説明

濃度測定装置

【課題】 試料内の旋光性物質による旋光度を測定する際に、旋光度を変調させる方法を用いた場合、変調幅が大きくなるとそれだけ精度は低下してしまうため、広い範囲で旋光度を求めようとすると精度が落ちてしまい、逆に精度を向上させようとすると測定可能な旋光度の範囲が狭くなってしまうという課題がある。
【解決手段】 試料内の旋光性物質による旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、旋光度変調手段によって試料へ入射する直線偏光の旋光度を変調させた時の光検出器における試料通過後の光強度信号より試料内の旋光性物質の濃度を算出する際に、光検出器における検出信号を基に旋光度変調手段による直線偏光の旋光度の変調範囲を変化させ、濃度算出が可能な検出信号を得ることにより、試料中の濃度の濃淡にかかわらず高精度で濃度測定が可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は旋光度を用いた濃度測定装置に関し、特に試料内に含まれる旋光性物質の濃度の濃淡にかかわらず高精度に濃度を測定する技術に関するものである。
【背景技術】
【0002】
試料内の旋光性物質の濃度を測定する手段として、試料に光線を入射してその旋光度などの測定より濃度を求める光学的な方式は、直接試料に触れることなく測定することが可能であるため、有用であるとされている。旋光度より試料内の旋光性物質の濃度を求める方法の原理は式1に基づく。
θ(λ)=α(λ)・c・L(式1)
ここで、θ(λ)は光線の波長をλとしたときの旋光度、α(λ)は光線の波長をλとしたときの旋光性物質の比旋光度、cは試料内における旋光性物質の濃度、Lは試料の光路長である。式1において、比旋光度α(λ)は旋光性物質固有の係数であり、試料の光路長Lも同様に濃度測定前に既知の値であるため、試料に光線を入射したときの旋光度θ(λ)を測定することにより、旋光性物質の濃度cを求めることが出来る。
【0003】
従来の旋光度測定装置の構成を図5に示す。光源501より出射した光線をコリメータなどのレンズ502に入射し平行光線とし、その後偏光子503に入射する。偏光子503の透過光は偏光子503の透過軸方向に光軸を持つ直線偏光となる。ここでは偏光子503の透過軸方向は垂直方向とする。次に直線偏光を旋光度変調素子に入射する。ここで、旋光度変調素子としては電気光学的なもので、液晶素子、ファラデー素子、ポッケルセルなどが挙げられ、本構成においては液晶素子504を用いるものとする。液晶素子504を通過する際に直線偏光の偏光方向は液晶素子に外部より印加する電圧に依存して変化する。ここで、液晶素子504に印加する電圧をある周波数fで変調させる事により、液晶素子504を通過する直線偏光の偏光方向は垂直軸に対してある角度±βの範囲内で変調する。次に偏光方向が変調した直線偏光を試料505に入射する。ここで、直線偏光は試料505を通過する際、試料505中に含まれる旋光性物質によって未知量+γだけ旋光されるものとする。ここで、試料505を通過してきた光線の偏光方向は図6に示すように垂直軸に対して(−β+γ)から(β+γ)の角度範囲で変調している。ここで、βはγより大きいものとする。
【0004】
次に試料505を通過した光線を検光子506に入射することで、検光子506の透過軸方向の光成分のみが透過し、光検出器507の受光部に到達する。光検出器507は受光した光線の強度変化を電圧変化として出力するものである。ここで、検光子506の透過軸方向を垂直軸に対して90度とすると、光検出器507で検出される信号は時間1/f間に極大と極小をそれぞれ2つ持つ、図2に示すような信号となる。
【0005】
ここで、光検出器507における例えば図2に示すような検出信号と、液晶素子504に印加する電圧値を基に演算を行う事により、試料505による旋光度+γを求めることが出来る。例えば、特許文献1によれば、光検出器507における検出信号において、特に極大値と極小値の値を基に旋光度を求める方式が提案されている。
【0006】
