説明

異なる波長のための検出器を用いて一波長において放射線を検出するための方法及び装置

周波数範囲において電磁放射線に反応する共振部と、異なる周波数範囲において電磁放射線を放射するために共振部により受信される放射線に反応する変換部と、変換部により放射される放射線を検出する検出部とを有する装置について開示している。一特徴に従って、共振部、変換部及び検出部はそれぞれ、集積回路の一部である。他の特徴に従って、変換部により放射される放射線は赤外線エネルギーである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、放射線を検出するための技術に関し、特に、異なる周波数範囲において動作する検出器を用いて1つの周波数範囲における放射線を検出するための技術に関する。
【背景技術】
【0002】
赤外(IR)放射線を正確に且つ効率的に検出する及び/又は画像化することができる既存の装置がある。それらの装置は、軍事及び通信用途を含む種々の用途で利用されている。しかしながら、環境因子及び他の因子はIRエネルギーを用いる対象物又はシーンの効率的且つ適切な検出を妨害する可能性がある。例えば、雲、煙、雨、カモフラージュ用ネットの存在は、IR検出器が対象の対象物又はシーンにより放射される又は散乱されるIR放射線を適切に且つ信頼性高く検出することを困難にする。他方、対象である対象物又はシーンは、通常、IR放射線ばかりでなく、大幅に低い周波数における放射線を放射又は散乱する。それらの低い周波数における放射線は、雲、煙、雨、カモフラージュ用ネット及び他の匹敵する状態又は構造物を容易に透過し、それ故、種々の環境条件の悪影響を受け難い。しかしながら、このような低い周波数の放射線を検出すること及び/又は画像化することには幾つかの問題点がある。
【0003】
この関連で、既存のIR検出器(しばしば、ボロメータと呼ばれる)は、受信放射線の検出器による吸収によりもたらされる温度変化を測定することができる高感度装置である。それらの装置はIR放射線について最適化されるが、他の周波数範囲における放射エネルギーは理論的には吸収され、IR検出器における測定可能な温度変化をもたらすこととなる。これは、上記のように、IR放射線の周波数より十分に低い周波数を有する放射線は特定の環境の影響を受け難いという考え方により有利である。
【0004】
それ故、そのような放射線を検出するために、IR検出器を用いる考え方に対して考慮がなされてきた。しかしながら、IR放射線の周波数より十分に低い周波数を有する放射線の場合、その放射線の波長は典型的なボロメータの大きさより非常に長い。従って、このような放射線のエネルギーを効率的に捕捉するためには、低い周波数の放射線に対して共振アンテナ状構造を与えることが必要である。この関連で、アンテナを用いることにより低い周波数の放射線を効率的に検出するように、アンテナにより受信される電磁エネルギーはIR検出器に効果的に結合される必要があり、それ故、IR検出器は測定可能な温度変化を受ける。
【0005】
しかし、最適化されたボロメータは、通常、数千オームパースクエアである電気抵抗を有する感熱材料(例えば、アモルファスシリコン)を有する。このような電気抵抗は又、アンテナに対してボロメータにより与えられる電磁付加抵抗に対応する。それとは対照的に、対象の低周波数範囲に対して適切な共振アンテナ構成は、典型的には、数オーム乃至数百オームのオーダーの比較的低いインピーダンスを有する。それ故、ボロメータを有する共振アンテナ状構造を用いる考え方は、高抵抗のボロメータの感度を最大化する必要性が低インピーダンスのアンテナ共振器に対してボロメータのインピーダンスを適合させる必要性と対立する傾向にあることにより妨げられてきた。
【発明の開示】
【課題を解決するための手段】
【0006】
上記から、一周波数範囲において放射線を捕捉し、次いで、異なる周波数範囲で動作する検出器によりこのエネルギーを検出するための方法及び装置についての必要性が生じたことは明らかである。本発明の一実施形態に従って、共振部の一区画と、共振部に結合された変換部と、変換部の領域に配置された検出部とを有する集積回路を有する構成に関連するこの必要性に対処するような方法及び装置を提供する。これに関連して、その方法及び装置は:変換部が、第1周波数範囲と実質的に異なる第2周波数範囲内で電磁放射線を放射することにより第1周波数範囲内の共振部分により受信される放射線に反応するようにされる段階と;第2周波数範囲内において変換部により放射される放射線を検出部により検出する段階と;を有する。
