説明

炭化珪素単結晶製造装置

【課題】排出経路の詰まりを更に抑制し、かつ、SiC単結晶の成長表面の保温や形状制御を行い易くすることができるSiC単結晶製造装置を提供する。
【解決手段】反応容器7と成長結晶引上保温ガイド10との間に隙間を設け、この隙間を通じて原料ガス3のうちの未反応ガスが外側に排出されるようにする。つまり、台座9の外周を通過して真空容器6の上方から未反応ガスを排出する形態ではなく、台座9の下方においてSiC単結晶20の径方向外側に向かって未反応ガスを排出する形態とする。このため、台座9の外周を通過する場合と比較して、排出経路の幅を広くすることが可能になり、排出経路の詰まりを更に抑制することが可能になる。また、台座9の外周の排出経路の詰まりを見込む必要がないため、第2加熱装置14の制御に基づいてSiC単結晶20の成長表面の保温や形状制御を行うことが容易となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭化珪素(以下、SiCという)単結晶製造装置に関するものである。
【背景技術】
【0002】
従来より、SiC単結晶製造装置として、例えば特許文献1に示される構造の製造装置が提案されている。このSiC単結晶製造装置では、種結晶の下方に原料ガス導入口を設けて種結晶の下方から原料ガスを導入すると共に、種結晶の上方にガス排出口を設けて種結晶に供給された原料ガスの残りやキャリアガスを種結晶の上方から排出することで、種結晶に新しい原料ガスを供給し続け、SiC単結晶を成長させている。また、このSiC単結晶製造装置では、種結晶が配置される台座の周囲において、坩堝の内径を他の部分よりも大きくすることで排出口の開口面積を大きくすると共に、台座や坩堝に複数の穴を設け、これらの穴からパージガスを導入するようにしている。これにより、SiC単結晶の成長中に、種結晶が設置される台座の周囲にSiC多結晶などが付着して排出口が詰まることを抑制し、SiC単結晶を長時間成長させられるようにしている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許出願公開第2008/022923号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1に示されるSiC単結晶製造装置のように、種結晶の側面を通じて上方の排出口からガスを排出する形態では、坩堝の内径を大きくしたとしても排出経路の開口幅が狭く、安定して詰まりを防止することが困難である。この問題は、坩堝の内径をより大きくすれば抑制可能であるが、坩堝の内径を大きくすればするほど、坩堝の内壁面からSiC単結晶までの距離が遠くなり、坩堝の加熱や輻射熱に基づくSiC単結晶の成長表面の保温や形状制御を行うことが困難となる。つまり、特許文献1のような構造のSiC単結晶製造装置では、排出経路の詰まりの抑制とSiC単結晶の成長表面の保温や形状制御とがトレードオフの関係となり、排出経路の詰まりを更に抑制し、かつ、SiC単結晶の成長表面の保温や形状制御を行い易くすることが難しい。
【0005】
本発明は上記点に鑑みて、排出経路の詰まりを更に抑制し、かつ、SiC単結晶の成長表面の保温や形状制御を行い易くすることができるSiC単結晶製造装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、請求項1に記載の発明では、真空容器(6)の底面に配置され、原料ガス(3)の導入を行う導入口(2)と、真空容器(6)内において該真空容器(6)の底面側から台座(9)側に向けて延設され、原料ガス(3)を通過させる中空部を有し、原料ガス(3)を加熱分解して種結晶(5)に向けて供給する筒状部材で構成された反応容器(7)と、反応容器(7)の外周に配置され、反応容器(7)の加熱を行う第1加熱装置(13)と、台座(9)の外周に配置され、種結晶(5)の表面に成長させられるSiC単結晶(20)の成長表面を保温する第2加熱装置(14)と、真空容器(6)のうち第1、第2加熱装置(13、14)よりも外側に配置され、原料ガス(3)のうちの未反応ガスを排出する排出口(4)とを有し、反応容器(7)より供給される原料ガス(3)が台座(9)側に供給されたのち、反応容器(7)とSiC単結晶(20)との間において、SiC単結晶(20)の径方向外側に流動させられことで、真空容器(6)のうち第1、第2加熱装置(13、14)よりも外側に流動させられ、排出口(4)を通じて排出されるように構成されていることを特徴としている。
