説明

滅菌処理方法及び滅菌装置

【課題】滅菌処理後の残存滅菌剤の無害化を確実に行うことが出来る方法及び装置を提供する。
【解決手段】プラズマノズル31で空気をプラズマ化して滅菌ガスを作成し、これをサブチャンバ12内に貯留する。次いで、被処理物が収容され、減圧されたメインチャンバ11内に滅菌ガスを導入し、被処理物に滅菌剤を反応させて該被処理物の滅菌を行う。その後、メインチャンバ11内に残存した滅菌ガスを、浄化用フィルタ52を有する排気系統50、サブチャンバ12及び循環系統40からなる密閉空間で循環させ、無害化処理を行う。この無害化処理の後に、第4ポンプP4を駆動させて、メインチャンバ11及びサブチャンバ12の排気を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、滅菌剤を用いて被処理物を滅菌する方法及び装置に関する。
【背景技術】
【0002】
医療用器具や食品包装材などの被処理物を高度に滅菌する方法として、被処理物が配置された密閉空間に酸化エチレンガスや窒素酸化物ガスのような滅菌剤を導入し、被処理物に滅菌剤を反応させる方法が知られている。特許文献1には、プラズマ発生器を用いて生成した滅菌剤を第1のチャンバに貯留し、該滅菌剤を被処理物が配置された第2のチャンバに導入する滅菌装置が開示されている。
【0003】
密閉空間から滅菌後の被処理物を取り出す前に、滅菌処理後に残存した滅菌剤、並びに滅菌反応により生成されたオゾン等の物質に対して、無害化処理を施す必要がある。特許文献1の装置では、第2のチャンバの排気系統に排気ガス分解装置を設け、有害物質を分解した後に外部に排気している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第3706695公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
残存滅菌剤や滅菌反応生成物の無害化処理は、高度の確実性が求められる。しかし、特許文献1の装置のように、チャンバから外部への排気系統に排気ガス分解装置を単に配置するだけでは、確実な無害化処理が担保できない場合も想定される。
【0006】
本発明は、上記の点に鑑み、残存滅菌剤の無害化を確実に行うことが出来る滅菌処理方法及び装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成する本発明の一の局面に係る滅菌処理方法は、密閉空間に滅菌剤を導入し、前記密閉空間において被処理物に滅菌剤を反応させて該被処理物の滅菌を行い、前記滅菌の後に前記密閉空間に残存した滅菌剤を、前記密閉空間に滞留させたまま無害化処理を行い、前記無害化処理の後に、前記密閉空間内の気体を排気することを特徴とする(請求項1)。
【0008】
この方法によれば、被処理物の滅菌に用いられる密閉空間を利用して、残存滅菌剤の無害化処理が実行される。つまり、残存滅菌剤が密閉空間の内部で無害化された後に、この密閉空間の排気が行われる。従って、無害化処理の確実性を確保することができる。
【0009】
上記の方法において、前記無害化処理の際に前記密閉空間の滅菌剤濃度を測定し、前記滅菌剤濃度が所定値以下となった後に、前記密閉空間内の気体を排気することが望ましい(請求項2)。この方法によれば、滅菌剤濃度の測定結果に基づき、無害化処理が完了したことを確認した後に、密閉空間の排気を行わせることができる。
【0010】
上記の方法において、前記密閉空間に滅菌剤を導入する前に、前記密閉空間を乾燥させることが望ましい(請求項3)。この方法によれば、滅菌環境が乾燥されるので、滅菌剤による被処理物の滅菌を効率的に行わせることができる。
【0011】
この場合、前記密閉空間の乾燥は、該密閉空間を減圧状態にして行われることが望ましい(請求項4)。この方法によれば、次段の滅菌剤導入工程で、圧力差を利用して急激に前記密閉空間へ滅菌剤を導入し、被処理物の細部まで良好に滅菌剤に曝すことができる。
【0012】
上記の方法において、前記密閉空間の排気に伴い該密閉空間を減圧させることで、前記密閉空間を乾燥させることが望ましい(請求項5)。この方法によれば、排気と同時に前記密閉空間内の被処理物、及び滅菌反応により生成した物質等を乾燥させることができ、被処理物及び密閉空間内の清浄化を図ることができる。
【0013】
上記の方法において、前記密閉空間は、第1密閉空間と、前記第1密閉空間から独立した第2密閉空間と、前記第1密閉空間と前記第2密閉空間とを連通させる連通路とを含み、前記連通路を遮断した状態で、前記第1密閉空間に前記被処理物を収納して該第1密閉空間を減圧する一方で、前記第2密閉空間で前記滅菌剤を生成し、前記被処理物の滅菌は、前記連通路を開放して、前記第2密閉空間で生成された前記滅菌剤を前記第1密閉空間に導入することで行い、前記無害化処理は、前記連通路を通して前記第1密閉空間と前記第2密閉空間との間で残存滅菌剤を含む気体を循環させつつ、前記連通路において残存滅菌剤の除去処理を施すことで行うことが望ましい(請求項6)。
【0014】
この方法によれば、まず前記第2密閉空間で生成される前記滅菌剤を、圧力差を利用して一気に前記第1密閉空間に導入し、被処理物を短時間で急激に滅菌剤に曝すことができる。従って、良好な滅菌処理を行うことができる。その上、滅菌処理後に、残存滅菌剤を含む気体を、前記連通路を介して連通された前記第1密閉空間と前記第2密閉空間とからなる密閉空間の間で循環させながら、該気体の無害化を図ることができる。
【0015】
上記の方法において、前記第2密閉空間での滅菌剤の生成は、前記第2密閉空間に滅菌原料物質を導入し、該滅菌原料物質を前記第2密閉空間内で滅菌剤に変換することで行うことができる(請求項7)。この方法によれば、第2密閉空間を利用して滅菌剤を生成することができる。
【0016】
この場合、前記滅菌原料物質が空気であり、前記滅菌剤への変換が前記空気を電離させることで行われることが望ましい(請求項8)。この方法によれば、空気を原料として安価に滅菌剤を生成することができる。
【0017】