【0007】
本発明の他の実施形態は、共振部と、共振部に結合された変換部と、変換部の領域において配置された検出部とを有する構成に関する。これに関連にして、その方法及び装置は:変換部が赤外放射線を放射することにより選択された周波数範囲において共振部により受信される放射線に反応するようにされる段階と;変換部により放射される赤外放射線を検出部により検出する段階と;を有する。
【0008】
添付図面に関連付けて、以下、詳述する“発明を実施するための最良の形態”により、本発明を更に理解することが可能である。
【発明を実施するための最良の形態】
【0009】
図1は、集積回路10の一部である装置の部分平面図である。集積回路10は検出区画の二次元アレイを有し、それらの9つの区画は図1において参照番号11乃至19で示されている。9つの検出区画11乃至19が基板21上に備えられ、検出区画の大きいアレイの一部を表している。それらの検出区画11乃至19の各々は、アレイにより生成される画像におけるそれぞれの画素を生成する。
【0010】
図1の実施形態においては、検出区画11乃至19は各々、外部から集積回路10に入射する電磁放射線であって、赤外(IR)放射線の周波数範囲より十分に低い周波数範囲における電磁放射線を検出する。換言すれば、検出区画11乃至19の各々は、赤外放射線の波長より実質的に長い波長を有する放射線を検出する。例えば、赤外放射線は、典型的には、約2乃至15ミクロンの範囲内の波長を有し、検出区画11乃至19は各々、約100ミクロンから約2000ミクロンの範囲内の波長を有する放射線のような大幅に長い波長を有する放射線を検出する。検出区画11乃至19各々は、例えば、約1000ミクロンの波長を有する放射線に対して最適に反応する。しかしながら、一部の特定の波長値は、ここでは、例として与えられるが、本発明においては、他の周波数及び波長を有する入射放射線と共に用いられることができる。
【0011】
図1の実施形態においては、検出区画11乃至19は全て、実質的に同一である。それ故、それらの検出区画の1つのみについて、ここでは、非常に詳細に説明する。更に具体的には、図2において、検出部11のブロック図を示している。検出部11は、2つの間隔を置いた導電性のアンテナ要素31及び32を有し、それらのアンテナ要素各々は略三角形であり、ボウタイアンテナとして一般に周知であるタイプのダイポールアンテナ構成になるように備えられている。図2のアンテナ要素32及び32は、ボウタイアンテナである共振器を規定するが、代替として、何れの他の適切な共振器構成を用いることが可能である。
【0012】
アンテナ要素31及び32の外側のエッジ間の距離34は、検出部11が検出するように意図されている周波数範囲の中心周波数に対する波長λの約半分であるように選択される。このことは、そのボウタイアンテナ31及び32が、それらの周波数の受信を最適化するように、その中心波長近くの周波数に対する共振器としての機能を果たすことを可能にする。図1を参照するに、水平方向及び垂直方向の両者において検出部11の中心間距離が、図2における距離34より僅かに大きい距離であることに留意されたい。
【0013】
検出区画11は共振器36を有し、その共振器36はアンテナ要素31及び32のそれぞれ一の頂点に結合された各々の端部を有する。抵抗器36の抵抗値は、アンテナ要素31及び32により規定される共振器の低いインピーダンスに非常によくマッチングするように選択される。各々のアンテナ要素31及び32と抵抗器36の関連端部との間の電気的接続は、抵抗内で発生した熱がどちらかのアンテナ要素に流れ込む範囲を最小化するように、抵抗器36とアンテナ要素31及び32との間の熱分離の度合いを与えるように、比較的小さくなるように構成される。
【0014】
抵抗器36は、アンテナ要素31及び32からエネルギーを受信しないときでさえ、あるレベルの赤外放射線を本質的に放射する。しかし、アンテナ要素31及び32は、対象の周波数範囲における放射線を吸収するが、この受信した放射線からのエネルギーは抵抗器36により吸収され、その結果として得られる抵抗器における電磁電流は、抵抗器36がジュール加熱され、数本の矢印38で示されているように、付加的赤外放射線を放射する。実質的に、抵抗器36は、第1周波数範囲における受信放射線を捉え、第1周波数と大幅に異なる第2周波数範囲における放射線に変換し、その第2周波数範囲は、この実施形態においては赤外放射線であることに留意されたい。
