説明

研磨パッド

【課題】被研磨物の平坦度を高めてその品質の向上を図ることができる研磨パッドを提供する。
【解決手段】研磨パッド1の研磨面1aに、バフ加工等の機械的加工を施して、平坦性を改善し、前記研磨面のうねりが、周期5mm〜200mmであって、最大振幅40μm以下とし、これによって、当該研磨パッド1を用いて研磨されるシリコンウェハ等の被研磨物の平坦度を向上させるようにしている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイスなどの製造工程において、シリコンウェハなどの被研磨物の研磨に用いられる研磨パッドに関する。
【背景技術】
【0002】
シリコンウェハなどの半導体ウェハの平坦化処理には、一般に、化学機械研磨(Chemical Mechanical Polishing:CMP)法が用いられている(例えば、特許文献1参照)。
【0003】
かかるCMP法では、研磨パッドを定盤に保持し、シリコンウェハなどの被研磨物を研磨ヘッドに保持し、スラリを供給しながら、研磨パッドと被研磨物とを加圧した状態で相対的に摺動させることによって研磨が行われる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000−334655号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
半導体デバイスの高集積化に伴って、被研磨物の平坦化の要求は、益々厳しくなっており、このため、研磨パッドと被研磨物との間にスラリが均一に行き渡るように、研磨パッドの表面に溝を形成したり、研磨パッド表面の平均表面粗さRaを改善するといったことが行われているが、十分でなく、特に、大型のウェハの研磨では、その全体に亘って高い平坦度を得るのは容易でない。
【0006】
また、一般に研磨パッドでは、当該研磨パッドを研磨装置に取り付けて研磨装置を立ち上げた使用の初期段階においては、ダイヤモンド砥粒ディスクなどを用いたドレッシング処理により該研磨パッドの表面を荒らして目立て処理を行うことでその研磨性能の向上を図る、いわゆる、ブレークイン(立ち上げ)を行なう必要がある。半導体ウェハの生産性を高めるには、かかるブレークインに要する時間を短縮することが望まれる。
【0007】
したがって、本発明は、被研磨物の平坦度を高めてその品質の向上を図ることを主たる目的とし、更に、ブレークイン時間を短縮することを目的とする。
【課題を解決するための手段】
【0008】
本件発明者は、上記目的を達成するために、鋭意研究した結果、研磨パッドの表面のうねりの改善が、被研磨物の平坦度の向上に有効であることを見出し、本発明を完成した。
【0009】
ここで、うねりとは、周期が20mm〜200mmであって、振幅が10μm〜200μmの凹凸をいう。
【0010】
本発明の研磨パッドは、被研磨物の研磨に用いられる研磨パッドであって、前記被研磨物に圧接される研磨面を有し、前記研磨面のうねりが、周期5mm〜200mmであって、最大振幅40μm以下である。
【0011】
本発明によると、被研磨物に圧接される研磨面のうねりを、低減しているので、研磨面のうねりが、被研磨物に与える影響を低減して被研磨物の平坦度を向上させることができる。
【0012】
また、本発明の好ましい実施態様では、被研磨物の研磨に用いられる研磨パッドであって、前記被研磨物に圧接される研磨面を有し、中性の溶液を用いて測定した前記研磨面のゼータ電位が、−50mV以上0mV未満である。
【0013】
この実施態様によると、研磨パッドの研磨面のマイナスのゼータ電位を、−50mV以上0mV未満とし、従来例の研磨パッドの研磨面のゼータ電位に比べて、0に近い値としているので、スラリのマイナスの研磨粒子との反発が抑制されて、研磨パッドの研磨面とスラリとのなじみが良好となるので、ブレークイン時間の短縮を図り、生産性を高めることができる。
【0014】
一つの実施形態では、前記研磨面の平均表面粗さRaを、1μm以上5μm以下としてもよい。
【0015】
好ましい実施形態では、前記研磨面を有する研磨層の下層に、下地層を有する構成とし、この下地層によって適度なクッション性を付与してもよい。
【発明の効果】
【0016】
本発明によれば、被研磨物に圧接される研磨面のうねりを、低減しているので、被研磨物の平坦度を向上させることができる。
【0017】
また、研磨面のマイナスのゼータ電位を、従来例の研磨パッドの研磨面のゼータ電位に比べて、0に近い値としているので、スラリのマイナスの研磨粒子との反発が抑制されて、研磨パッドの研磨面とスラリとのなじみが良好となり、ブレークイン時間の短縮を図って生産性を高めることができる。
【図面の簡単な説明】
【0018】
【図1】研磨パッドの概略断面図である。
【図2】従来例1の研磨パッドと実施例1の研磨パッドの研磨面のうねりの測定結果を示す図である。
【図3】実施例1の研磨パッドを用いて研磨したシリコンウェハの形状を示す図である。
【図4】従来例1の研磨パッドを用いて研磨したシリコンウェハの形状を示す図である。
【図5】実施例1と従来例1の研磨回数による研磨レートの変化を示す図である。
【図6】実施例1の研磨パッドを用いた研磨における研磨時間と摩擦力との関係を示す図である。
【図7】従来例1の研磨パッドを用いた研磨における研磨時間と摩擦力との関係を示す図である。
【図8】実施例2−1、従来例2およびブレークイン後の従来例2の研磨パッドを用いた研磨レートの変化を示す図である。
【図9】他の実施形態の研磨パッドの概略断面図である。
【発明を実施するための形態】
【0019】
以下、図面によって本発明の実施の形態について詳細に説明する。
【0020】
図1は、本発明の実施形態の研磨パッドの断面図である。
【0021】
この実施形態の研磨パッド1は、ポリウレタンなどの発泡性樹脂を発泡硬化させて得られるものである。研磨パッドは、発泡構造に限らず、無発砲構造であってもよく、また、不織布パッドなどであってもよい。
【0022】
この実施形態では、シリコンウェハなどの被研磨物の平坦度を向上させるために、被研磨物に圧接される研磨面1aの全面をバフ加工し、研磨面1aのうねりを低減している。
【0023】
このバフ加工によって、研磨面1aにおける周期5mm〜200mmのうねりの最大振幅を40μm以下に低減している。この最大振幅は、可及的に小さいものであるのが好ましい。
【0024】
研磨面のうねりを低減するための加工は、バフ加工に限らず、ミリング加工やプレス加工であってもよい。
【0025】
以下、具体的な実施例について説明する。
【0026】
(実施例1)
この実施例および従来例では、ニッタ・ハース株式会社製の、シリコン研磨に好適な発泡径が比較的大きな発泡ウレタンパッドであるMHタイプの研磨パッドを使用した。
【0027】
図2は、研磨面に、♯240の番手のサンドペーパーを用いたバフ加工を施した実施例1の研磨パッドと、バフ加工を施していない従来例1の研磨パッドとの研磨面のうねりの測定結果を示す図である。
【0028】
同図において、横軸は研磨パッドの研磨面上の位置に対応し、ラインL1は実施例1を、ラインL2は従来例1をそれぞれ示している。この研磨面のうねりの測定は、日立造船株式会社製の測定器HSS−1700を用いて行なった。
【0029】
研磨面をバフ加工していない従来例1の研磨パッドでは、ラインL2に示すように、立ち上がりが急峻であって、研磨面のうねりが多く、その最大振幅も40μmを超えるのに対して、実施例1の研磨パッドでは、ラインL1に示すように、立ち上がりも緩やかであって、研磨面のうねりも少なく、その最大振幅も40μm以下に低減されていることが分かる。
【0030】
この実施例1の研磨パッドと従来例1の研磨パッドとを用いて、300mmのシリコンウェハの両面研磨を、次の条件で行ないシリコンウェハの平坦性および研磨レートを評価した。
【0031】
上定盤回転数20rpm、下定盤回転数15rpm、加圧力100g/cm2とし、25℃のシリカスラリを用い、スラリ流量2.5L/minとした。
【0032】
研磨後のシリコンウェハのGBIR(Global Back Ideal Range)、SFQR(Site Front Least Squares Range)、ロールオフおよび研磨レートを表1に示す。この表1には、5枚のシリコンウェハについて行った研磨試験の平均値を示している。
【0033】
【表1】