【0007】
このように、反応容器(7)とSiC単結晶(20)の間において、原料ガス(3)のうちの未反応ガスがSiC単結晶(20)の径方向外側に排出されるようにしている。つまり、台座(9)の外周を通過して真空容器(6)の上方から未反応ガスを排出する形態ではなく、台座(9)の下方においてSiC単結晶(20)の径方向外側に向かって未反応ガスを排出する形態としている。このため、台座(9)の外周を通過する場合と比較して、排出経路の幅を広くすることが可能になり、排出経路の詰まりを更に抑制することが可能になる。特に、SiC単結晶(20)の径方向外側に向かって未反応ガスを流動させる場合、排出経路の断面積が徐々に拡大していくことになるため、より希釈化が可能となり、より排出経路の詰まりを抑制することが可能となる。
【0008】
また、台座(9)の外周の排出経路の詰まりを見込む必要がないため、第2加熱装置(14)の制御に基づいてSiC単結晶(20)の成長表面の保温や形状制御を行うことが容易となる。したがって、排出経路の詰まりを更に抑制し、かつ、SiC単結晶(20)の成長表面の保温や形状制御を行いやすくすることが可能となる。
【0009】
請求項2に記載の発明では、台座(9)の周囲を囲み、該台座(9)から所定間隔離間して配置されると共に、反応容器(7)のうち台座(9)側の先端から所定間隔離間して配置されたガイド(10)を備え、第2加熱装置(14)は、ガイド(10)の外周に配置され、反応容器(7)より供給される原料ガス(3)は、台座(9)側に供給されたのち、反応容器(7)とガイド(10)との間の隙間を通じて真空容器(6)のうち第1、第2加熱装置(13、14)よりも外側に流動させられることを特徴としている。
【0010】
このように、台座(9)の外周にガイド(10)を配置する場合、このガイド(10)と反応容器(7)との間の隙間を通じて真空容器(6)のうち第1、第2加熱装置(13、14)よりも外側に流動させられる構造とすることができる。
【0011】
請求項3に記載の発明では、台座(9)とガイド(10)との間の隙間を通じてパージガス(15)が導入され、原料ガス(3)を希釈しつつ、反応容器(7)とガイド(10)との間の隙間を通じて、真空容器(6)のうち第1、第2加熱装置(13、14)よりも外側に流動させられることを特徴としている。
【0012】
このように、台座(9)とガイド(10)との間の隙間を通じてパージガス(15)が導入されるようにすれば、これらの隙間に原料ガス(3)がより入り込まないようにできる。また、原料ガス(3)を希釈でき、より排出経路の詰まりを抑制することも可能となる。
【0013】
請求項4に記載の発明では、台座(9)を上方に引上げる引上機構(12)を有し、ガイド(10)は、上方に向かって内径が拡大された構造とされていることを特徴としている。
【0014】
このように、ガイド(10)の内径を拡大した構造とすれば、SiC単結晶(20)が径方向に拡大したとしても、SiC単結晶(20)が(10)の内壁面に接しないようにできる。
【0015】
請求項5に記載の発明では、反応容器(7)と台座(9)は同軸上に配置され、台座(9)の外径は、反応容器(7)のうちの台座(9)側の先端の内径以上の寸法とされていることを特徴としている。
【0016】
このような構造とすることで、反応容器(7)の中空部を通じて供給される原料ガス(3)を台座(9)の中央部、つまり種結晶(5)の中央部に衝突させ、そこから種結晶(5)の外周方向に流動させることができる。
【0017】
請求項6に記載の発明では、第1、第2加熱装置(13、14)は、誘導加熱コイル(13a、14a)と、該誘導加熱用コイル(13a、14a)を覆う耐腐食構造(13b、14b)とを有した構成とされていることを特徴としている。
【0018】
このように、第1、第2加熱装置(13、14)を誘導加熱コイル(13a、14a)で構成することができる。この場合、誘導加熱コイル(13a、14a)を耐腐食構造(13b、14b)で覆うことで、誘導加熱コイル(13a、14a)の腐食防止を図ることが可能となる。