【0015】
図2においては、抵抗器36により矢印38のように放射される赤外放射線は、ボロメータと一般に呼ばれている、既知のタイプの赤外検出器41により検出される。ボロメータ41は、一般に読み出し回路と呼ばれている既知のタイプの回路42に結合されている。図1の赤外線回路10においては、それぞれの個別の読み出し回路42が、検出区画11乃至19の各々の下であって基板21内に備えているが、簡略化のために、その読み出し回路は図1には示されていない。
【0016】
上記のように、検出区画11乃至19は、図1及び2の実施形態においては、全て同一であるが、本発明は、この構成に限定されるものではない。例えば、図1における検出区画11乃至19は全て、同じオリエンテーションを有しているが、代替として、それらのオリエンテーションは異なることが可能である。例えば、全ての他の列における検出区画の全ては、図示されている位置から時計方向に90°回転されることが可能である。他の実施例としては、複数の検出区画のオリエンテーションはランダムであることが可能である。検出区画は異なる構造を有することが又、可能である。一実施例として、異なる検出区画は異なる距離λ/2を有し(図2)、所定のアレイ内の異なる検出区画はそれぞれ異なる周波数範囲における放射線に対して反応する。これは、単一の検出区画について実際的であるというより、アレイがより広い周波数範囲に及ぶことを可能にする。
【0017】
図3は、図1の検出区画11を拡大して示している部分斜視図である。図4は、図3における断面線4−4に沿って得られた部分断面図である。図3及び4のように、ボロメータ41は、基板21の垂直上方の間隔を置いた位置に備えられていることに留意されたい。これに関連して、図3は、2つの電気導電性ポスト51及び52を示し、それらのポストの各々は、基板21から垂直上方に伸びている。上記のように、読み出し回路42は、基板21内であって、上部表面に隣接して実施される。明確化のために、読み出し回路42は、図3において破線で示されている。各々のポスト51及び52は、読み出し回路42に電気的に結合された下端部を有する。ポスト51及び52の上端部は、基板21の垂直上方に間隔を置いた位置でメンブレン53を支持している。メンブレン53と基板21との間の空間は、赤外放射線の波長の約1/4であり、その理由については下で説明する。
【0018】
メンブレン53は、中央部56及び、それぞれのポスト51及び52の上部に対して中央部56の対角線状に反対側の角から伸びるL字型レッグ57及び58を有する。メンブレン53は多層の構成要素である。そのメンブレンは、窒化シリコンのような材料から成る下部層61と、下部層61上に備えられ且つアモルファスシリコンのような感熱材料から成るボロメータ層41と、ボロメータ層41上に備えられた2つの分離された電極62及び63と、窒化シリコンのような材料から成る上部層66とを有する。
【0019】
電極62及び63は、中央部56の中央に伸びているギャップ又はスロット67により分離されている。電極62及び63の各々は、レッグ57及び58のそれぞれ一に沿って伸びている部分を有し、導電性ポスト51及び52のそれぞれ一の上端部に電気的に結合されている。ボロメータ層41におけるアモルファスシリコンは、温度の変化に対して本質的に変化する抵抗を有する。読み出し回路42は、導電性ポスト51及び52と電極62及び63とによりボロメータ層41に結合されている。読み出し回路41は、何れの所定の時点で電極62及び63の間のボロメータ41の抵抗値を電気的に決定することができ、そのことは又、読み出し回路42がボロメータ層41の現在の温度を決定することを可能にする。これは又、ボロメータ層41が吸収した熱量を表し、その吸収した熱量は受けた放射線におけるエネルギー量に対応する。
【0020】