また、旋光度を求める方式として一般的な方法としては、検光子をモータなどで機械的に回転させ、光検出器における検出信号が最大もしくは最小となる角度を探すことにより旋光度を求める方法が挙げられる。
【0007】
また、試料内の旋光性物質の濃度を測定する手段としては他に、酵素を用いた酵素法が
挙げられる。酵素法は特定の物質に対して反応する酵素を用いて、反応によって生じる成分を測定する事により濃度を測定するものである。例えばグルコース濃度を測定する方法としては、GOD(グルコース酸化酵素)法などが知られている
【0008】
【特許文献1】特開平9−236542号公報(図5)
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかし、上記の方法は以下に示す問題を有している。上記の従来の旋光度を用いた濃度測定装置においては、光検出器における検出信号より旋光度を測定する場合、旋光度変調素子による変調領域内に試料の旋光度が収まっていなければならない。すなわち、例えば、旋光度変調素子による変調幅を±3°とした場合には、測定可能な旋光度は±3°以内であり、それ以上の旋光度は測定できない。そこで、±3°以上の旋光度を測定する際には変調幅を広げる必要がある。
【0010】
しかしながら、ここで、検出信号より旋光度を測定する際の分解能は旋光度変調素子による変調幅に依存するため、変調幅を広げる事により精度が低下してしまうことになる。すなわち、変調幅が小さいほど精度は向上するが、変調幅が大きくなるとそれだけ精度は低下してしまうため、広い範囲で旋光度を求めようとすると精度が落ちてしまい、逆に精度を向上させようとすると測定可能な旋光度の範囲が狭くなってしまうという課題がある。
【0011】
また、検光子をモータなどで機械的に回転させる事により旋光度を求める方法においては素子を回転させるなどの機械的動作が必要となるため、装置全体の大型化、高消費電力化を招いてしまう。更に高精度に旋光度を求めるには高性能のモータが不可欠となり、装置の複雑化につながってしまう。
【0012】
また、酵素法に関しては、低濃度の場合はそのまま測定可能であるが、ある値以上の濃度になると反応が飽和してしまうことが知られている。そのため、高濃度の試料を測定する際は元の試料を希釈するなどの測定前処理が必要となり、測定工程が増えてしまうという問題が発生する。また、酵素であるため、使用期間や使用回数が限られてしまうといった課題も生じる。
【0013】
そこで、本発明では上述した従来技術による問題点を解消するため、試料内の旋光性物質の濃度を機械的動作や、酵素などを用いることなく、また、その濃度の濃淡にかかわらず常に高精度に測定することが可能な濃度測定装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
これらの課題を解決するために本発明による濃度測定装置は、下記に記載の手段を採用する。すなわち本発明の濃度測定装置は、直線偏光を出力する直線偏光出力手段と、直線偏光の旋光度を変調する旋光度変調手段と、旋光度変調手段によって旋光度が変調された直線光線を試料へ照射し試料を透過してくる透過光を検出する検出手段と、検出手段における検出信号より試料内の旋光性物質の濃度を算出する算出手段を備えた濃度測定装置であって、検出信号を旋光度変調手段にフィードバックすることで、旋光度変調手段による直線偏光の旋光度の変調範囲を変化させることを特徴とする。
【0015】
また、本発明の濃度測定装置は、直線偏光出力手段と、旋光度変調手段と、検出手段と、算出手段は、測定に際して機械的動作を必要としないことが好ましい。
【0016】
また、本発明における算出手段は検出信号における極大値と極小値に基づいて濃度を算出することが好ましい。
【0017】
また、本発明における旋光度の変調範囲は変調幅と変調の中心軸がいずれも可変であることが好ましい。
【0018】
また、本発明における旋光度の変調範囲は変調幅が一定で、変調の中心軸が可変であることが好ましい。
【0019】
また、本発明における旋光度変調手段は液晶素子、液晶素子と波長板、ファラデーセル、光弾性変調子またはポッケルセルであることが好ましい。
【0020】