【0019】
請求項7に記載の発明では、真空容器(6)の底面からパージガス(15)が導入され、原料ガス(3)を希釈しつつ、真空容器(6)のうち第1、第2加熱装置(13、14)よりも外側に流動させられることを特徴としている。
【0020】
このように、真空容器(6)の底面からパージガス(15)が導入されるようにすることもできる。これにより、原料ガス(3)の未反応ガスをよりパージガス(15)によって希釈することが可能となり、より排出経路の詰まりを抑制することが可能となる。
【0021】
請求項8に記載の発明では、真空容器(6)の内側には、反応容器(7)とSiC単結晶(20)との間における原料ガス(3)が排出される部位と対応する場所を覆う遮蔽板(17)が備えられていることを特徴としている。
【0022】
このような遮蔽板(17)を備えることにより、高温な部位からの輻射熱を遮り、真空容器(6)に直接輻射熱が照射されることを防止できる。したがって、真空容器(6)を熱から保護することが可能となる。また、このような遮蔽板(17)を配置すると、SiC単結晶(20)の成長空間から熱が逃げることを抑制できることから、熱損失低減を図ることも可能となる。
【0023】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【図面の簡単な説明】
【0024】
【図1】本発明の第1実施形態にかかるSiC単結晶製造装置の断面図である。
【図2】本発明の第2実施形態にかかるSiC単結晶製造装置の断面図である。
【図3】本発明の第3実施形態にかかるSiC単結晶製造装置の断面図である。
【図4】本発明の第4実施形態にかかるSiC単結晶製造装置の断面図である。
【発明を実施するための形態】
【0025】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
【0026】
(第1実施形態)
図1に、本実施形態のSiC単結晶製造装置1の断面図を示す。以下、この図を参照してSiC単結晶製造装置1の構造について説明する。
【0027】
図1に示すSiC単結晶製造装置1は、底部に備えられた導入口2を通じてキャリアガスと共にSiおよびCを含有するSiCの原料ガス3(例えば、珪素含有ガスとしてシラン等のシラン系ガスと炭素含有ガスとしてプロパン等の炭化水素系ガスの混合ガス)を供給し、排出口4を通じて排出することで、SiC単結晶製造装置1内に配置したSiC単結晶基板からなる種結晶5上にSiC単結晶20を結晶成長させるものである。
【0028】
SiC単結晶製造装置1には、真空容器6、反応容器7、断熱材8、台座9、成長結晶引上保温ガイド10、外周断熱材11、回転引上ガス導入機構12および第1、第2加熱装置13、14が備えられている。
【0029】
真空容器6は、石英ガラスなどで構成され、中空円筒状を為しており、キャリアガスや原料ガス3の導入排出が行え、かつ、SiC単結晶製造装置1の他の構成要素を収容すると共に、その収容している内部空間の圧力を真空引きすることにより減圧できる構造とされている。この真空容器6の底部に原料ガス3の導入口2が設けられ、第1、第2加熱装置13、14よりも外側の部位、例えば側壁の中央もしくは下方位置などに原料ガス3の排出口4が設けられている。
【0030】
反応容器7は、導入口2から台座9に向けて延設されている。反応容器7は、例えば黒鉛、もしくは、表面がTaC(炭化タンタル)などの高融点金属炭化物にてコーティングされた黒鉛などで構成され、台座9よりも原料ガス3の流動経路上流側に配置されている。この反応容器7により、導入口2から供給された原料ガス3を種結晶5に導くまでに、原料ガス3に含まれたパーティクルを排除しつつ、原料ガス3を加熱分解している。この反応容器7内で加熱分解された原料ガス3が種結晶5に供給され、種結晶5の表面において炭素や珪素原子が過飽和な状態となることで、SiC単結晶20が種結晶5の表面に析出させられる。
【0031】
具体的には、反応容器7は、中空部を有する筒状部材、例えば中空円筒状部材を有した構造とされ、真空容器6に対して同軸的に配置されている。本実施形態の場合は、反応容器7は、導入口2側において導入口2に合わせて内径が絞られることで導入口2と接続され、反応容器7の中空部を通過してから原料ガス3が種結晶5の表面に供給される。また、反応容器7は、台座9側において外径が拡大させられたフランジ形状(L字形状)とされており、排出ガスが外周方向に導き易い構造とされていると共に、断熱材8を原料ガス3との接触から保護できる構造とされている。