図3を参照するに、図2の抵抗器36は、基板21の上部表面において備えられている薄い矩形状の薄膜の形で実施されている。開示している実施形態においては、抵抗器36はチタンタングステン(TiW)から成り、代替として、ニッケルクロム(NiCr)、タングステン、ドーピングされたポリシリコン又は種々の一次金属を含む何れの他の適切な材料から成ることが可能であるが、それらに限定されるものではない。図3に示すように、アンテナ要素31及び32は抵抗器36の反対側に備えられ、基板21の上部表面上に備えられた薄膜である。アンテナ要素31は、抵抗器36の一方側のエッジに電気的に結合された頂点を有し、アンテナ要素32は、抵抗器36の反対側のエッジに電気的に結合された頂点を有する。開示している実施形態においては、アンテナ要素31及び32は各々、例えば、アルミニウム、金又は銅等の金属から成るが、代替として、何れの他の適切な材料から成ることが可能である。
【0021】
図4を参照するに、そして図2に関連して上記したように、アンテナ要素31及び32は、赤外放射線の周波数と実質的に異なる選択された周波数範囲内の放射線を受信する共振器として集合的に機能する。特に、このように受信される放射線は、赤外放射線の周波数より非常に低い周波数を有する。このように受信される放射線からのエネルギーは抵抗器36により吸収され、抵抗器36は加熱され且つ矢印38において赤外放射線を放射するようにされる。このような赤外放射線は上方に進み、メンブレン53において吸収され、ここで、その赤外放射線はボロメータ層41を加熱し、それ故、そのボロメータ層の抵抗を変化させる。読み出し回路42は、この抵抗が時間の経過と共にどのように変化するかを測定し、それ故、メンブレン53により吸収された熱量を測定することができ、その吸収された熱量は又、アンテナ要素31及び32により受信された対象の放射線量を表す。
【0022】
上記のように、抵抗器36とメンブレン53との間の垂直方向の間隔は赤外放射線の波長の約4分の1である。この間隔は、赤外放射線の共振空洞として効果的に機能し、それ故、抵抗器36により発生された熱エネルギー38がボロメータ41により吸収されるまでその空洞内に本質的にトラップされ、それにより、ボロメータ41は、抵抗器36により発生される赤外線エネルギー38の吸収に対して高い効率を有する。開示している実施形態においては、その空洞は真空になっているが、代替として、例えば、窒素、フレオン、アルゴン、ヘリウム、二酸化炭素又は何れの他の適切なガス等のガスでその空洞に供給することが可能である。上記のように、図示している実施形態における抵抗器36はチタンタングステンから成ることが可能である。これは、適切な抵抗特性を有するばかりでなく、赤外放射線を反射することが可能である。この反射性は、放射線がメンブレン53により吸収されるまで、赤外放射線が共振空洞内にトラップされたまま保たれるように支援する。
【0023】
上記のように、抵抗器36は、アンテナ要素31及び32のインピーダンスにマッチングする抵抗値を有するように構成されている。検出される入射する放射線の周波数に応じて、その構成、それ故、アンテナ要素31及び32のインピーダンスは異なる。従って、図3の矩形状の抵抗器36は一部の周波数範囲に対しては適切であるが、その抵抗器の大きさ、厚さ及び材料を変えることにより特定の範囲に適合されることができ、他の方法を適用することが又、可能である。
【0024】
これに関連して、図5は、抵抗器36の他の実施形態である抵抗器81を有する代替の実施形態の平面図である。抵抗器81は、基板21の上部表面上に堆積された薄い金属層であり、アンテナ要素31の頂点から他のアンテナ要素32の頂点まで伸びている細長いストリップとして構成されている。抵抗器81は、隣接する区画間の比較的小さい空間において蛇行する構成を有し、それ故、アンテナ要素31及び32の頂点間の空間を抵抗器81により高効率で占めることができる。これは、抵抗器81が図3の抵抗器36の反射特性に匹敵する反射特性を与えることを可能にする。抵抗器81の幅、厚さ及び長さは全て、所望の特定の抵抗特性を得るように選択的に変化させることができる一方、適切な反射率を与えることができる。図3の抵抗器36及び図5の抵抗器81は、赤外放射線に対する反射部として機能することができる。代替として、抵抗器から物理的に分離された反射部を与えることが可能である。これに関連して、図6は、図4に類似した部分断面図であり、他の実施形態を示している。図6の実施形態においては、一部の付加構造を除いて、図4の実施形態と同様である。特に、層91は抵抗器36の上部に備えられ、電気的に絶縁し且つ熱的に伝導する材料から成る。図6においては、層91は窒化シリコンから成るが、代替として、何れの他の適切な材料を用いることが可能である。反射層92が層91の上に形成されている。図6においては、反射層92はアルミニウムから成るが、代替として、何れの他の適切な材料から構成されることが可能である。