本発明の他の局面に係る滅菌装置は、被処理物が収容される第1チャンバと、滅菌剤が生成される第2チャンバと、前記第2チャンバから前記第1チャンバへ向かう連通路を形成する第1配管と、前記第1チャンバから前記第2チャンバへ向かう連通路を形成する第2配管と、前記第1チャンバから外部へ向かう連通路を形成する第3配管と、前記第1配管、第2配管及び第3配管にそれぞれ配置される第1弁、第2弁及び第3弁と、前記第2配管に配置される前記滅菌剤の浄化手段と、前記第1配管及び第2配管と、前記第1チャンバと、前記第2チャンバとで形成される密閉された空間内で気体を循環させる循環手段と、前記第3配管を通して前記第1チャンバを減圧する減圧手段と、前記第1弁、第2弁、第3弁、循環手段及び減圧手段の動作を制御する制御手段と、を備え、前記制御手段は、前記第1弁及び第2弁を閉とする一方で前記第3弁を開とし、前記減圧手段を動作させて被処理物が収容されている第1チャンバを減圧させる第1制御と、前記第2弁及び第3弁を閉とする一方で前記第1弁を開とし、前記第1配管を通して前記第2チャンバで生成された滅菌剤を前記第1チャンバへ導入させる第2制御と、前記第3弁を閉とする一方で前記第1弁及び第2弁を開とし、前記循環手段を駆動させて、前記密閉された空間内で前記滅菌剤を含む気体を循環させて前記浄化手段を通過させる第3制御と、少なくとも前記第1弁及び第3弁を開とし、前記第1チャンバ及び前記第2チャンバ内の気体を排気させる第4制御と、を含む制御を実行することを特徴とする(請求項9)。
【0018】
この装置によれば、被処理物の滅菌後に、前記第1配管及び第2配管と、前記第1チャンバと、前記第2チャンバとで形成される密閉された空間内で前記滅菌剤を含む気体を循環させ、前記浄化手段を通過させることで残存滅菌剤を無害化させることができる。つまり、残存滅菌剤が密閉空間の内部で無害化された後に、この第1チャンバ及び第2チャンバの排気が行われる。従って、無害化処理の確実性を確保することができる。
【発明の効果】
【0019】
本発明によれば、無害化処理の確実性を確保することができるので、滅菌処理により生じることがある有害物の外部への放出を確実に防止することができる。
【図面の簡単な説明】
【0020】
【図1】本発明の滅菌処理方法を実施するための滅菌装置の一例を示すブロック図である。
【図2】マイクロ波供給装置の構成を概略的に示すブロック図である。
【図3】導波管に取り付けられた状態のプラズマノズルを示す断面図である。
【図4】NO変換部の詳細構成を示すブロック図である。
【図5】滅菌装置の電気的な制御系を示すブロック図である。
【図6】滅菌装置の動作を示すタイミングチャートである。
【図7】ポンプの制御状態を示す表形式の図である。
【図8】電磁弁の制御状態を示す表形式の図である。
【発明を実施するための形態】
【0021】
以下、図面に基づいて、本発明の実施形態を詳細に説明する。図1は、本発明の滅菌処理方法を実施するための滅菌装置1の一例を示すブロック図である。この滅菌装置1は、例えばメス、鉗子、カテーテルなどの医療用器具や、包装シート、トレイ、ボトルなどの食品包装材を被処理物とし、これらに滅菌剤を作用させて滅菌処理を施すための装置である。本実施形態では、滅菌剤として二酸化窒素(NO)を用いる例を示す。
【0022】
滅菌装置1は、メインチャンバ11、サブチャンバ12、吸気系統20、循環系統30、連係系統40及び排気系統50を含む。これら系統20〜50の適所には、第1〜第8電磁弁V1〜V8と、第1ポンプP1〜第4ポンプP4とが配置されている。
【0023】
メインチャンバ11は、被処理物が収容される密閉空間を提供するチャンバであり、例えばステンレス鋼などで構成され、高度の真空引きに対応できる耐圧構造を備えた大容量のチャンバである。図示は省略しているが、メインチャンバ11には被処理物を搬入出するためのドアが備えられ、その内部には、被処理物を積載するための処理トレイが備えられている。
【0024】
メインチャンバ11には、滅菌剤の濃度を計測する第1濃度センサ111と、チャンバ内の圧力を検出する第1圧力センサ112とが備えられている。第1濃度センサ111は、滅菌剤としてのNOの濃度を計測するもので、滅菌処理後にメインチャンバ11内を排気するに当たり、この第1濃度センサ111の計測値が参照される。第1圧力センサ112は、メインチャンバ11内の減圧状態を計測するセンサである。この他、温度センサ、湿度センサ、或いはオゾンセンサ等の各種物理量センサが備えられていても良い。
【0025】
サブチャンバ12は、滅菌剤を生成するためのチャンバであり、例えばステンレス鋼などで構成され、メインチャンバ11と同様に、高度の真空引きに対応できる耐圧構造を備えた比較的小容量のチャンバである。後記で詳述するが、サブチャンバ12内において常圧下で所定濃度のNOガスが生成され、減圧下にあるメインチャンバ11内に該NOガスが導入される。
【0026】
サブチャンバ12内にも、NOの濃度を計測する第2濃度センサ121と、チャンバ内の圧力を検出する第2圧力センサ122とが備えられている。第2濃度センサ121の計測値は、例えばNOガスをメインチャンバ11へ導入する前に、サブチャンバ12内で所定濃度のNOガスが生成されているか否かを確認するために参照される。
【0027】
吸気系統20は、サブチャンバ12、若しくはサブチャンバ12及びメインチャンバ11の双方に乾燥した外気(空気)を導入させるための配管系統である。吸気系統20は、第1ポンプP1、エアドライヤ21、湿度センサ22、第1電磁弁V1、第1常圧配管201及び第1真空配管202を含む。第1常圧配管201は、第1ポンプP1と第1電磁弁V1との間を接続する配管であり、その経路中にエアドライヤ21及び湿度センサ22が配置されている。第1真空配管202は、第1電磁弁V1とサブチャンバ12との間を接続している。
【0028】
第1ポンプP1は、減圧状態にあるサブチャンバ12、若しくはサブチャンバ12及びメインチャンバ11の双方を常圧に戻すときに動作されるポンプである。第1ポンプP1は、外気を吸入し、第1常圧配管201及び第1真空配管202を介してサブチャンバ12内に外気を送り込む。エアドライヤ21は、外気に含まれる水分を除去するもので、例えば電熱ヒータを備えた乾燥装置が適用される。このエアドライヤ21を通過した空気は、ほぼ湿度がゼロとなる。湿度センサ22は、第1常圧配管201内を流通する空気の湿度を検出する。この湿度センサ22は、専らエアドライヤ21の故障検知のために用いられる。
【0029】
