定の時間が経過したか否かを判別する処理にしてもよい。また、バルブ13,33に全開信号および全閉信号を出力する機能がある場合でも、制御部6が所定の時間の経過により全開状態または全閉状態の判断するようにしてもよい。
【0068】
なお、上記第1実施形態においては、バルブ13,33を電動弁としているが、これに限られない。バルブ13,33は空気の流量を調整するのではなく流路の開閉を行うものなので、全閉機能を有するバルブであればよく、例えば、開閉速度を速くするために電磁弁としてもよい。また、電動比例制御弁とすることもできる。この場合、制御部6は、開信号として開度を100%とする信号を出力し、閉信号として開度を0%とする信号を出力するようにしてもよい。また、開信号を出力する代わりに、開度を0%から100%に徐々に大きくするように出力信号を調整し、閉信号を出力する代わりに、開度を100%から0%に徐々に小さくするように出力信号を調整するようにしてもよい。
【0069】
また、バルブ13,33は制御部6からの開閉信号により開閉を行う自動弁でなくてもよく、手動弁としてもよい。この場合、表示部8に表示される指示に従って、作業者が手動でバルブ13,33の開閉を行うようにしてもよい。また、制御部6、操作部7、表示部8を用いずに、作業者が操作手順に従って、手動でバルブ13,33の開閉を行うようにしてもよい。
【0070】
なお、上記第1実施形態においては、フィルタエレメント11a,31aが所定の期間経過毎に交換される(作業者が交換のタイミングを把握しておき、交換作業を行うために操作部7からフィルタ交換処理のための操作信号を入力する)場合について説明したが、これに限られない。例えば、制御部6が、フィルタエレメント11a,31aの前回の交換日を記録しておき、所定の期間が経過したときに、表示部8に交換を促す表示をさせるようにしてもよい。また、制御部6が、フィルタエレメント11a,31aを交換すべきことを判断して、表示部8に交換を促す表示をさせるようにしてもよい。以下に、フィルタエレメント11a,31aを交換すべきことを判断してその旨を報知する流体供給装置を、第2実施形態として説明する。
【0071】
図4は、本発明に係る流体供給装置の第2実施形態を説明するためのブロック図である。なお、同図において、上記第1実施形態に係る流体供給装置B1(図1参照)と同一または類似の要素には、同一の符号を付している。流体供給装置B2は、フィルタ装置11および31の上流側と下流側との差圧を検出する差圧検出器14および34を設けている点で、流体供給装置B1とは異なる。
【0072】
差圧検出器14は、フィルタ装置11の上流側の圧力と下流側の圧力を検出し、両者の圧力差(差圧)を検出値として制御部6に出力するものである。差圧検出器34も同様に、フィルタ装置31の上流側の圧力と下流側の圧力を検出し、両者の圧力差(差圧)を検出値として制御部6に出力するものである。なお、差圧検出器14を別途設けなくても、上流側の圧力を検出する圧力検出器と下流側の圧力を検出する圧力検出器とが設置されていれば、上流側の圧力と下流側の圧力とをそれぞれ制御部6に出力し、制御部6で差圧を算出するようにしてもよい。
【0073】
フィルタ装置11のフィルタエレメント11aに空気から除去した不純物が付着することにより、差圧検出器14が検出する差圧は次第に大きくなる。制御部6は、差圧検出器14より入力される差圧検出値が所定の閾値以上になった場合、表示部8にフィルタエレメント11aの交換を促すメッセージ(例えば、「フィルタ1を交換してください。」)を表示させる。なお、所定の閾値は、フィルタエレメント11aを交換すべき差圧が設定される。同様に、差圧検出器34より入力される差圧検出値が所定の閾値以上になった場合、制御部6は、表示部8にフィルタエレメント31aの交換を促すメッセージ(例えば、「フィルタ3を交換してください。」)を表示させる。
【0074】
第2実施形態においては、流体供給装置B2がフィルタエレメントの交換時期を適切に判断して作業者に知らせるので、上記第1実施形態の場合のように作業者が交換のタイミングを把握しておく必要がない。
【0075】