【0025】
図6においては、抵抗器36は、図4の実施形態における場合と同様の方法で赤外線エネルギーを生成し且つ放射する。この赤外線エネルギーは、反射層92の方に熱伝導層91を通って進み、反射層92は共振空洞を通って上方に赤外線エネルギーを放射する。層92は又、メンブレン53の吸収効率を最適化するように、層92とメンブレン53との間の空洞内の赤外線エネルギーについての反射部として機能する。層91及び92は又、抵抗器36の抵抗器構成以外の抵抗器構成と共に用いられることが可能であり、それらの1つの実施例は図5に示している抵抗器81であることが認められる。
【0026】
図7は、図4及び6に類似した部分断面図であるが、他の実施形態を示している。これに関連して、図7は、下で説明する違いを除いて、図4の実施形態と同様である。特に、アンテナ要素31及び32は基板21の上部表面上に与えられるが、抵抗器36として機能する層は基板の上部表面上にはない。それに代えて、抵抗器36は、メンブレン52の中央部56の下側に備えられている。抵抗器36の反対側のエッジは、それぞれの垂直方向のポスト又はビア111及び112によりそれぞれのアンテナ要素31の頂点に各々、電気的に結合されている。図7においては、ポスト111及び112は、図3において参照番号51及び52で示されているポストから分離され且つそれらのポストに付加されている。図7においては、抵抗器36は、図4の実施形態における場合と同様の方法で赤外線エネルギーを生成するが、この赤外線エネルギーは、ボロメータ層41に層61を透過する直接伝導により伝達される。従って、熱は、非常に高い効率で抵抗器36からボロメータ層41に移される。
【0027】
図8は、図4に類似した部分断面図であるが、他の実施形態を示している。図8の実施形態は、下で説明する違いを除いて、図4の実施形態と同様である。図8においては、抵抗器36として機能する層は、メンブレン53の中央部56の上部に与えられ、特に、層66の上部に与えられている。アンテナ要素31及び32は基板21の上部表面上に備えられているが、それに代えて、抵抗器36より垂直方向に高い位置に支持されている。
【0028】
アンテナ要素31及び32を物理的に支持する構造は、図8において破線118及び119で示されている。当業者は、アンテナ要素31及び32を支持するために必要な構造のタイプを容易に理解することができるであろう。2つの導電性ポスト121及び122は各々、抵抗器36のそれぞれの反対側からそれぞれのアンテナ要素31又は32の頂点まで垂直方向に伸びている。ビア121及び122は電気エネルギーのための経路を与えるが、アンテナ要素31及び32の重量を支えることはできない。それに代えて、アンテナ要素31及び32の重量は支持構造118及び119により支えられる。図8においては、アンテナ要素31及び32は基板及び基板における読み出し回路から離れていて、それにより、アンテナ要素31及び32が読み出し回路42の動作により生成される電磁放射線により影響される可能性がある範囲は減少される。ビア121及び122は各々、抵抗器において発生される熱が何れのアンテナ要素に流れ込む範囲を最小化するために、抵抗器36とアンテナ要素31及び32との間の熱的分離の度合いを与えるように、断面が比較的小さくなるように構成されている。
【0029】
図9は図4に類似した部分断面図であるが、他の実施形態を示している。図9の実施形態は、下で説明する違いを除いて、図4の実施形態と同様である。図9の実施形態においては、アンテナ要素31及び32並びに抵抗器36は全て、メンブレン53の垂直上方に空間を置いた位置に備えられ、それ故、それらのアンテナ要素は全て、効果的に同じ垂直方向のレベルに存在している。このレベルにアンテナ要素31及び32並びに抵抗器36を支える構造について、図9において破線118及び119で示している。抵抗器36により放射される赤外放射線38はメンブレン53に対して下方に進む。抵抗器36は反射性であるため、共振空洞は、メンブレン53と抵抗器36との間であって、メンブレン53の上に形成されている。
【0030】