第1電磁弁V1は、第1ポンプP1の稼働時に連動して「開」とされるバルブである。すなわち、第1電磁弁V1は、メインチャンバ11及びサブチャンバ12を含む系統を、外気圧と遮断する必要があるときに「閉」とされ、これを常圧に復帰させるときに「開」とされる。このため、第1電磁弁V1よりも吸気方向下流側は、真空引きに耐性を有する第1真空配管202が用いられている。
【0030】
循環系統30は、主に吸気系統20によりサブチャンバ12に導入された乾燥空気をプラズマで電離して、滅菌剤としてのNOガスを生成する際に稼働される系統である。循環系統30は、第2電磁弁V2、第3電磁弁V3、プラズマノズル31、ガス流量計32、第2ポンプP2、NO変換部33、第2真空配管301、第3真空配管302、及び第2常圧配管303を含む。
【0031】
第2真空配管301の一端側はサブチャンバ12内に連通し、他端側は第2電磁弁V2を介して第2常圧配管303の一端側に接続されている。第3真空配管302の一端側はサブチャンバ12内に連通し、他端側は第3電磁弁V3を介して第2常圧配管303の他端側に接続されている。これにより、サブチャンバ12と連通する、第2真空配管301の一端側を起点として第3真空配管302の一端側に戻るループ管路が形成されている。本実施形態では、第2真空配管301側が、当該ループ管路内を流れる空気流の上流側となる。第2常圧配管303に対して、上流側から順にプラズマノズル31、ガス流量計32、第2ポンプP2及びNO変換部33が配置されている。
【0032】
第2電磁弁V2及び第3電磁弁V3は、サブチャンバ12が減圧状態にあるときに「閉」とされ、後述する常圧状態でのNOガス生成時及び無害化処理時に「開」とされる弁である。このため、第2電磁弁V2及び第3電磁弁V3とサブチャンバ12とを接続する配管として、第2真空配管301及び第3真空配管302が適用されている。
【0033】
プラズマノズル31は、プラズマ(電離気体)を発生させるための電界集中部を提供する。第2常圧配管303を流通する空気(窒素及び酸素を含むガス)は、プラズマノズル31の前記電界集中部を通過することで電離され、NOガスやNOガスを含む窒素酸化物(NO)ガスに変換される。このようなプラズマを発生させるために、本実施形態ではマイクロ波エネルギーが用いられている。当該マイクロ波エネルギーは、マイクロ波供給装置60からプラズマノズル31に与えられる。
【0034】
図2は、マイクロ波供給装置60の構成を概略的に示すブロック図である。マイクロ波供給装置60は、マイクロ波エネルギーを発生すると共に、これをプラズマノズル31に供給するための装置であって、マイクロ波を発生するマイクロ波発生装置61と、前記マイクロ波を伝搬させる導波管62とを含む。この導波管62に、プラズマノズル31が取り付けられている。また、マイクロ波発生装置61と導波管62との間には、アイソレータ63、カプラ64及びチューナ65が備えられている。
【0035】
マイクロ波発生装置61は、例えば2.45GHzのマイクロ波を発生するマグネトロン等のマイクロ波発生源と、このマイクロ波発生源にて発生されたマイクロ波の強度を所定の出力強度に調整するアンプとを含む。本実施形態では、例えば1W〜3kWのマイクロ波エネルギーを出力できる連続可変型のマイクロ波発生装置61が好適に用いられる。
【0036】
導波管62は、アルミニウム等の非磁性金属からなり、断面矩形の長尺管状を呈し、マイクロ波発生装置61により発生されたマイクロ波を、その長手方向に伝搬させる。導波管62の遠端側には、スライディングショート621がフランジ部622を介して取り付けられている。スライディングショート621は、マイクロ波の反射位置を変化させて定在波パターンを調整するための部材である。
【0037】
アイソレータ63は、導波管62からの反射マイクロ波のマイクロ波発生装置61への入射を抑止する機器であり、サーキュレータ631とダミーロード632とを含む。サーキュレータ631は、マイクロ波発生装置61で発生されたマイクロ波を導波管62に向かわせる一方で、反射マイクロ波をダミーロード632に向かわせる。ダミーロード632は、反射マイクロ波を吸収して熱に変換する。カプラ64は、マイクロ波エネルギーの強度を計測する。チューナ65は、導波管62に突出可能なスタブを含み、反射マイクロ波が最小となるような調整、つまりプラズマノズル31でのマイクロ波エネルギーの消費が最大となる調整を行うための機器である。カプラ64は、この調整の際に利用される。
【0038】
図3は、導波管62に取り付けられた状態のプラズマノズル31を示す断面図である。プラズマノズル31は、中心導体311、外部導体312、スペーサ313及び保護管314を備えている。
【0039】
中心導体311は、良導電性の金属から構成された棒状部材からなり、その上端部311Bの側が導波管62の内部に所定長さだけ突出している。この突出した上端部311Bは、導波管62内を伝搬するマイクロ波を受信するアンテナ部として機能する。
【0040】
外部導体312は、良導電性の金属から構成され、中心導体311を収納する筒状空間312Hを有する筒状体である。中心導体311は、この筒状空間312Hの中心軸上に配置されている。外部導体312は、導波管62の下面板に一体的に取り付けられた円筒型の金属フランジ板623に嵌め込まれ、ネジ624で締め付けられることにより、導波管62に固定されている。導波管62がアース電位とされる結果、外部導体312もアース電位とされる。
【0041】
また、外部導体312は、その外周壁から筒状空間312Hに貫通するガス供給孔312Nを有する。このガス供給孔312Nには、第2常圧配管303の上流側が接続される。他方、筒状空間312Hの下端部には、絶縁性の配管315が接続されている。なお、この配管315は、第2常圧配管303の一部を構成する。これにより、第2常圧配管303内を流通する気体は、筒状空間312H内を経由することになる。
【0042】
スペーサ313は、中心導体311を保持すると共に、導波管62内の空間と筒状空間312Hとの間をシールする。スペーサ313は、例えばポリテトラフルオロエチレン等の耐熱性樹脂材料やセラミック等からなる絶縁性部材を用いることができる。外部導体312の筒状空間312Hの上端部分には段差部が設けられ、該段差部でスペーサ313が支持されている。スペーサ313で保持された中心導体311は、外部導体312とは絶縁された状態となる。保護管314は、所定長さの石英ガラスパイプ等からなり、外部導体312の下端縁312Tにおける異常放電(アーキング)を防止するために、筒状空間312Hの下端部分に嵌め込まれている。