なお、表示部8にメッセージを表示する代わりに、音声によって報知するようにしてもよいし、メッセージの表示と音声による報知を併用するようにしてもよい。また、制御部6がフィルタ交換処理を開始するようにしてもよい。すなわち、差圧検出器14より入力される差圧検出値が所定の閾値以上になった場合に、バルブ33を全開状態にした後、バルブ13を全閉状態にして、フィルタエレメント11aの交換が可能な状態とした上で、作業者に報知するようにしてもよい。
【0076】
図5は、本発明に係る流体供給装置の第3実施形態を説明するためのブロック図である。なお、同図において、上記第1実施形態に係る流体供給装置B1(図1参照)と同一または類似の要素には、同一の符号を付している。流体供給装置B3は、フィルタ装置11’の形状が流体供給装置B1とは異なる。
【0077】
フィルタ装置11’は、2つの吸入口11b,31bと2つの排出口11c,31cとを有している。フィルタ装置11’には、2つの排出口11c,31cの間に空気を通過しない仕切り11’aが設けられている。したがって、一方の吸入口11bから吸入された空気は一方の排出口11cから排出され、他方の吸入口31bから吸入された空気は他方の排出口31cから排出される。フィルタ装置11’の仕切り11’aに区切られた一方の空間(吸入口11bおよび排出口11cが設けられている側の空間)にフィルタエレメント11aが装着され、他方の空間(吸入口31bおよび排出口31cが設けられている側の空間)にフィルタエレメント31aが装着されている。
【0078】
第3実施形態においては、流体供給装置B3に備えられるフィルタ装置が1つなので、流体供給装置B3を上記第1実施形態の流体供給装置B1よりさらに小型化することが可能である。
【0079】
なお、上記第1ないし第3実施形態においては、燃料電池モジュールC(図8参照)に空気を供給する流路について本発明を適用した場合について説明したが、燃料電池モジュールCに原燃料を供給する流路にも、本発明を適用することができる。以下に、原燃料を供給する流路について本発明を適用した流体供給装置を、第4実施形態として説明する。
【0080】
図6は、本発明に係る流体供給装置の第4実施形態を説明するためのブロック図である。流体供給装置B4は、図8に示す燃料電池システムにおける流体供給装置Bに相当するものである。なお、図6において、流体供給装置Bと同一または類似の要素には、同一の符号を付している。また、原燃料の供給のための要素のみを記載しており、空気の供給のための要素の記載を省略している。具体的には、図8に示す流体供給装置Bにおけるフィルタ装置11,31および空気ブロワ12,32の記載を省略している。
【0081】
流体供給装置B4は、燃料電池モジュールCに原燃料および空気を供給するものである。流体供給装置B4は、フィルタ装置21,41、燃料ブロワ22,42、バルブ23,24,43,44、配管9、制御部6、操作部7、および表示部8を備えている。
【0082】
フィルタ装置21,41は、原燃料から不純物を取り除くものである。フィルタ装置21,41の内部には、それぞれ、除去しようとする不純物より直径の小さい多数の孔が設けられた素材(例えば、金属メッシュやポリマー不織布、ウレタンなど)からなるフィルタエレメント21a,41aが備えられている。原燃料に含まれる不純物は、当該フィルタエレメント21a,41aを通過する際に除去される。フィルタエレメント21a,41aも、第1実施形態で説明したフィルタエレメント11a,31a(図1参照)と同様に、所定の期間が経過する毎に、新しいものと交換される。
【0083】
燃料ブロワ22,42は、フィルタ装置21,41によって不純物を取り除かれた原燃料を昇圧して送出するものである。燃料ブロワ22が送出する原燃料は配管を流れて、改質器C2に供給され、燃料ブロワ42が送出する原燃料は配管を流れて、バーナC3に供給される(図8参照)。上述したように、昇温工程においてバーナC3が加熱を行うので、燃料ブロワ42は、バーナC3に原燃料を供給するために、動作状態になる。また、昇温工程の後は、バーナC3が加熱を停止するので、燃料ブロワ42は停止される。なお、燃料電池システムAが稼動状態の間は燃料電池C1に水素を供給する必要があるので、改質器C2に原燃料を供給する必要がある。したがって、燃料ブロワ22は動作状態を継続する。
【0084】