また、本発明における試料は尿であり、試料中の旋光性物質は尿中グルコースである場合により有用である。
【0021】
(作用)
試料内の旋光性物質による旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、旋光度変調手段によって試料へ入射する直線偏光の旋光度を変調させた時の光検出器における試料通過後の検出信号より試料内の旋光性物質の濃度を算出する際に、光検出器における検出信号を旋光度変調手段にフィードバックし、旋光度変調手段による直線偏光の旋光度の変調範囲を変化させることにより、試料中の濃度の濃淡にかかわらず、高精度で濃度測定が可能となる。
【発明の効果】
【0022】
以上の説明のように、本発明の濃度測定装置においては、下記に記載する効果を有する。
【0023】
試料内の旋光性物質による旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、旋光度変調手段によって試料へ入射する直線偏光の旋光度を変調させた時の光検出器における試料通過後の検出信号より試料内の旋光性物質の濃度を算出する際に、光検出器における検出信号を基に旋光度変調手段による直線偏光の旋光度の変調範囲、すなわち変調幅と変調の中心軸の両方もしくはどちらか一方を変化させ、濃度算出が可能な検出信号を得ることにより、試料中の濃度が濃い場合でも濃度が薄い場合と同じ高いレベルの精度で濃度測定が可能となる。
【0024】
また、本発明においては検光子をモータなどで機械的に回転させるなどの機械的動作が不要であるため、装置の小型化、装置構成の簡易化が可能である。また、旋光度変調素子として特に液晶素子を用いた場合は、低消費電力化が可能である。
【0025】
更に、本発明においては濃度測定に際して酵素などを用いないため、試料を薄めるなどの測定前処理が不要であり、また、期間や回数に限りがなく使用可能である。
【発明を実施するための最良の形態】
【0026】
以下、図面を用いて本発明を利用した濃度測定装置の最適な実施形態を説明する。
【0027】
(第一の実施形態)
図1は本発明の第一の実施形態を示す図である。図1において駆動回路108によって駆動されるレーザダイオードなどの光源101より出射された光線をコリメートレンズ102に入射する。ここで、光源101はある一定の波長の光線を出射するものであって、レーザダイオードに限るものではない。コリメータレンズ102は入射してきた光線を平
行光にするものであって、光源からの光線の広がり角等によって位置を変化させる。次に、コリメータレンズ102によって平行光となった光線を偏光子103に入射する。偏光子103によって光線は偏光子103の透過軸方向に光軸を持つ直線偏光となる。ここでは偏光子103の透過軸方向は垂直方向とする。次に偏光子103を透過してきた直線偏光を旋光度変調素子に入射する。旋光度変調素子は電気光学的なもので、図1に示す本実施形態においては液晶素子104を用いている。ここで、液晶素子104は液晶駆動回路109によって駆動し、液晶素子104に印加する電圧をある周波数fで変調させる事により、液晶素子104を通過する直線偏光の偏光方向はある角度の範囲内で変調する。
【0028】
次に偏光方向が変調した直線偏光を試料105に入射する。ここで、直線偏光は試料105を通過する際、試料105中に含まれる旋光性物質によって未知量だけ旋光される。次に試料105を通過した光線を検光子106に入射することで、検光子106の透過軸方向の光成分のみが透過し、光検出器107の受光部に到達する。ここでは、検光子106の透過軸方向を垂直軸に対して90度とする。光検出器107は受光した光線の強度変化を電圧変化として出力するものである。光検出器107の検出信号は増幅器等により増幅し、PCなどの演算器110に入力する。演算器110は演算のみでなくコントローラとして液晶駆動回路109のコントロールも行う。この時、光検出器107における検出信号と、液晶素子104に印加する電圧値を基に演算を行う事により、試料105による旋光度を求める方法を以下に示す。
【0029】