図10は、図2の検出区画の代替の実施形態である検出区画を示すブロック図である。図10の検出区画は、既知のタイプの増幅器151がアンテナ要素31及び32と抵抗器36との間に挿入されていることを除いて、図2の検出区画と同様である。特に、その増幅器151は2つの入力端子を有し、それらの入力端子の各々は、2つのアンテナ要素31及び32のそれぞれ一の内側の頂点に電気的に結合している。更に、増幅器151は2つの出力端子を有し、それらの出力端子の各々は抵抗器36のそれぞれの端部に結合されている。増幅器151は、その増幅器の入力インピーダンスがアンテナのインピーダンスとマッチングするように、及び、その増幅器の出力インピーダンスが吸収器の抵抗とマッチングするように、選択されることが可能である。このように、インピーダンスが適切にマッチングする場合、全体的な検出区画の効率は最適化される。更に、増幅器151を使用することにより、吸収器のインピーダンスにできるだけ近いアンテナ要素のインピーダンスを直接、マッチングさせるようにする必要性を回避することができる。
【0031】
本発明は多くの有利点を提供する。一有利点は、低インピーダンスのアンテナ要素にマッチングする抵抗を有する抵抗器の形で代理の吸収器を備えることによりもたらされ、それ故、ボロメータの抵抗はアンテナ要素に関係なく最適な感度のために最適化される。実際には、本発明は、検出されるエネルギーに基づいて熱の発生を最大化し且つ赤外線検出器の感度を最適化する機能に対して個別の制御を可能にする。他の有利点は、赤外線エネルギーのような周波数範囲において動作する既知のタイプの適切で高感度の検出器が、大幅に異なる周波数範囲からの放射線を検出する及び/又は画像化するために用いられることである。これは、赤外線エネルギーの周波数より十分に低い周波数を有する放射性の検出又は画像化を含むことに関して、特に有利である。
【0032】
幾つかの選択した実施形態について、図に示し且つ詳述したが、特許請求の範囲に記載するような、本発明の範囲及び主旨から逸脱することなく、種々の置き換え及び変形が可能であることが理解されるであろう。
【図面の簡単な説明】
【0033】
【図1】検出区画のアレイを有する集積回路の一部の部分平面図である。
【図2】図1の装置の検出区画の1つのブロック図である。
【図3】図1の検出区画の1つの拡大された部分斜視図である。
【図4】図3の断面線4−4に沿った部分断面図である。
【図5】図3の検出区画の他の実施形態の一部の部分平面図である。
【図6】図4に類似している他の実施形態を示す部分断面図である。
【図7】図4に類似している他の実施形態を示す部分断面図である。
【図8】図4に類似している他の実施形態を示す部分断面図である。
【図9】図4に類似している他の実施形態を示す部分断面図である。
【図10】図2の検出区画の他の実施形態である検出区画を示すブロック図である。

【特許請求の範囲】
【請求項1】
区画を有する集積回路を有する装置であって:
第1周波数範囲における電磁放射線に対して反応する共振部;
前記共振部に結合され、そして、前記第1周波数範囲と実質的に異なる第2周波数範囲内の電磁放射線を放射するために前記第1周波数範囲において前記共振部により受信される放射線に対して反応する変換部;及び
前記変換部の領域に備えられ且つ前記第2周波数範囲における放射線に反応する検出部であって、前記検出部は第2周波数範囲において前記変換部により放射される放射線を検出する、検出部;
を有することを特徴とする装置。
【請求項2】
請求項1に記載の装置であって、前記第2周波数範囲は赤外放射線を有し、前記変換部により放射される前記放射線は赤外放射線である、ことを特徴とする装置。
【請求項3】
請求項2に記載の装置であって、前記第1周波数範囲は赤外放射線より周波数が実質的に低い放射線を有する、ことを特徴とする装置。
【請求項4】
請求項2に記載の装置であって、前記変換部は、前記共振部とインピーダンスマッチングし且つ前記赤外放射線を放射する抵抗要素を有する、ことを特徴とする装置。
【請求項5】
請求項4に記載の装置であって、前記共振部は間隔を置いた第1及び第2アンテナ要素を有し、2つの入力及び2つの出力を有する増幅器を有し、前記増幅器の前記入力各々は前記アンテナ要素のそれぞれ一に結合され、そして、前記増幅器の前記出力各々は前記抵抗要素のそれぞれ端部に結合されている、ことを特徴とする装置。
【請求項6】
請求項4に記載の装置であって、前記共振部は間隔を置いた第1及び第2アンテナ要素を有し、前記抵抗要素は前記アンテナ要素のそれぞれ一に各々結合されている2つの端部を有する、ことを特徴とする装置。
【請求項7】