【0032】
断熱材8は、反応容器7の外周方向への熱の拡散を抑制するものであり、円筒形状を為しており、真空容器6および反応容器7に対して同軸的に配置され、反応容器7の外周面を囲むように配置されている。この断熱材8は、例えば黒鉛、もしくは、表面がTaC(炭化タンタル)などの高融点金属炭化物にてコーティングされた黒鉛などで構成される。
【0033】
台座9は、反応容器7の中心軸を同軸として配置され、例えば黒鉛、もしくは、表面がTaC(炭化タンタル)などの高融点金属炭化物にてコーティングされた黒鉛などで構成される。この台座9に、種結晶5を貼り付けて保持し、種結晶5の表面にSiC単結晶20を成長させる。台座9は、成長させたい種結晶5の形状と対応する形状、例えば円盤形状で構成され、種結晶5が配置される面と反対側の面において回転引上ガス導入機構12と連結される。
【0034】
なお、台座9の寸法、例えば台座9が円盤状とされる場合における台座9の外径は、反応容器7の中空部のうち台座9側の内径以上の寸法とされており、例えば6インチとされる。このため、反応容器7の中空部を通じて供給される原料ガス3は、台座9の中央部、つまり種結晶5の中央部に衝突し、そこから種結晶5の外周方向に流動させられるようになっている。
【0035】
成長結晶引上保温ガイド10は、台座9の周囲を囲むように、真空容器6の中心軸と同軸的に配置され、真空容器6の上面から下方に向かって延設されている。この成長結晶引上保温ガイド10も、例えば黒鉛、もしくは、表面がTaC(炭化タンタル)などの高融点金属炭化物にてコーティングされた黒鉛などで構成される。成長結晶引上保温ガイド10は、SiC単結晶20の成長に伴って台座9や種結晶5およびSiC単結晶20を引き上げるときに、SiC単結晶20の外周面を所定温度に保温するものであり、本実施形態では、内径が台座9の外径よりも所定寸法大きく設定されている。このため、成長結晶引上保温ガイド10に対してSiC単結晶20が所定間隔空けた状態を保持しながら引上げ可能とされている。
【0036】
また、成長結晶引上保温ガイド10のうち最も反応容器7側の先端は、フランジ形状(L字形状)とされており、外周断熱材11を原料ガス3との接触から保護できる構造とされている。この成長結晶引上保温ガイド10のうち最も反応容器7側の先端と反応容器7のうち成長結晶引上保温ガイド10側の先端との間は、所定間隔の隙間とされている。そして、反応容器7と成長結晶引上保温ガイド10のL字形状とされた先端部分にてガス排出口を構成し、これらの間の隙間を通じて真空容器6のうち第1、第2加熱装置13、14よりも外側の空間に原料ガス3等が流動させられ、さらに排出口4を通じて排出させられるようになっている。
【0037】
外周断熱材11は、成長結晶引上保温ガイド10の外周を囲むように配置され、成長結晶引上保温ガイド10から外周方向に熱が拡散することを抑制する。この外周断熱材11も、例えば黒鉛、もしくは、表面がTaC(炭化タンタル)などの高融点金属炭化物にてコーティングされた黒鉛などで構成される。
【0038】
回転引上ガス導入機構12は、パイプ材12a、本体12b、ベローズ12cを有した構成とされている。パイプ材12aは、一端が台座9のうち種結晶5が貼り付けられる面と反対側の面に接続されており、他端が回転引上ガス導入機構12の本体12bに接続されている。このパイプ材12aは、例えばSUSなどで構成される。本体12bは、パイプ材12aの回転および引上げを行いつつ、パイプ材12aとベローズ12cの間からパージガス(希釈ガス)15を導入する役割を果たす。ベローズ12cは、パージガス15の導入空間を構成しており、パイプ材12aの周囲を囲むように配置され、パイプ材12aの引上げに伴って伸縮可能とされている。
【0039】