【0043】
上記のように構成されたプラズマノズル31によれば、中心導体311が導波管62を伝搬するマイクロ波を受信すると、アース電位の外部導体312との間に電位差が生じる。特に、中心導体311の下端部311Tと外部導体312の下端縁312Tとの近傍に電界集中部が形成されるようになる。かかる状態で、ガス供給孔312Nから酸素分子と窒素分子とを含むガス(空気)が筒状空間312Hへ供給されると、ガスが励起されて中心導体311の下端部311T付近においてプラズマ(電離気体)が発生する。該プラズマは、NOとフリーラジカルを含んでいる。また、このプラズマは、電子温度が数万度であるものの、ガス温度は外界温度に近い反応性プラズマ(中性分子が示すガス温度に比較して、電子が示す電子温度が極めて高い状態のプラズマ)であって、常圧下で発生するプラズマである。
【0044】
図1に戻って、ガス流量計32は、第2常圧配管303内を流通する気体の流量を計測する。第2ポンプP2は、NOガス生成時に、サブチャンバ12と循環系統30のループ管路とで構成される一つの空間内において、ガスを循環させるためのポンプである。プラズマノズル31が動作している状態で第2ポンプP2が稼働されると、プラズマを発生させる筒状空間312Hを繰り返しガスが通過し、徐々にNOの濃度が上昇してゆくことになる。第2ポンプP2は、NO等に耐性を持つ耐薬品性のポンプが用いられる。
【0045】
NO変換部33は、プラズマノズル31を通過し、様々な物質を含んだ状態のガスから、NOを抽出する機能を有する。図4は、NO変換部33の詳細構成を示すブロック図である。NO変換部33は、プラズマノズル31から送り出されるガス中からHNOを吸着するフィルタ331と、フィルタ331を通過したガス中のNOをNOに変換する第1変換部332と、続いてそのNOをNOに変換する第2変換部333とを備えている。
【0046】
プラズマノズル31において空気が電離されると、NO、Oが生成される。これらは次式に反応により段階的に酸化され、最終的にはエアドライヤ21で除去しきれずに僅かに残存する水分との反応により一部が硝酸(HNO)に転換する。
【0047】
NO+O→NO+O
2NO+O→N+O
+HO→2HNO
フィルタ331は、上記の反応で生成されるHNOを吸着する。このフィルタ331としては、例えばセラミック製のハニカム構造を備えた基材に、硝酸吸着性のコーティング層を施したフィルタを用いることができる。硝酸吸着性のコーティング層としては、例えばゼオライト、アルミナ、シリカゲル等の珪素吸着剤を用いることができる。
【0048】
第1変換部332は、フィルタ331を通過したガスに含まれる、NO以外のNOをNOに変換する。第1変換部332としては、例えばセラミック製のハニカム構造を備えた基材に、白金やパラジウム等を含有するコーティング層が形成された触媒と、該触媒の温度を調整するヒータとを備えた触媒装置を用いることができる。
【0049】
第2変換部333は、第1変換部332を通過したガス中に含まれるNOをNOに変換する。第2変換部333としては、同様に、セラミック製のハニカム構造を備えた基材に、白金やパラジウム等を含有するコーティング層が形成された触媒と、該触媒の温度(第1変換部332の触媒とは異なる温度)を調整するヒータとを備えた触媒装置を用いることができる。
【0050】
次に、連係系統40は、メインチャンバ11とサブチャンバ12との間を連通させるための系統である。連係系統40は、第4電磁弁V4、第5電磁弁V5、第3ポンプP3、第4真空配管401及び第5真空配管402を含む。
【0051】
第4真空配管401の一端(上流端)はサブチャンバ12に接続され、他端(下流端)はメインチャンバ11に接続されている。この第4真空配管401の上流側に第3ポンプP3が配置され、下流側に第4電磁弁V4が配置されている。第3ポンプP3は、耐薬品性のポンプであって、サブチャンバ12を真空引きする際、サブチャンバ12からNOガスをメインチャンバ11に導入(循環)して滅菌処理を行う際、及びメインチャンバ11内を排気して無害化処理する際に動作する。第4電磁弁V4は、この第3ポンプP3が動作する際に「開」とされる弁である。
【0052】
第5真空配管402の一端側(上流端)はメインチャンバ11に接続され、他端側(下流端)はサブチャンバ12に接続されている。第5真空配管402の中間部には、後述する第7真空配管502の下流端が合流している。第5電磁弁V5は、第7真空配管502の合流部よりも上流位置において、第5真空配管402に取り付けられている。この第5電磁弁V5は、滅菌処理を行う際、メインチャンバ11及びサブチャンバ12を常圧に復帰させる際に「開」とされる弁である。
【0053】
排気系統50は、滅菌処理に用いたNOガスを密閉空間内で無害化すると共に、無害化処理後のガスを外部に排気するための系統である。排気系統50は、HNO変換部51、フィルタ52、第6電磁弁V6、第7電磁弁V7、第8電磁弁V8、第4ポンプP4、第6真空配管501、第7真空配管502、第4常圧配管503及び第5常圧配管504を含む。
【0054】
第6真空配管501の一端側(上流端)はメインチャンバ11に接続され、他端側(下流端)は第6電磁弁V6を介して第4常圧配管503の一端側(上流端)に接続されている。第4常圧配管503の他端側(下流端)は、第4ポンプP4を通して外部と連通している。この第4常圧配管503には、上流側から順に、HNO変換部51、フィルタ52及び第8電磁弁V8が取り付けられている。第5常圧配管504の一端側(上流端)は、フィルタ52と第8電磁弁V8との間において第4常圧配管503に接続され、他端側(下流端)は第7電磁弁V7を介して第7真空配管502の一端側(上流端)に接続されている。第7真空配管502の他端側(下流端)は、第5真空配管402の中間部に接続されている。上記の第4常圧配管503及び第7真空配管502が備えられている結果、第1電磁弁V1及び第8電磁弁V8が「閉」とされれば、メインチャンバ11、排気系統50、連係系統40及びサブチャンバ12を、一つの密閉された空間とすることが可能となる。
【0055】