請求項6に記載の装置であって、前記アンテナ要素は各々、略三角形であり、ボウタイアンテナを集合的に構成する、ことを特徴とする装置。
【請求項8】
請求項1に記載の装置であって:
前記集積回路は基板と、前記基板の上の間隔を置いた位置に前記検出部を支える構造とを有し;
前記変換部は、水平方向に前記検出部と実質的にアライメントされ且つ2つの端部を有する抵抗要素を有し;及び
前記共振部は、前記抵抗要素のそれぞれの端部に各々結合されている、間隔を置いた第1及び第2アンテナ要素を有する;
ことを特徴とする装置。
【請求項9】
請求項8に記載の装置であって、前記抵抗要素は前記検出部から垂直方向に間隔を置き、前記第2周波数範囲における放射線に対して反射性である材料から成り、前記検出部と前記抵抗要素との間の間隔は前記第2周波数範囲における放射線の前記検出部による吸収を容易にする、ことを特徴とする装置。
【請求項10】
請求項9に記載の装置であって、前記抵抗要素は蛇行性構成を有する、ことを特徴とする装置。
【請求項11】
請求項8に記載の装置であって、前記抵抗要素並びに前記第1及び第2アンテナ要素は全て、前記検出部より垂直方向に低い間隔を置いた位置で前記基板により支持されている、ことを特徴とする装置。
【請求項12】
請求項8に記載の装置であって、前記抵抗要素は前記検出部の近くに隣接して備えられ、前記第1及び第2アンテナ要素は両者共、前記抵抗要素から垂直方向に間隔を置いた位置で前記基板により支持されている、ことを特徴とする装置。
【請求項13】
請求項12に記載の装置であって、前記第1及び第2アンテナ要素は前記抵抗要素より垂直方向に低い、ことを特徴とする装置。
【請求項14】
請求項12に記載の装置であって、前記第1及び第2アンテナ要素は前記抵抗要素より垂直方向に高い、ことを特徴とする装置。
【請求項15】
請求項8に記載の装置であって、前記抵抗要素並びに前記第1及び第2アンテナ要素は全て、前記検出部より垂直方向に高い間隔を置いた位置で前記基板により支持されている、ことを特徴とする装置。
【請求項16】
請求項1に記載の装置であって、前記集積回路は、更なる区画であって:
電磁放射線に反応する更なる共振部;
前記更なる共振部に結合し、前記第2周波数範囲において電磁放射線を放射するために前記更なる共振部により受信される放射線に反応する更なる変換部;及び
前記第2周波数範囲において放射線に反応し且つ前記更なる変換部の領域に備えられている更なる検出部であって、前記更なる検出部は前記第2周波数範囲において前記更なる変換部により放射される放射線を検出する、更なる検出部;
を有する更なる区画を有する、ことを特徴とする装置。
【請求項17】
請求項16に記載の装置であって、前記更なる共振部は前記第1周波数範囲における電磁放射線に反応する、ことを特徴とする装置。
【請求項18】
請求項16に記載の装置であって、前記更なる共振部は前記第1及び第2周波数範囲と異なる周波数範囲における電磁放射線に反応する、ことを特徴とする装置。
【請求項19】
請求項16に記載の装置であって、前記共振部及び前記更なる共振部はそれぞれ異なるオリエンテーションを有する、ことを特徴とする装置。
【請求項20】
装置であって:
赤外放射線の周波数範囲と実質的に異なる選択された周波数範囲における電磁放射線に反応する共振部;
前記共振部に結合され、且つ赤外放射線を放射するために前記選択された周波数範囲において前記共振部により受信される放射線に反応する変換部;及び
赤外放射線に反応し且つ前記変換部の領域に備えられている検出部であって、前記検出部は前記変換部により放射される赤外放射線を検出する、検出部;
を有することを特徴とする装置。
【請求項21】
請求項20に記載の装置であって、前記変換部は、前記共振部とインピーダンスマッチングし且つ前記赤外放射線を放射する抵抗要素を有する、ことを特徴とする装置。
【請求項22】
請求項21に記載の装置であって、前記共振部は間隔を置いた第1及び第2アンテナ要素を有し、2つの入力及び2つの出力を有する増幅器を有し、前記増幅器の前記入力各々は前記アンテナ要素のそれぞれ一に結合され、そして、前記増幅器の前記出力各々は前記抵抗要素のそれぞれ端部に結合されている、ことを特徴とする装置。
【請求項23】
請求項21に記載の装置であって、前記共振部は間隔を置いた第1及び第2アンテナ要素を有し、前記抵抗要素は前記アンテナ要素のそれぞれ一に各々結合されている2つの端部を有する、ことを特徴とする装置。
【請求項24】