このような構成により、本体12bにて、パイプ材12aの回転および引上げを行いつつ、パイプ材12aとベローズ12cの間からパージガス15を導入するという動作を行うことが可能とされている。これにより、パイプ材12aと共に、台座9、種結晶5およびSiC単結晶20の回転および引き上げが行え、SiC単結晶20の成長面が所望の温度分布となるようにしつつ、SiC単結晶20の成長に伴って、その成長表面の温度が常に成長に適した温度に調整できる。さらに、台座9や種結晶5と成長結晶引上保温ガイド10との間の隙間を通じてパージガス15が導入されるため、これらの隙間に原料ガス3がより入り込まないようにできる。なお、パージガス15は、原料ガス3を希釈するためのガスであり、例えばArやHeなどの不活性ガスやH2やHClなどのエッチングガスをパージガス15として用いている。
【0040】
第1、第2加熱装置13、14は、誘導加熱コイルやヒータなどによって構成されている。第1加熱装置13は、反応容器7および断熱材8の外周を囲むように配置されており、第2加熱容器14は、台座9の外周を囲むように、本実施形態の場合には、成長結晶引上保温ガイド10および外周断熱材11の外周を囲むように配置されている。これら第1、第2加熱装置13、14は、それぞれ独立して温度制御できるように構成されており、第1、第2加熱装置13、14による加熱対象部位の温度制御を独立して細やかに行うことができる。すなわち、第1加熱装置13によって反応容器7を加熱することで、反応容器7が原料ガス3を加熱分解できる温度に制御でき、第2加熱装置14によって成長結晶引上保温ガイド10やSiC単結晶20の成長表面を加熱することで、SiC単結晶20の成長表面の温度分布をSiC単結晶20の成長に適した状態に調整できる。
【0041】
例えば、本実施形態では、第1、第2加熱装置13、14を誘導加熱コイル13a、14aによって構成しており、誘導加熱コイル13a、14aの周囲を囲むようにコイル保護管13b、14bを配置することで、誘導加熱コイル13a、14aの腐食を防止している。コイル保護管13b、14bは、例えば石英管などで構成される。また、耐腐食構造として、コイル保護管13b、14bで誘導加熱コイル13a、14aを覆う構造以外に、誘導加熱コイル13a、14aに耐腐食コーティング(SiCコートやSiO2コート)を施すようにしても良い。
【0042】
このような構造により、本実施形態にかかるSiC単結晶製造装置1が構成されている。続いて、本実施形態にかかるSiC単結晶製造装置1を用いたSiC単結晶20の製造方法について説明する。
【0043】
まず、台座9に種結晶5を取り付けたのち、第1、第2加熱装置13、14を制御し、所望の温度分布を付ける。具体的には、第1加熱装置13を制御することで反応容器7を誘導加熱して2500℃にすると共に、第2加熱装置14を制御することで成長結晶引上保温ガイド10を誘導加熱して2200℃に保持する。このような温度とすることで、反応容器7ではこの後導入される原料ガス3を加熱分解できると共に、種結晶5の表面において原料ガス3を再結晶化することが可能となる。
【0044】
また、真空容器6を所望圧力にしつつ、必要に応じてArやHeなどの不活性ガスによるキャリアガスやH2やHClなどのエッチングガスを導入しながら導入口2を通じて原料ガス3を導入する。例えば、シラン1リットル/分、プロパン0.33リットル/分、水素15リットル/分のレートで導入する。これにより、原料ガス3は図中矢印で示す経路で流動し、加熱された反応容器7内において原料ガス3が加熱分解された状態で種結晶5の表面に供給され、種結晶5の表面上にSiC単結晶20が成長させられる。
【0045】
このとき、回転引上ガス導入機構12より、パイプ材12aとベローズ12cとの間を通じてArやHeなどの不活性ガスやH2やHClなどのエッチングガスにて構成されるパージガス15を導入する。これにより、図中の矢印に示したように、台座9の周囲からパージガス15が導入される。そして、原料ガス3のうち過飽和に達せずにSiC単結晶20の成長に寄与しなかった未反応ガスは、パージガス15によって希釈されながら、反応容器7と成長結晶引上保温ガイド10との間の隙間を通じて、真空容器6のうち第1、第2加熱装置13、14よりも外側の空間に原料ガス3等が流動させられる。これにより、真空容器6のうち反応容器7や成長結晶引上保温ガイド10などのSiC単結晶20の成長用の坩堝を構成する部分よりも外側において、未反応ガスに含まれるSiCの構成成分がパーティクル(粉燻)状となり、真空容器6の底部に堆積除去される。