バルブ23,24,43,44は、制御部6から入力される開閉信号に基づいて、流路の開閉動作を行う電動弁である。
【0085】
バルブ23はフィルタ装置21の下流側に設けられており、バルブ24はフィルタ装置21の上流側に設けられている。バルブ23,24は、フィルタ装置21を通過する原燃料の流路を開閉する。バルブ23,24は、制御部6から開信号(例えば、ハイレベル信号)が入力されている間、流路を開放する。この場合、フィルタ装置21により不純物を除去された原燃料が、燃料ブロワ22および42に吸入される。一方、バルブ23,24は、制御部6から閉信号(例えば、ローレベル信号)が入力されている間、流路を閉鎖する。この場合、原燃料がフィルタ21を通過しない。通常、ブロワ22が動作状態の間、バルブ23,24は、全開状態に維持される。しかし、フィルタ装置21のフィルタエレメント21aを交換するときは、フィルタエレメントの交換口から原燃料が流出することを防ぐために、また、空気および不純物が吸入されることを防ぐために、バルブ23,24が全閉状態にされる。
【0086】
バルブ43はフィルタ装置41の下流側に設けられており、バルブ44はフィルタ装置41の上流側に設けられている。バルブ43,44は、フィルタ装置41を通過する原燃料の流路を開閉する。バルブ43,44は、制御部6から開信号(例えば、ハイレベル信号)が入力されている間、流路を開放する。この場合、フィルタ装置41により不純物を除去された原燃料が、燃料ブロワ22および42に吸入される。一方、バルブ43,44は、制御部6から閉信号(例えば、ローレベル信号)が入力されている間、流路を閉鎖する。この場合、原燃料がフィルタ41を通過しない。バルブ43,44は、通常、ブロワ42が動作状態の間、全開状態に維持され、ブロワ42が停止状態の間、全閉状態に維持される。しかし、ブロワ42が停止状態でも、フィルタ装置21および41を併用する場合、バルブ43,44は全開状態に維持される。しかし、フィルタ装置41のフィルタエレメント41aを交換するときは、フィルタエレメントの交換口から原燃料が流出することを防ぐために、また、空気および不純物が吸入されることを防ぐために、バルブ43,44が全閉状態にされる。
【0087】
バルブ23,24,43,44には、上記第1実施形態で説明したバルブ13,33(図1参照)と同様、全開状態および全閉状態を感知するためのリミットスイッチが設けられている。なお、各リミットスイッチは、図示されていない。上記第1実施形態と同様、各全開信号は、各バルブが全開状態のときハイレベル信号になり、全開状態以外のときローレベル信号になる。また、各全閉信号は、各バルブが全閉状態のときハイレベル信号になり、全閉状態以外のときローレベル信号になる。
【0088】
配管9は、フィルタ装置21,41を通過した原燃料を燃料ブロワ22および42に吸入させるための流路を構成するものである。本実施形態において、配管9は、フィルタ装置21の排出口と燃料ブロワ22の吸入口とを接続する配管9aと、フィルタ装置41の排出口と燃料ブロワ42の吸入口とを接続する配管9bと、配管9aと配管9bとを接続する配管9cとからなる。配管9aはバルブ23とブロワ22の間で配管9cと接続し、配管9bはバルブ43と燃料ブロワ42の間で配管9cと接続している。
【0089】
バルブ23,24が全閉状態の場合、フィルタ41により不純物を除去された原燃料が、配管9を流れて、燃料ブロワ22および42に吸入される。一方、バルブ43,44が全閉状態の場合、フィルタ21により不純物を除去された原燃料が、配管9を流れて、燃料ブロワ22および42に吸入される。なお、バルブ23,24および43,44が同時に全閉状態になると、原燃料が燃料ブロワ22および42に吸入されなくなり、燃料電池モジュールCに原燃料が供給されなくなる。したがって、制御部6は、バルブ23,24および43,44に同時に閉信号を出力することがないように設定されている。
【0090】
制御部6は、流体供給装置B4の制御を行うものである。制御部6は、第1実施形態で説明した制御部6(図1参照)と同様に、バルブ23,24,43,44に開閉信号を出力して、流路の開閉を行わせる。また、制御部6は、入力される信号に基づいて処理を行い、表示部8に表示を行わせる。また、制御部6は、ブロワ22,42の出力制御を行う。