【0034】
この表1に示すように、実施例1の研磨パッドを用いて研磨したシリコンウェハは、従来例1の研磨パッドを用いて研磨したシリコンウェハに比べて、GBIR、SFQRで示される平坦性がいずれも改善されており、更に、ロールオフおよび研磨レートも改善されている。
【0035】
また、実施例1の研磨パッドを用いて研磨したシリコンウェハの形状および従来例1の研磨パッドを用いて研磨したシリコンウェハの形状をそれぞれ図3および図4に示す。
【0036】
なお、シリコンウェハの測定には、黒田精工株式会社製のレーザ式の測定装置であるナノメトロ200TTを用いた。
【0037】
図4に示すように、従来例1の研磨パッドを用いて研磨したシリコンウェハでは、中央部分が周辺部分に比べて研磨されているのに対して、実施例1の研磨パッドを用いて研磨したシリコンウェハでは、図3に示すように、全面が均一に研磨されていることが分かる。
【0038】
以上のように、研磨面のうねりを低減した実施例1の研磨パッドによれば、シリコンウェハの平坦度を向上させることができるとともに、ロールオフおよび研磨レートを向上させることができる。
【0039】
図5は、実施例1の研磨パッドと従来例1の研磨パッドの研磨回数による研磨レートの変化を示す図である。
【0040】
実施例1の研磨パッドでは、初回から安定して高い研磨レートを示すのに対して、従来例1の研磨パッドでは、2回目以降から安定した研磨レートとなっている。
【0041】
この図5から分かるように、実施例1の研磨パッドでは、従来例1の研磨パッドに比べて、研磨レートを上げて安定化するまでの立ち上げ時間、いわゆる、ブレークイン時間を短くできるとともに、研磨レートを向上させることができる。
【0042】
また、図6および図7は、実施例1の研磨パッドと従来例1の研磨パッドとの研磨時間に対する摩擦力の変化を示す図である。
【0043】
一定の研磨レートを得るためには、摩擦力が一定である必要があるが、実施例1の研磨パッドでは、一定の摩擦力が得られるまでの時間が、60秒であるのに対して、従来例1の研磨パッドでは、150秒であり、実施例1の研磨パッドでは、従来例1の研磨パッドに比べて、研磨の立ち上がり時間が短いことが分かる。
【0044】
表2は、実施例1および従来例1の研磨パッドの研磨面の平均表面粗さRaを、Lazertec株式会社製のリアルタイム走査型レーザー顕微鏡1LM21Dを用いて測定した結果を示すものである。この表2では、45μm×45μmの領域で測定された5点の測定結果およびその平均値を示している。
【0045】
【表2】