【0046】
以上説明したように、本実施形態では、反応容器7とSiC単結晶20の間において、原料ガス3のうちの未反応ガスがSiC単結晶20の径方向外側に排出されるようにしている。具体的には、反応容器7と成長結晶引上保温ガイド10との間に隙間を設け、この隙間を通じて原料ガス3のうちの未反応ガスが外側に排出されるようにしている。つまり、台座9の外周を通過して真空容器6の上方から未反応ガスを排出する形態ではなく、台座9の下方においてSiC単結晶20の径方向外側に向かって未反応ガスを排出する形態としている。このため、台座9の外周を通過する場合と比較して、排出経路の幅を広くすることが可能になり、排出経路の詰まりを更に抑制することが可能になる。特に、SiC単結晶20の径方向外側に向かって未反応ガスを流動させる場合、排出経路の断面積が徐々に拡大していくことになるため、より希釈化が可能となり、より排出経路の詰まりを抑制することが可能となる。
【0047】
また、台座9の外周の排出経路の詰まりを見込む必要がないため、第2加熱装置14の制御に基づいてSiC単結晶20の成長表面の保温や形状制御を行うことが容易となる。具体的には、成長結晶引上保温ガイド10から台座9までの間を排出経路の詰まりを見込んだ距離にする必要がなくなる。したがって、排出経路の詰まりを更に抑制し、かつ、SiC単結晶20の成長表面の保温や形状制御を行い易くすることが可能となる。
【0048】
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して反応容器7側からもパージガス15を導入する形態としたものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
【0049】
図2は、本実施形態にかかるSiC単結晶製造装置1の断面図である。この図に示したように、本実施形態では、反応容器7のうちの成長結晶引上保温ガイド10側の先端部、具体的にはフランジ形状とされた部分に貫通孔7aを形成すると共に、反応容器7と断熱材8との間に隙間を設け、さらに真空容器6の底面にパージガス15の導入口16を設けている。貫通孔7aは、例えば、反応容器7の中心軸を中心として周方向に等間隔に複数個配置されている。
【0050】
このような構成では、導入口16からパージガス15を導入すると、反応容器7と断熱材8の隙間から貫通孔7aを通じてパージガス15が台座と反応容器7との間に供給される。これにより、反応容器7側からパージガス15が導入されるようにすることができる。したがって、原料ガス3のうち過飽和に達せずにSiC単結晶20の成長に寄与しなかった未反応ガスをよりパージガス15によって希釈することが可能となり、より排出経路の詰まりを抑制することが可能となる。
【0051】
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態は、第1実施形態に対して真空容器6の保護構造を追加したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
【0052】
図3は、本実施形態にかかるSiC単結晶製造装置1の断面図である。この図に示したように、本実施形態では、反応容器7と成長結晶引上保温ガイド10との間の隙間の周囲を囲むように、遮蔽板17を配置した構造としている。遮蔽板17は、例えば黒鉛、もしくは、表面がTaC(炭化タンタル)などの高融点金属炭化物にてコーティングされた黒鉛などで構成され、成長結晶引上保温ガイド10の端部から所定距離離間した位置に配置されることで、流動してくる原料ガス3やパージガス15の流動の妨げとならないようにしてある。図示しないが、遮蔽板17は、例えば真空容器6の底面方向に延びる複数本の支持棒によって支持されることで、上記位置に保持される。
【0053】
このような遮蔽板17を備えることにより、反応容器7と成長結晶引上保温ガイド10との間に高温な部位からの輻射熱を遮り、真空容器6に直接輻射熱が照射されることを防止できる。したがって、真空容器6を熱から保護することが可能となる。また、このような遮蔽板17を配置すると、SiC単結晶20の成長空間、つまり反応容器7と成長結晶引上保温ガイド10との間から熱が逃げることを抑制できることから、熱損失低減を図ることも可能となる。