第6電磁弁V6は、メインチャンバ11及びサブチャンバ12の減圧時、無害化処理時及びその後の排気時に「開」とされる弁である。第7電磁弁V7は、無害化処理時にのみ「開」とされる弁である。第8電磁弁V8は、メインチャンバ11及びサブチャンバ12の減圧時と、無害化処理後の排気時とに「開」とされる弁である。第4ポンプP4は、メインチャンバ11及びサブチャンバ12を真空引きする際に駆動される真空ポンプである。
【0056】
HNO変換部51は、滅菌処理後のガスに含まれるNOをHNOに変換する。この変換を行うために、HNO変換部51には、オゾン(O)を発生するオゾン発生器と、水(HO)を供給するための水分導入器とを備えている。HNO変換部51を通過するNOガスにO及びHOが加えられることで、前記ガスはHNOを含むガスに化学的に変換される。また、滅菌処理時において被処理物にNOを反応させることにより生成されるオゾン等の物質も、ここでHNOに変換される。
【0057】
フィルタ52は、ガス中のHNOを吸着するフィルタである。このフィルタ52としては、循環系統30のフィルタ331(図4)と同じフィルタを用いることができ、例えばセラミック製のハニカム構造を備えた基材に、硝酸吸着性のコーティング層を施したフィルタを用いることができる。
【0058】
続いて、滅菌装置1の電気的な制御構成を図5に基づいて説明する。図1では図示を省略しているが、滅菌装置1は、当該滅菌装置1の動作を電気的に制御するための制御装置70を備えている。制御装置70は、情報処理等を行うCPU(中央演算処理装置)を備え、滅菌装置1の動作制御を行うべくプログラミングされたソフトウェアが実行されることで、図5に示す機能部を具備するように動作する。制御装置70は、機能的に、全体制御部71、ポンプ制御部72、電磁弁制御部73、プラズマ制御部74、ロック制御部75及びドライヤ制御部76を備えている。
【0059】
全体制御部71は、滅菌装置1の全体的な動作モードを管理し、各個別の制御部72〜76に対して動作モードの変更及び維持を通知する制御信号を与える。第1及び第2濃度センサ111、121が計測するメインチャンバ11及びサブチャンバ12内のNOの濃度データ、第1及び第2圧力センサ112、122が計測するメインチャンバ11及びサブチャンバ12内の圧力データは、全体制御部71に入力される。全体制御部71は、これら濃度データ及び圧力データ、図略のタイマー装置から与えられるタイムデータ等に基づいて、滅菌装置1の動作モードを管理する。
【0060】
ポンプ制御部72は、第1〜第4ポンプP1〜P4に対して、個別に動作モードに応じて、ポンプ動作の実行及びその停止を制御する制御信号を与える。電磁弁制御部73は、第1〜第8電磁弁V1〜V8に対して、個別に動作モードに応じて、弁を「開」又は「閉」とする制御信号を与える。
【0061】
プラズマ制御部74は、マイクロ波供給装置60に、その起動又は停止を制御する制御信号を与える。すなわちプラズマ制御部74は、プラズマノズル31においてプラズマを発生させる期間を制御する。
【0062】
ロック制御部75は、チャンバロック装置13の動作を制御する。チャンバロック装置13は、メインチャンバ11が備える被処理物の搬入出用の開閉ドアをインターロックする装置である(図1では図示省略)。メインチャンバ11の前記ドアは、被処理物に対する一連の滅菌処理工程中は、安全確保のためチャンバロック装置13でロックされる。
【0063】
ドライヤ制御部76は、エアドライヤ21のON−OFF動作を制御する。湿度センサ22が計測する湿度データは、ドライヤ制御部76に出力される。ドライヤ制御部76は、前記湿度データが、エアドライヤ21が動作障害を起こしていることを示す異常値であるとき、異常信号を全体制御部71に出力し、ユーザにその異常を報知させる。
【0064】
図6は、制御装置70により制御される滅菌装置1の動作を示すタイミングチャートである。また、図7は、第1〜第4ポンプP1〜P4の制御状態を示す表形式の図、図8は、第1〜第8電磁弁V1〜V8の制御状態を示す表形式の図である。図7において○印はポンプが動作し、×印はポンプが停止している状態をそれぞれ示し、図8において○印は電磁弁が「開」とされ、×印は「閉」とされている状態をそれぞれ表している。なお、図6の横欄の一つの「工程の内容」欄と、図7及び図8の最左縦欄の「工程」欄とがリンクしている。
【0065】
時刻T1は、ユーザにより滅菌装置1のスタートボタンが押下され、一連の滅菌処理工程が開始される時刻である。滅菌処理工程は、図6に示されているように、被処理物を乾燥させる第1乾燥工程、滅菌材としてのNOガスを生成する滅菌準備工程、被処理物をNOガスと接触させて被処理物を滅菌する滅菌工程、滅菌処理後に残留したNOガスを浄化する排ガス無害化工程、及び被処理物を再度乾燥させる第2乾燥工程とを含む。なお、時刻T1の前に、医療用器具などの被処理物がメインチャンバ11内に収容されていることが前提となる。
【0066】
第1乾燥工程は、メインチャンバ11及びサブチャンバ12内を高度に真空引きする排気工程と、一定時間だけ状態を維持する保持工程と、サブチャンバ12内にNOガスの生成原料となる乾燥空気を導入する吸気工程とからなる。
【0067】
制御装置70の全体制御部71は、時刻T1に、まずメインチャンバ11の開閉ドアのロック指示をロック制御部75に与える。これを受けてロック制御部75は、チャンバロック装置13を駆動し、メインチャンバ11の開閉ドアをインターロックする。併せて、上記排気工程の実行のため、動作モードを「排気モード」に設定し、各個別制御部72〜76にそのモード設定信号を通知する。
【0068】
排気モードが設定されると、ポンプ制御部72は、第3、第4ポンプP3、P4を動作させ、電磁弁制御部73は第4、第6、第8電磁弁V4、V6、V8を「開」とする。これら電磁弁のみが「開」とされることにより、サブチャンバ12から、第4真空配管401、メインチャンバ11、第6真空配管501及び第4常圧配管503を経て第4ポンプP4に至る排気路が形成される。そして、第3、第4ポンプP3、P4の駆動によって、メインチャンバ11及びサブチャンバ12内は真空引きされる。
【0069】