請求項23に記載の装置であって、前記アンテナ要素は各々、略三角形であり、ボウタイアンテナを集合的に構成する、ことを特徴とする装置。
【請求項25】
請求項20に記載の装置であって:
電磁放射線に反応する更なる共振部;
前記更なる共振部に結合され、且つ赤外放射線を放射するために前記更なる共振部により受信される放射線に反応する更なる変換部;及び
赤外放射線に反応し且つ前記更なる変換部の領域に備えられている更なる検出部であって、前記更なる検出部は前記更なる変換部により放射される赤外放射線を検出する、更なる検出部;
を有することを特徴とする装置。
【請求項26】
請求項25に記載の装置であって、前記更なる共振部は前記選択された周波数範囲における電磁放射線に反応する、ことを特徴とする装置。
【請求項27】
請求項25に記載の装置であって、前記更なる共振部は、前記選択された周波数範囲と異なり且つ赤外放射線の周波数範囲と異なる周波数範囲における電磁放射線に反応する、ことを特徴とする装置。
【請求項28】
請求項25に記載の装置であって、前記共振部及び前記更なる共振部はそれぞれ異なるオリエンテーションを有する、ことを特徴とする装置。
【請求項29】
共振部と、前記共振部に結合された変換部と、前記変換部の領域に備えられている検出部とを有する区画を有する集積回路を有する装置を動作させる方法であって:
前記変換部は、前記第1周波数範囲と実質的に異なる第2周波数範囲において電磁放射線を放射することにより第1周波数範囲において前記共振部により受信される放射線に反応するようにされる段階;及び
前記第2周波数範囲において前記変換部により放射される前記放射線を前記検出部を用いて検出する段階;
を有することを特徴とする方法。
【請求項30】
請求項29に記載の方法であって:
赤外放射線を有するように前記第2周波数範囲を選択する段階;及び
前記変換部により放射される前記放射線が赤外放射線であるようにする段階;
を有することを特徴とする方法。
【請求項31】
請求項30に記載の方法であって、赤外放射線より周波数が実質的に低い放射線を有するように前記第1周波数範囲を選択する段階を有する、ことを特徴とする方法。
【請求項32】
請求項31に記載の方法であって、前記共振部とインピーダンスマッチングし且つ前記赤外放射線を放射する抵抗要素を有するように前記変換部を構成する段階を有する、ことを特徴とする方法。
【請求項33】
請求項32に記載の方法であって、間隔を置いた第1及び第2アンテナ要素を有するように前記共振部を構成する段階であって、前記抵抗要素は各々が前記アンテナ要素のそれぞれの一に結合された2つの端部を有する、段階を有する、ことを特徴とする方法。
【請求項34】
共振部と、前記共振部に結合された変換部と、前記変換部の領域に備えられている検出部とを有する装置を動作させる方法であって:
前記変換部が、赤外放射線を放射することにより選択された周波数範囲において前記共振部により受信される放射線に反応するようにされる段階であって、前記選択された周波数範囲は赤外放射線の周波数範囲と実質的に異なる、段階;及び
前記変換部により放射された前記赤外放射線を前記検出部により検出する段階;
を有することを特徴とする方法。
【請求項35】
請求項34に記載の方法であって、前記共振部とインピーダンスマッチングし且つ前記赤外放射線を放射する抵抗要素を有するように前記変換部を構成する段階を有する、ことを特徴とする方法。
【請求項36】
請求項35に記載の方法であって、間隔を置いた第1及び第2アンテナ要素を有するように前記共振部を構成する段階であって、前記抵抗要素は各々が前記アンテナ要素のそれぞれの一に結合された2つの端部を有する、段階を有する、ことを特徴とする方法。




















【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2007−515630(P2007−515630A)
【公表日】平成19年6月14日(2007.6.14)
【国際特許分類】
【出願番号】特願2006−542635(P2006−542635)
【出願日】平成16年11月23日(2004.11.23)
【国際出願番号】PCT/US2004/039703
【国際公開番号】WO2005/062009
【国際公開日】平成17年7月7日(2005.7.7)
【出願人】(503455363)レイセオン カンパニー (244)
【Fターム(参考)】