【0054】
(第4実施形態)
本発明の第4実施形態について説明する。本実施形態は、第1実施形態に対して成長結晶引上保温ガイド10の構造を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
【0055】
図4は、本実施形態にかかるSiC単結晶製造装置1の断面図である。この図に示したように、本実施形態では、成長結晶引上保温ガイド10を台座9の引き上げ方向において徐々に内径が広がる構造としている。このように、成長結晶引上保温ガイド10の内径を拡大した構造とすれば、SiC単結晶20が径方向に拡大したとしても、SiC単結晶20が成長結晶引上保温ガイド10の内壁面に接しないようにできる。
【0056】
なお、この場合、台座9の引上げ方向上方において、成長結晶引上保温ガイド10の内壁面から台座9までの距離が広がることになる。しかしながら、SiC単結晶20の成長表面の保温が行えれば形状制御を行い易くできることから、SiC単結晶20の成長表面と離れた位置において成長結晶引上保温ガイド10の内壁面から台座9までの距離が広がっていたとしても問題はない。また、本実施形態では、成長結晶引上保温ガイド10の先端部に集中して第2加熱装置14の誘導加熱コイル14aを配置するようにしており、このような構成とすることで、よりSiC単結晶20の成長表面を保温することが可能となる。
【0057】
(他の実施形態)
上記各実施形態では、SiC単結晶製造装置1の構成の一例を示したが、適宜設計変更可能である。
【0058】
例えば、回転引上ガス導入機構12により台座9が引上げられる構造とすることで、よりSiC単結晶20の長尺成長が可能にできる構造について説明したが、必ずしも引き上げ機構を備えなければならないわけではない。同様に、台座9の周囲を囲むように配置されるガイドとして、台座9の引き上げにも対応する成長結晶引上保温ガイド10を例に挙げたが、少なくとも台座9の周囲を囲む構造のガイドであれば良い。また、パージガス15の導入により、より排出経路の詰まりを抑制できるが、パージガス15の導入は必須ではないため、回転引上ガス導入機構12を単なる回転引上機構としても良いし、上記のように引き上げを行わない単なる回転機構としても良い。また、より温度分布を均等にするために台座9を回転させるようにしたが、回転引上ガス導入機構12から回転機構を無くして引上ガス導入機構としても良いし、ガス導入を無くして単なる引上機構としても良い。
【0059】
また、反応容器7と成長結晶引上保温ガイド10を別部材としたが、これらを一体構造とし、SiC単結晶20の成長表面よりも下方において、反応容器7と成長結晶引上保温ガイド10とを一体化した部材にガス通路となる穴を形成し、この穴を通じて原料ガス3の未反応ガスやパージガス15がSiC単結晶20の径方向外側に排出されるようにしても良い。この場合、穴を周方向に等間隔に複数個設ければ、より排出経路の断面積を増やすことが可能となり、より排出経路の詰まりを抑制することが可能となる。これらの場合にも、勿論、上記第3実施形態で説明した遮蔽板17を備えることができるが、真空容器6の内側において、少なくとも遮蔽板17が反応容器7とSiC単結晶20との間における原料ガス3が排出される部位と対応する場所を覆う部位に配置されていれば良い。
【0060】
また、上記各実施形態では、パージガスとして不活性ガスやエッチングガスを用いる場合について説明したが、成長させるSiC単結晶20の不純物ドーパントとなるガス、例えば窒素(N2)ガスなどをパージガスとして用いても良い。
【符号の説明】
【0061】
1 SiC単結晶製造装置
2、16 導入口
3 原料ガス
4 排出口
5 種結晶
6 真空容器
7 加熱容器
8 断熱材
9 台座
10 成長結晶引上保温ガイド
11 外周断熱材
12 回転引上ガス導入機構
13、14 第1、第2加熱装置
15 パージガス
17 遮蔽板
20 SiC単結晶

【特許請求の範囲】
【請求項1】
真空容器(6)内に配置された台座(9)に対して炭化珪素単結晶基板にて構成された種結晶(5)を配置し、該種結晶(5)の下方から炭化珪素の原料ガス(3)を供給することにより、前記種結晶(5)の表面に炭化珪素単結晶(20)を成長させる炭化珪素単結晶の製造装置において、