全体制御部71は、第1、第2圧力センサ112、122から圧力データを所定のサンプリング周期毎に受け取り、メインチャンバ11及びサブチャンバ12の圧力を監視する。圧力データに基づき、時刻T2で所定の真空度(図6では1Torrを例示)に達したと判定すると、全体制御部71は、上記保持工程の実行のため、動作モードを「保持モード」に設定する。
【0070】
保持モードは、第1〜第4ポンプP1〜P4の全てが停止され、第1〜第8電磁弁V1〜V8の全てが「閉」とされるモードである。なお、図7及び図8では、この保持モードに対応する保持工程の状態の記載は省いている。従って、保持モードが設定されると、ポンプ制御部72は、第3、第4ポンプP3、P4を停止させ、電磁弁制御部73は第4、第6、第8電磁弁V4、V6、V8を「閉」とする。全体制御部71は、時刻T2からタイマー装置に計時を開始させ、所定時間が経過する時刻T3まで保持モードを維持する。この保持工程が一定時間継続されることで、メインチャンバ11内並びにそこに収容されている被処理物、及びサブチャンバ12の内部が乾燥状態とされる。また、メインチャンバ11及びサブチャンバ12内の真空状態が安定する。
【0071】
時刻T3になると、全体制御部71は、上記吸気工程の実行のため動作モードを「吸気モード」に設定する。吸気工程は、減圧下にあるサブチャンバ12内に乾燥空気を導入することを目的とするので、ポンプ制御部72は第1ポンプP1のみを動作させ、電磁弁制御部73は第1電磁弁V1のみを「開」とする。また、ドライヤ制御部76は、エアドライヤ21を稼働させる。かかる状態とされることで、第1ポンプP1により外部から吸引された空気が、エアドライヤ21で高度に乾燥されながら、第1常圧配管201と第1真空配管202とを通して、サブチャンバ12内に導入される。なお、メインチャンバ11内は、この吸気工程の間(及び次の滅菌準備工程の間)も乾燥工程が継続される。
【0072】
吸気モードの間、全体制御部71は、第2圧力センサ122から圧力データをサンプリング周期毎に受け取りサブチャンバ12の圧力を監視する。圧力データに基づき、時刻T4で常圧(760Torr)に達したと判定すると、全体制御部71は吸気モードを終了する。また、ドライヤ制御部76は、エアドライヤ21を停止させる。
【0073】
続いて、滅菌準備工程が実行される。この工程は、サブチャンバ12内を所定濃度の滅菌ガスで充満させるために、プラズマで空気を電離してNOガスを生成するプラズマ工程からなる。
【0074】
時刻T4に全体制御部71は、上記プラズマ工程の実行のため動作モードを「プラズマモード」に設定する。プラズマモードが設定されると、ポンプ制御部72は第2ポンプP2のみを動作させ、電磁弁制御部73は第2、第3電磁弁V2、V3を「開」とする。これにより、サブチャンバ12、第2真空配管301、第2常圧配管303及び第3真空配管302で構成される一つの密閉空間が形成され、該密閉空間内を空気(NOガス)が循環可能となる。
【0075】
また、時刻T4の時点で、プラズマ制御部74はマイクロ波供給装置60を動作させる。これによりマイクロ波供給装置60はプラズマノズル31にマイクロ波エネルギーを供給し、プラズマノズル31でプラズマが発生する。プラズマノズル31を経由して循環する空気は電離され、さらにNO変換部33を通過することでNOガスに変換される。この状態が継続されることで、サブチャンバ12内の空気は、徐々にNOガスに変換されてゆく。
【0076】
プラズマモードの間、全体制御部71は、第2濃度センサ121からNOの濃度データをサンプリング周期毎に受け取り、サブチャンバ12のNO濃度を監視する。濃度データに基づき、時刻T5でNO濃度が所定値に達したと判定すると、全体制御部71はプラズマモードを終了する。これに伴い、プラズマ制御部74はマイクロ波供給装置60の動作を停止させる。
【0077】
次に、滅菌工程が実行される。滅菌工程は、常圧下でサブチャンバ12内に充満しているNOガスを、被処理物を収容し高真空下にあるメインチャンバ11内に、両チャンバの圧力差を利用して一気に導入すると共に、NOガスと被処理物とを充分な滅菌に適した一定時間だけ接触させる工程である。
【0078】
時刻T5で全体制御部71は、上記滅菌工程の実行のため動作モードを「循環モード」に設定する。循環モードが設定されると、ポンプ制御部72は第3ポンプP3のみを動作させ、電磁弁制御部73は第4、第5電磁弁V4、V5を「開」とする。これにより、メインチャンバ11とサブチャンバ12とは、第4真空配管401及び第5真空配管402とで繋がれた、一つの密閉空間となる。
【0079】
この結果、減圧下のメインチャンバ11内には急激にNOガスが入り込み、チャンバ内の被処理物が良好にNOガスに曝される。例えば被処理物がカテーテルのような細長いチューブであっても、そのチューブ内の微小空間にまでNOガスが行き渡る。従って、被処理物の良好な殺菌が行い得る。
【0080】
NOガスのメインチャンバ11への導入が進むに連れ、メインチャンバ11とサブチャンバ12との圧力差は減少してゆく。そして、ある時刻T51で、両チャンバの圧力は平衡することになる。時刻T51以降は、専ら第3ポンプP3の動作によって、サブチャンバ12のNOガスがメインチャンバ11に送られる。全体制御部71は、時刻T5からタイマー装置に計時を開始させ、所定時間が経過する時刻T6まで循環モードを維持する。
【0081】
このような滅菌工程により、被処理物は滅菌された状態となるが、メインチャンバ11及びサブチャンバ12内にはNOガスや、滅菌反応により生成された物質が残存している。これらを浄化するため、排ガス無害化工程が実行される。この工程は、メインチャンバ11及びサブチャンバ12内を常圧に復帰させる復帰工程と、残留NOガスを浄化する浄化工程とからなる。
【0082】
時刻T6になると、全体制御部71は、上記復帰工程の実行のため動作モードを「復帰モード」に設定する。復帰モードが設定されると、ポンプ制御部72は第1ポンプP1を新たに動作させ、第3ポンプP3の運転を継続させる。電磁弁制御部73は第1、第4電磁弁V1、V4を「開」とする。この結果、減圧状態にあるメインチャンバ11及びサブチャンバ12内に、第1常圧配管201、第1真空配管202及び第4真空配管401を介して外気が導入される。
【0083】
復帰モードの間、全体制御部71は、第1、第2圧力センサ112、122から圧力データをサンプリング周期毎に受け取りメインチャンバ11及びサブチャンバ12の圧力を監視する。圧力データに基づき、時刻T7で両チャンバ内が常圧に達したと判定すると、全体制御部71は復帰モードを終了する。