【0091】
また、制御部6は、フィルタエレメント21a,41aを交換するためのフィルタ交換処理を行う。当該フィルタ交換処理は、第1実施形態で説明したものとほぼ同様である。フィルタ装置21,41には上流側にもそれぞれバルブ24,44が設けられているので、図2に示すフローチャートのステップS2,S4,S8,S10の開閉信号の出力処理に対応する処理として、それぞれバルブ23,24またはバルブ43,44に開閉信号を出力する処理が行われる。なお、第4実施形態では、バルブ23および24に同じ開閉信号を出力するようにしているが、それぞれ別に開閉信号を出力するようにしてもよい。バルブ43および44に出力する開閉信号も同様である。また、図2に示すフローチャートのステップS3,S5,S9,S11の全開信号または全閉信号がハイレベル信号であるか否かの判別処理に対応する処理として、それぞれ両バルブ(バルブ23および24、または、バルブ43および44)から入力される各信号がハイレベル信号であるか否かの判別処理が行われる。例えば、図2に示すフローチャートのステップS3に対応する処理としては、バルブ43および44から入力される各全開信号がハイレベル信号であるか否かが判別され、両方の全開信号がハイレベル信号である場合に次のステップS4に進むことになる。
【0092】
操作部7および表示部8は、第1実施形態で説明した操作部7および表示部8(図1参照)と同様のものである。操作部7には、フィルタ装置21のフィルタエレメント21aを交換するための「フィルタ2交換」ボタン、フィルタ装置41のフィルタエレメント41aを交換するための「フィルタ4交換指令」ボタンなどの操作ボタン(図示せず)が配置されている。
【0093】
流体供給装置B4は、燃料電池システムA(図8参照)が稼動状態のとき、燃料ブロワ22を動作させて、改質器C2に原燃料を供給する。このとき、制御部6がバルブ23,24を全開状態とすることにより、フィルタ装置21を通過して不純物が除去された原燃料が燃料ブロワ22で昇圧されて、改質器C2に供給される。また、流体供給装置B4は、燃料電池システムAの起動時などの昇温工程において、燃料ブロワ42を動作させて、バーナC3に原燃料を供給する。このとき、制御部6がバルブ43,44を全開状態とすることにより、フィルタ装置41を通過して不純物が除去された原燃料が燃料ブロワ42で昇圧されて、バーナC3に供給される。通常運転時は、バーナC3に原燃料を供給する必要がないので、燃料ブロワ42は停止される。このとき、通常は、バルブ43,44が全閉状態とされる。
【0094】
バルブ23,24が全開状態でありバルブ43,44が全閉状態であるときに、フィルタ装置21のフィルタエレメント21aを交換する場合、流体供給装置B4は、バルブ43,44を全開状態とした後に、バルブ23,24を全閉状態とする。作業者は、バルブ23,24の全閉状態を確認した上で交換作業を行う。交換作業が終了すると、流体供給装置B4は、バルブ23,24を全開状態とした後に、バルブ43,44を全閉状態として、元の状態に戻す。
【0095】
流体供給装置B4は、燃料電池システムAが稼動状態のとき、燃料ブロワ22を動作させて、改質器C2に原燃料を供給する。このとき、フィルタ装置21のフィルタエレメント21aを交換する場合、制御部6は、バルブ43,44を全開状態とした後に、バルブ23,24を全閉状態とする。このとき、フィルタ装置21の排出口と燃料ブロワ22の吸入口とを接続する配管9aと、フィルタ装置41の排出口と燃料ブロワ42の吸入口とを接続する配管9bとが、配管9cにより接続されているので、フィルタ装置41を通過した原燃料が配管9cを通って、燃料ブロワ22に吸入される。これにより、流体供給装置B4は、フィルタエレメント21a交換時にも改質器C2に原燃料を供給することができる。
【0096】
また、流体供給装置B4は、バーナC3に供給する原燃料から不純物を除去するために設けられているフィルタ装置41を、フィルタエレメント21a交換時に、改質器C2に供給する原燃料の不純物の除去に用いる。したがって、フィルタエレメント21aの交換のために、新たなフィルタ装置を別途設ける必要がない。また、新たなフィルタ装置を別途設ける場合と比べて、配管やバルブの数も抑制することができる。したがって、フィルタエレメント21aの交換のために新たなフィルタ装置を別途設ける場合と比較して、流体供給装置B4およびこれを用いた燃料電池システムAを小型化することができ、また、装置の製造コストを抑制することができる。