まず、例えば測定初期においては、液晶素子104による旋光度の変調範囲を垂直方向に対して±90°とする。これにより、試料105による旋光量がいかなる値でも、光検出器107で検出される信号は時間1/f間に極大と極小をそれぞれ2つ持つ、図2に示すような信号となる。もしくは、試料105による旋光量がある程度見当がついている場合は変調量を±90°より小さくする事も可能である。
【0030】
この時の検出信号より例えば極大と極小の値を用いて旋光度を算出する事は可能であるが、上述のように、検出信号より旋光度を測定する際の分解能は旋光度変調素子による変調幅に依存するため、このままでは精度は低いものとなる。そこで、±90°の変調時に得られた検出信号を元に、変調幅と変調の中心軸を再設定し、同様に変調を行う。例えば、±90°の変調時に試料による旋光度がおよそ+30°程度と算出された際には、変調の中心軸を+30°、変調幅を±10°とする事により、より高い精度に旋光度が算出できる。これを更に繰り返し、変調幅を小さくしていく事により、最終的には旋光度測定において十分な精度が得られる程度の変調幅になり、そのとき得られた検出信号を基に旋光度を算出することで、非常に高精度で旋光度を求める事ができる。すなわち試料中の濃度の濃淡にかかわらず、高精度での濃度測定が可能となる。
【0031】
上記の方法を図3を用いて説明する。図3は横軸が液晶素子104に印加する電圧Vで、縦軸が光検出器107における検出信号の強度Iを表す。図3において、測定初期は変調範囲をaの範囲としその時の検出信号を基に、次に変調幅と変調の中心軸を変化させ、変調範囲をbに縮小する。更にその時の検出信号を基に同様に変調幅と変調の中心軸を変化させ、変調範囲をcに縮小する。このとき、変調範囲をaからb、bからcへと縮小させる際にも検出信号は常に図2に示すような、時間1/f間に極大と極小をそれぞれ2つ持つ信号となるようにする。
【0032】
ここで、上述のように変調範囲を縮小させ、変調範囲が旋光度測定において十分な精度が得られる程度の幅になったとき、その検出信号に着目し、あらかじめ構築しておいた検出信号の時間1/f間における2つの極大値の比と旋光度、旋光度と濃度の関係式に従い濃度を算出する。ここで、検出信号の時間1/f間における2つの極大値の比と旋光度の関係式は特に液晶の種類、変調幅に依存するものである。この方法により試料中の濃度の
濃淡にかかわらず、同様の高い分解能が得られ、高精度の濃度測定が可能となる。
【0033】
ここで、上述の実施形態における変調範囲などの値は一例に過ぎず、この値に限るものではない。
【0034】
(第二の実施形態)
次に第二の実施形態について説明する。光学素子等に関しては第一の実施形態と同様に図1に示すものとする。第一の実施形態と同様、液晶素子104に印加する電圧をある周波数fで変調させる事により、液晶素子104を通過する直線偏光の偏光方向はある角度の範囲内で変調する。このとき、変調範囲は旋光度測定において十分な精度が得られる程度の変調幅dに固定とする。
【0035】
ここで、仮に旋光度測定において十分な精度が得られる程度の変調幅dを±3°とし、測定初期には変調の中心軸を垂直方向とする。このとき、試料105による旋光度が±3°以内の場合は光検出器107における検出信号より旋光度を高精度に測定することが可能である。その算出方法としては、例えば上述のように検出信号の時間1/f間における2つの極大値の比より、あらかじめ構築しておいた極大値の比と旋光度、旋光度と濃度の関係式に従い濃度を算出する方法などが挙げられる。
【0036】
しかしこの方法では、試料105による旋光度が±3°以内にない場合、検出信号の時間1/f間において極大値が1つしか観察されないため、旋光度を算出することは出来ない。そこで、検出信号を参照して時間1/f間において極大値が1つしかない場合は変調範囲を変化させる。変化の方法としては例えば±3°の次に−2°〜+4°の範囲に変化させ、その変調範囲でも検出信号の時間1/f間において極大値が1つしかない場合は、変調範囲を−4°〜+2°に変化させ、以下同様に変化させていく方法が挙げられる。このようにして、図2に示すような検出信号の時間1/f間において極大値が2つ観察された場合に、上述のような算出方法よって濃度を算出することが可能となる。この場合、すでに変調範囲は旋光度測定において十分な精度が得られる程度の幅としてあるため、精度としては高いものとなる。また、試料105による旋光度に適した範囲に変調範囲を変化させるため、試料105中の旋光性物質の濃度に依存せず常に高精度での測定が可能となる。