【0084】
時刻T7で全体制御部71は、浄化工程の実行のために動作モードを「浄化モード」に設定する。浄化モードが設定されると、ポンプ制御部72は第2、第3ポンプP2、P3を動作状態とし、電磁弁制御部73は第2、第3、第4、第6、第7電磁弁V2、V3、V4、V6、V7を「開」とする。このとき、第1電磁弁V1と第8電磁弁V8とは「閉」とされているので、メインチャンバ11及びサブチャンバ12内の密閉性は確保されている。
【0085】
一方で、メインチャンバ11、排気系統50、連係系統40、サブチャンバ12及び循環系統20を通る、一つの循環経路が形成されることになる。メインチャンバ11を起点とすると、順次、HNO変換部51及びフィルタ52が取り付けられている排気系統50内の配管、第7真空配管502、第5真空配管402、サブチャンバ12並びにNO変換部33が取り付けられている循環系統20の配管、そして第4真空配管401を経由してメインチャンバ11に戻る、密閉された循環経路が形成される。
【0086】
本実施形態では、このような密閉された循環経路(密閉空間)の内部で無害化処理を行う。すなわち、第2、第3ポンプP2、P3の駆動によって、前記循環経路内において気流が発生する。従って、メインチャンバ11及びサブチャンバ12内の残留NOガスは、HNO変換部51及びフィルタ52を通過する。これにより、残留NOガスは一旦HNOを含むガスに変換された後、フィルタ52でHNOが吸着され、低濃度のNO及びHNOを含むガスとなる。その後、この低濃度ガスはサブチャンバ12に入り、さらに循環系統20のNO変換部33に備えられているフィルタ331(図4)と通過する。この際に、ガス中に残存するHNOがフィルタ331で吸着される。このフィルタ後のガスはサブチャンバ12に再び戻り、第4真空配管401を経てメインチャンバ11に戻る。
【0087】
以上のようなサイクルが繰り返され、残留NOガスは徐々に浄化されてゆく。浄化モードの間、全体制御部71は、第1、第2濃度センサ111、121からNOの濃度データをサンプリング周期毎に受け取り、メインチャンバ11及びサブチャンバ12のNO濃度を監視する。濃度データに基づき、時刻T8でNO濃度が所定値以下に低下したと判定すると、全体制御部71は浄化モードを終了する。
【0088】
最後に、第2乾燥工程が実行される。この工程は、滅菌処理後の被処理物を乾燥させると共に、メインチャンバ11及びサブチャンバ12内を排気し且つ残留物を除去するための工程であって、排気工程、保持工程及び復帰工程とからなる。これらの各工程は、先に説明したものと同じ動作の工程である。
【0089】
すなわち、時刻T8で全体制御部71は、上記排気工程の実行のため動作モードを「排気モード」に設定する。これに伴いポンプ制御部72は第2ポンプP2に代えて第4ポンプP4を新たに動作させ、第3ポンプP3の運転を継続させる。電磁弁制御部73は第4、第6、第8電磁弁V4、V6、V8を「開」とする。これにより、メインチャンバ11及びサブチャンバ12は真空引きされる。このとき、第4ポンプP4からは、浄化後の清浄な気体が排出される。なお、この「排気モード」の際、第2、第3電磁弁V2、V3を「閉」とすることで、真空に対する耐性が比較的弱いプラズマノズル31を保護することができる。
【0090】
全体制御部71は、第1、第2圧力センサ112、122から圧力データをサンプリング周期毎に受け取り、メインチャンバ11及びサブチャンバ12の圧力を監視する。圧力データに基づき、時刻T9で所定の真空度に達したと判定すると、全体制御部71は、上記保持工程の実行のため、動作モードを「保持モード」に設定する。これにより、第1〜第4ポンプP1〜P4の全てが停止され、第1〜第8電磁弁V1〜V8の全てが「閉」とされる。
【0091】
全体制御部71は、時刻T9からタイマー装置に計時を開始させ、所定時間が経過する時刻T10まで保持モードを維持する。この保持工程が一定時間継続されることで、被処理物が乾燥状態とされ、またメインチャンバ11及びサブチャンバ12の内部が清浄化される。
【0092】
時刻T10になると、全体制御部71は動作モードを「復帰モード」に設定する。復帰モードが設定されると、ポンプ制御部72は第1、第3ポンプP1、P3を動作させ、電磁弁制御部73は第1、第4、第5電磁弁V1、V4、V5を「開」とする。この結果、減圧状態にあるメインチャンバ11及びサブチャンバ12内に外気が導入される。
【0093】
復帰モードの間、全体制御部71は、第1、第2圧力センサ112、122から圧力データをサンプリング周期毎に受け取りメインチャンバ11及びサブチャンバ12の圧力を監視する。圧力データに基づき、時刻T11で両チャンバ内が常圧に達したと判定すると、全体制御部71は復帰モードを終了する。さらに、ロック制御部75を介してチャンバロック装置13を駆動し、メインチャンバ11の開閉ドアのインターロックを解除する。この解除によって、ユーザは被処理物をメインチャンバ11から取り出せるようになる。
【0094】
以上説明した滅菌装置1によれば、メインチャンバ11内で被処理物を滅菌した後に、密閉状態にあるメインチャンバ11とサブチャンバ12との間で循環させ、残留NOガスを無害化させることができる。しかる後、メインチャンバ11及びサブチャンバ12の排気が行われる。従って、無害化処理の確実性を確保することができる。
【0095】
以上、本発明の実施形態につき説明したが、本発明はこれに限定されるものではなく、例えば下記(1)〜(6)の変形実施形態を取ることができる。
【0096】
(1)上記実施形態では、滅菌剤としてNOガスを用いる例を示した。NOガス以外に各種の滅菌剤を用いることができ、例えば、二酸化塩素、二酸化硫黄、過酸化水素、二酸化炭素、硫化水素、オゾン及び酸化エチレンを含むガスを用いることができる。また、空気を原料気体としてNOガスを生成する例を示したが、原料気体として、酸素、窒素、水素、及びアルゴン、ヘリウム、ネオン等の希ガスなどを用いることもできる。
【0097】
(2)上記実施形態では、メインチャンバ11及びサブチャンバ12の2つのチャンバを用いる例を示した。サブチャンバ12を省略し、NOガス等の滅菌剤が封入されたボンベ等から、メインチャンバ11に滅菌剤を供給するようにしても良い。