【0097】
なお、第4実施形態においても、上記第1実施形態と同様に、制御部6が、開閉信号を出力してから所定の時間が経過したことをもって、全開状態または全閉状態になったと判断するようにしてもよい。また、バルブ23,24,43,44を電動弁ではなく、電磁弁や電動比例制御弁にしてもよいし、手動弁にしてもよい。また、制御部6が、フィルタエレメント21a,41aの前回の交換日を記録しておき、所定の期間が経過したときに、表示部8に交換を促す表示をさせるようにしてもよい。また、上記第2実施形態のように、差圧検出器でフィルタ装置21,41の差圧を検出し、制御部6がフィルタエレメント21a,41aを交換すべきことを判断して、表示部8に交換を促す表示をさせたり、音声による報知をさせたりするようにしてもよいし、制御部6がフィルタ交換処理を開始するようにしてもよい。
【0098】
なお、付臭剤として硫黄分が添加されている都市ガスなどが原燃料の場合、フィルタ装置21および41は、脱硫機能を有するフィルタ装置(脱硫装置)にしてもよい。この場合、燃料バーナ42が停止しているときはできるだけバルブ43,44を全閉状態にすることにより、脱硫装置41の寿命を延ばすことができる。
【0099】
図7は、本発明に係る流体供給装置の第5実施形態を説明するためのブロック図である。同図に示す流体供給装置B5は、第1実施形態に示す流体供給装置B1(図1参照)の空気を供給する流路と、第4実施形態に示す流体供給装置B4(図6参照)の原燃料を供給する流路とを、組み合わせて表したものである。流体供給装置B5の各要素は、流体供給装置B1および流体供給装置B4の各要素と同様なので、説明を省略する。
【0100】
なお、上記第1ないし第5実施形態においては、燃料電池C1が固体酸化物型燃料電池の場合について説明したが、これに限られない。本発明は、溶融炭酸塩形燃料電池、固体高分子形燃料電池、りん酸形燃料電池などの他の種類の燃料電池を用いる燃料電池モジュールに空気または原燃料を供給する場合にも適用することができる。特に、運転温度が高く設定されている燃料電池の場合、空気または原燃料の供給を中断するために、燃料電池システムを停止しなければならず、再度運転温度まで昇温するのに時間がかかるので、本発明が有効になる。
【0101】
なお、上記第1ないし第5実施形態においては、流体の供給量をそれぞれ制御するために、各ブロワ12,22,32,42が配管5c,9cより下流側に配置されているが、これに限られない。例えば、原燃料を高圧ボンベから供給する場合など、さらに昇圧する必要が無い場合には、ブロワを設けなくてもよい。
【0102】
なお、上記第1ないし第5実施形態においては、燃料電池C1に空気を供給する流路(フィルタ装置11、バルブ13、ブロワ12、および配管5aよりなる流路)、バーナC3に空気を供給する流路(フィルタ装置31、バルブ33、ブロワ32、および配管5bよりなる流路)、改質器C2に原燃料を供給する流路(フィルタ装置21、バルブ23,24、ブロワ22、および配管9aよりなる流路)、バーナC3に原燃料を供給する流路(フィルタ装置41、バルブ43,44、ブロワ42、および配管9bよりなる流路)がそれぞれ1つずつの場合について説明したが、これに限られない。いずれかが複数ある構成であっても構わない。
【0103】
なお、上記第1ないし第5実施形態においては、本発明に係る流体供給装置を燃料電池システムに用いた場合について説明したが、これに限られない。本発明は、他のシステムに流体を供給する流体供給装置にも適用することができる。特に、運転を中断することができないシステムや、運転の中断により効率が低下するシステムにおいて、本発明が有効になる。例えば、連続的に燃料を供給する必要がある発電システムや、連続的に化学反応を起こさせる必要がある化学プラントなどにおいて、本発明に係る流体供給装置を用いることができる。なお、供給される流体は、これらの気体に限定されず、他の気体または液体であってもよい。例えば、冷却水を連続的に供給する必要があるシステムなどにも、本発明に係る流体供給装置を用いることができる。