【0037】
図4に、上記の方法を図示する。図3と同様、図4は横軸が液晶素子104に印加する電圧Vで、縦軸が光検出器107における検出信号の強度Iを表す。図4において、測定初期はAの位置で変調しているがこの位置では検出信号より濃度を算出することは出来ない。そこで、検出信号をフィードバックしながら変調範囲を変化させ、最終的にBの位置まで変調範囲を変化させる。このときの検出信号を用いて、濃度を算出することにより、濃度に依存せず常に高精度での測定が可能となる。
【0038】
ここで、第一の実施形態と同様、上述の実施形態における変調範囲などの値は一例に過ぎず、この値に限るものではない。
【0039】
また、上述の実施形態における旋光度変調手段としては液晶素子を用いているが、例えばファラデーセル、光弾性変調子またはポッケルセルなどを用いた場合にも本手法は有効である。
【図面の簡単な説明】
【0040】
【図1】本発明の第一の実施形態における濃度測定装置の構成を示す図である。
【図2】本発明の実施形態における光検出器の出力波形を示す図である。
【図3】本発明の実施形態における液晶素子への印加電圧と光検出器における光強度の関係を示す図である。
【図4】本発明の実施形態における液晶素子への印加電圧と光検出器における光強度の関係を示す図である。
【図5】従来例における旋光度測定装置の概略図である。
【図6】試料による旋光度の変調範囲の変化を示す図である。
【符号の説明】
【0041】
101 光源
102 コリメートレンズ
103 偏光子
104 液晶素子
105 試料セル
106 検光子
107 光検出器


【特許請求の範囲】
【請求項1】
直線偏光を出力する直線偏光出力手段と、前記直線偏光の旋光度を変調する旋光度変調手段と、該旋光度変調手段によって旋光度が変調された直線光線を試料へ照射し前記試料を透過してくる透過光を検出する検出手段と、該検出手段における検出信号より前記試料内の旋光性物質の濃度を算出する算出手段とを備えた濃度測定装置であって、前記検出信号を前記旋光度変調手段にフィードバックすることで、前記旋光度変調手段による直線偏光の旋光度の変調範囲を変化させる濃度測定装置。
【請求項2】
前記直線偏光出力手段と、前記旋光度変調手段と、前記検出手段および前記算出手段は、測定に際して機械的動作を必要としないことを特徴とする請求項1に記載の濃度測定装置。
【請求項3】
前記算出手段は前記検出信号における極大値と極小値に基づいて濃度を算出することを特徴とする請求項1または請求項2に記載の濃度測定装置。
【請求項4】
前記旋光度の変調範囲は変調幅と変調の中心軸がいずれも可変であることを特徴とする請求項1から請求項3のいずれか一項に記載の濃度測定装置。
【請求項5】
前記旋光度の変調範囲は変調幅が一定で、変調の中心軸が可変であることを特徴とする請求項1から請求項3のいずれか一項に記載の濃度測定装置。
【請求項6】
前記旋光度変調手段は液晶素子、液晶素子と波長板、ファラデーセル、光弾性変調子またはポッケルセルであることを特徴とする請求項1から請求項5のいずれか一項に記載の濃度測定装置。
【請求項7】
前記試料は尿であり、前記試料中の旋光性物質は尿中グルコースであることを特徴とする請求項1から請求項6のいずれか一項に記載の濃度測定装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2006−275863(P2006−275863A)
【公開日】平成18年10月12日(2006.10.12)
【国際特許分類】
【出願番号】特願2005−97300(P2005−97300)
【出願日】平成17年3月30日(2005.3.30)
【出願人】(000001960)シチズン時計株式会社 (1,939)
【Fターム(参考)】