【0098】
(3)上記実施形態では、マイクロ波供給装置60及びプラズマノズル31を用いて、空気をプラズマ化することで滅菌ガスを生成する例を示した。これに代えて、二つの電極間にアーク放電を生じさせることでプラズマを発生させる方法を採用しても良い。
【0099】
(4)上記実施形態では、無害化処理の際、残留NOガスをサブチャンバ12に付設されている循環系統30に循環させる例を示した。これに代えて、無害化処理時には第2電磁弁V2及び第3電磁弁V3を「閉」とし、循環系統30には残留NOガスが流通されないようにしても良い。あるいは、残留NOガスがサブチャンバ12に循環されないようにし、メインチャンバ11と排気系統50と間だけで残留NOガスを循環させ、これを浄化するようにしても良い。
【0100】
(5)上記実施形態では、メインチャンバ11内を減圧した状態で滅菌処理を行う例を示したが、常圧で滅菌処理を行うようにしても良い。
【0101】
(6)上記実施形態では、メインチャンバ11とサブチャンバ12とが1:1で設けられる例を示した。これに代えて、1つのサブチャンバ12から複数のメインチャンバ11に滅菌ガスを供給可能な構成としても良い。逆に、1つのメインチャンバ11に複数のサブチャンバ12から滅菌ガスを供給する構成としても良い。この場合、異種の滅菌ガスを各サブチャンバ12から供給することもできる。
【符号の説明】
【0102】
1 滅菌装置
11 メインチャンバ(密閉空間/第1チャンバ)
12 サブチャンバ(第2チャンバ)
20 吸気系統
30 循環系統
31 プラズマノズル
33 NO変換部
40 連係系統
50 排気系統
51 HNO変換部(浄化手段)
52 フィルタ(浄化手段)
60 マイクロ波供給装置
70 制御装置(制御手段)
111、121 第1、第2濃度センサ
112、122 第1、第2圧力センサ
401 第4真空配管(第1配管)
402 第5真空配管(第2配管)
503 第4常圧配管(第3配管)
P1〜P4 第1〜第4ポンプ(P3:循環手段、P4:減圧手段)
V1〜V8 第1〜第8電磁弁(V4、V5、V8:第1弁、第2弁、第3弁)


【特許請求の範囲】
【請求項1】
密閉空間に滅菌剤を導入し、
前記密閉空間において被処理物に滅菌剤を反応させて該被処理物の滅菌を行い、
前記滅菌の後に前記密閉空間に残存した滅菌剤を、前記密閉空間に滞留させたまま無害化処理を行い、
前記無害化処理の後に、前記密閉空間内の気体を排気する、
ことを特徴とする滅菌処理方法。
【請求項2】
前記無害化処理の際に前記密閉空間の滅菌剤濃度を測定し、
前記滅菌剤濃度が所定値以下となった後に、前記密閉空間内の気体を排気することを特徴とする請求項1に記載の滅菌処理方法。
【請求項3】
前記密閉空間に滅菌剤を導入する前に、前記密閉空間を乾燥させることを特徴とする請求項1又は2に記載の滅菌処理方法。
【請求項4】
前記密閉空間の乾燥は、該密閉空間を減圧状態にして行われることを特徴とする請求項3に記載の滅菌処理方法。
【請求項5】
前記密閉空間の排気に伴い該密閉空間を減圧させることで、前記密閉空間を乾燥させることを特徴とする請求項1〜4のいずれかに記載の滅菌処理方法。
【請求項6】
前記密閉空間は、第1密閉空間と、前記第1密閉空間から独立した第2密閉空間と、前記第1密閉空間と前記第2密閉空間とを連通させる連通路とを含み、
前記連通路を遮断した状態で、前記第1密閉空間に前記被処理物を収納して該第1密閉空間を減圧する一方で、前記第2密閉空間で前記滅菌剤を生成し、
前記被処理物の滅菌は、前記連通路を開放して、前記第2密閉空間で生成された前記滅菌剤を前記第1密閉空間に導入することで行い、
前記無害化処理は、前記連通路を通して前記第1密閉空間と前記第2密閉空間との間で残存滅菌剤を含む気体を循環させつつ、前記連通路において残存滅菌剤の除去処理を施すことで行うことを特徴とする請求項1に記載の滅菌処理方法。
【請求項7】
前記第2密閉空間での滅菌剤の生成は、
前記第2密閉空間に滅菌原料物質を導入し、該滅菌原料物質を前記第2密閉空間内で滅菌剤に変換することで行われることを特徴とする請求項6に記載の滅菌処理方法。
【請求項8】
前記滅菌原料物質が空気であり、前記滅菌剤への変換が前記空気を電離させることで行われることを特徴とする請求項7に記載の滅菌処理方法。
【請求項9】
被処理物が収容される第1チャンバと、
滅菌剤が生成される第2チャンバと、
前記第2チャンバから前記第1チャンバへ向かう連通路を形成する第1配管と、
前記第1チャンバから前記第2チャンバへ向かう連通路を形成する第2配管と、
前記第1チャンバから外部へ向かう連通路を形成する第3配管と、
前記第1配管、第2配管及び第3配管にそれぞれ配置される第1弁、第2弁及び第3弁と、
前記第2配管に配置される前記滅菌剤の浄化手段と、
前記第1配管及び第2配管と、前記第1チャンバと、前記第2チャンバとで形成される密閉された空間内で気体を循環させる循環手段と、
前記第3配管を通して前記第1チャンバを減圧する減圧手段と、
前記第1弁、第2弁、第3弁、循環手段及び減圧手段の動作を制御する制御手段と、を備え、
前記制御手段は、
前記第1弁及び第2弁を閉とする一方で前記第3弁を開とし、前記減圧手段を動作させて被処理物が収容されている第1チャンバを減圧させる第1制御と、
前記第2弁及び第3弁を閉とする一方で前記第1弁を開とし、前記第1配管を通して前記第2チャンバで生成された滅菌剤を前記第1チャンバへ導入させる第2制御と、
前記第3弁を閉とする一方で前記第1弁及び第2弁を開とし、前記循環手段を駆動させて、前記密閉された空間内で前記滅菌剤を含む気体を循環させて前記浄化手段を通過させる第3制御と、
少なくとも前記第1弁及び第3弁を開とし、前記第1チャンバ及び前記第2チャンバ内の気体を排気させる第4制御と、
を含む制御を実行することを特徴とする滅菌装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−187966(P2010−187966A)
【公開日】平成22年9月2日(2010.9.2)
【国際特許分類】
【出願番号】特願2009−36310(P2009−36310)
【出願日】平成21年2月19日(2009.2.19)
【出願人】(000135313)ノーリツ鋼機株式会社 (1,824)
【Fターム(参考)】