前記真空容器(6)の底面に配置され、前記原料ガス(3)の導入を行う導入口(2)と、
前記真空容器(6)内において該真空容器(6)の底面側から前記台座(9)側に向けて延設され、前記原料ガス(3)を通過させる中空部を有し、前記原料ガス(3)を加熱分解して前記種結晶(5)に向けて供給する筒状部材で構成された反応容器(7)と、
前記反応容器(7)の外周に配置され、前記反応容器(7)の加熱を行う第1加熱装置(13)と、
前記台座(9)の外周に配置され、前記種結晶(5)の表面に成長させられる前記炭化珪素単結晶(20)の成長表面を保温する第2加熱装置(14)と、
前記真空容器(6)のうち前記第1、第2加熱装置(13、14)よりも外側に配置され、前記原料ガス(3)のうちの未反応ガスを排出する排出口(4)とを有し、
前記反応容器(7)より供給される前記原料ガス(3)が前記台座(9)側に供給されたのち、前記反応容器(7)と前記炭化珪素単結晶(20)との間において、前記炭化珪素単結晶(20)の径方向外側に流動させられことで、前記真空容器(6)のうち前記第1、第2加熱装置(13、14)よりも外側に流動させられ、前記排出口(4)を通じて排出されるように構成されていることを特徴とする炭化珪素単結晶製造装置。
【請求項2】
前記台座(9)の周囲を囲み、該台座(9)から所定間隔離間して配置されると共に、前記反応容器(7)のうち前記台座(9)側の先端から所定間隔離間して配置されたガイド(10)を備え、
前記第2加熱装置(14)は、前記ガイド(10)の外周に配置され、
前記反応容器(7)より供給される前記原料ガス(3)は、前記台座(9)側に供給されたのち、前記反応容器(7)と前記ガイド(10)との間の隙間を通じて前記真空容器(6)のうち前記第1、第2加熱装置(13、14)よりも外側に流動させられることを特徴とする請求項1に記載の炭化珪素単結晶製造装置。
【請求項3】
前記台座(9)と前記ガイド(10)との間の隙間を通じてパージガス(15)が導入され、前記原料ガス(3)を希釈しつつ、前記反応容器(7)と前記ガイド(10)との間の隙間を通じて、前記真空容器(6)のうち前記第1、第2加熱装置(13、14)よりも外側に流動させられることを特徴とする請求項2に記載の炭化珪素単結晶製造装置。
【請求項4】
前記台座(9)を上方に引上げる引上機構(12)を有し、
前記ガイド(10)は、上方に向かって内径が拡大された構造とされていることを特徴とする請求項2または3に記載の炭化珪素単結晶製造装置。
【請求項5】
前記反応容器(7)と前記台座(9)は同軸上に配置され、前記台座(9)の外径は、前記反応容器(7)のうちの前記台座(9)側の先端の内径以上の寸法とされていることを特徴とする請求項1ないし4のいずれか1つに記載の炭化珪素単結晶製造装置。
【請求項6】
前記第1、第2加熱装置(13、14)は、誘導加熱コイル(13a、14a)と、該誘導加熱用コイル(13a、14a)を覆う耐腐食構造(13b、14b)とを有した構成とされていることを特徴とする請求項1ないし5のいずれか1つに記載の炭化珪素単結晶製造装置。
【請求項7】
前記真空容器(6)の底面からパージガス(15)が導入され、前記原料ガス(3)を希釈しつつ、前記真空容器(6)のうち前記第1、第2加熱装置(13、14)よりも外側に流動させられることを特徴とする請求項1ないし6のいずれか1つに記載の炭化珪素単結晶製造装置。
【請求項8】
前記真空容器(6)の内側には、前記反応容器(7)と前記炭化珪素単結晶(20)との間における前記原料ガス(3)が排出される部位と対応する場所を覆う遮蔽板(17)が備えられていることを特徴とする請求項1ないし7のいずれか1つに記載の炭化珪素単結晶製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−28491(P2013−28491A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−165719(P2011−165719)
【出願日】平成23年7月28日(2011.7.28)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】