【0104】
本発明に係る流体供給装置は、上述した実施形態に限定されるものではない。本発明に係る流体供給装置の各部の具体的な構成は、種々に設計変更自在である。
【符号の説明】
【0105】
A 燃料電池システム
B,B1,B2,B3,B4,B5 流体供給装置
11,21,31,41 フィルタ装置
12,32 空気ブロワ
22,42 燃料ブロワ
13,23,24,33,43,44 バルブ
14,34 差圧検出器
5,9 配管
6 制御部
7 操作部
8 表示部
C 燃料電池モジュール
C1 燃料電池
C2 改質器
C3 バーナ
D インバータ装置
E 排熱回収装置

【特許請求の範囲】
【請求項1】
複数の供給先にそれぞれ同一の流体を供給する複数の配管と、
前記各配管にそれぞれ設けられ、前記流体から不純物を除去するフィルタ装置と、
前記各フィルタ装置より下流側で、前記各配管にそれぞれ設けられ、前記各フィルタ装置を通過した前記流体の流路を開閉するバルブと、
を備え、
前記各配管が前記バルブより下流側で接続されていることを特徴とする流体供給装置。
【請求項2】
前記複数のフィルタ装置のうちの一のフィルタ装置の下流側に設けられているバルブを閉じる前に、他のいずれかのフィルタ装置の下流側に設けられているバルブを開く制御を行う制御手段を更に備えている、請求項1に記載の流体供給装置。
【請求項3】
前記各フィルタ装置は、その内部に装着されたフィルタエレメントに前記流体を通過させることにより、当該流体から不純物を除去するものであり、
前記各フィルタ装置の上流側と下流側との差圧をそれぞれ検出する差圧検出手段と、
前記差圧検出手段によって検出される差圧が所定の閾値以上となった場合に、当該差圧が検出されたフィルタ装置のフィルタエレメントを交換すべき旨を報知する交換報知手段と、
を更に備えている、請求項1または2に記載の流体供給装置。
【請求項4】
前記各フィルタ装置は、その内部に装着されたフィルタエレメントに前記流体を通過させることにより、当該流体から不純物を除去するものであり、
前記各フィルタ装置の上流側と下流側との差圧をそれぞれ検出する差圧検出手段を更に備え、
前記制御手段は、前記差圧検出手段によって検出される差圧が所定の閾値以上となった場合に、当該差圧が検出されたフィルタ装置の下流側に設けられているバルブを閉じる、
請求項2に記載の流体供給装置。
【請求項5】
前記各フィルタ装置の上流側にも、前記流体の流路を開閉するバルブがそれぞれ設けられている、
請求項1ないし4のいずれかに記載の流体供給装置。
【請求項6】
前記各配管の他の配管と接続されている部分より下流側にそれぞれ設けられ、前記流体としての空気を昇圧して送出するブロワを更に備え、
前記複数の配管のいずれかは、燃料電池に空気を供給し、
前記複数の配管の別のいずれかは、前記燃料電池または前記燃料電池に供給する水素を生成する改質器を加熱するバーナに空気を供給する、
請求項1ないし5のいずれかに記載の流体供給装置。
【請求項7】
前記各配管の他の配管と接続されている部分より下流側にそれぞれ設けられ、前記流体としての気体燃料を昇圧して送出するブロワを更に備え、
前記複数の配管のいずれかは、燃料電池に供給する水素を生成する改質器に前記気体燃料を供給し、
前記複数の配管の別のいずれかは、前記燃料電池または前記改質器を加熱するバーナに前記気体燃料を供給する、
請求項1ないし5のいずれかに記載の流体供給装置。
【請求項8】
請求項6または7に記載の流体供給装置と、
前記燃料電池と、前記改質器と、前記バーナと、
を備えている燃料電池システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−152514(P2011−152514A)
【公開日】平成23年8月11日(2011.8.11)
【国際特許分類】
【出願番号】特願2010−15838(P2010−15838)
【出願日】平成22年1月27日(2010.1.27)
【出願人】(000000262)株式会社ダイヘン (990)
【出願人】(000156938)関西電力株式会社 (1,442)
【Fターム(参考)】