【0046】
この表2に示すように、研磨面にバフ加工を施した実施例1は、従来例1に比べて、研磨面の平均表面粗さRaが大きくなっており、上述のように、研磨レートを上げて安定化させるまでのブレークイン時間を、従来例1に比べて短縮できることが分かる。
【0047】
(実施例2)
上述の実施例1および従来例1では、MHタイプの研磨パッドを用いたけれども、この実施例および従来例では、ニッタ・ハース株式会社製の発泡径が比較的小さな発泡ウレタンパッドであるICタイプの研磨パッドを使用した。
【0048】
この実施例2では、ICタイプの研磨パッドの研磨面に♯100の番手のサンドペーパーを用いたバフ加工を施した実施例2−1と、研磨面に、♯100よりも細かい♯240の番手のサンドペーパーを用いたバフ加工を施した実施例2−2とを作製し、バフ加工を施していない従来例2と比較した。
【0049】
上述の実施例と同様に、日立造船株式会社製の測定器HSS−1700を用いて行なった研磨面のうねりの測定結果では、実施例2−1,実施例2−2の研磨パッドでは、従来例2の研磨パッドに比べて、研磨面のうねりが少なく、その最大振幅も40μm以下に低減されていることが確認された。
【0050】
次に、実施例2−1,2−2および従来例2の研磨パッドの研磨面の平均表面粗さRaを、Lazertec株式会社製のリアルタイム走査型レーザー顕微鏡1LM21Dを用いて測定した。
【0051】
その結果を、表3に示す。この表3では、18μm×18μmの領域で測定された5点の測定結果およびその平均値を示している。
【0052】
【表3】

【0053】
この表3に示すように、研磨面にバフ加工を施した実施例2−1,2−2は、従来例2に比べて、研磨面の平均表面粗さRaが大きくなっており、研磨レートを上げて安定化させるまでのブレークイン時間を、従来例2に比べて短縮できることが期待できる。
【0054】
この研磨面の平均表面粗さRaは、ブレークイン時間の短縮を図るためには、1μm以上であるのが好ましく、更に好ましくは、1μm〜5μmである。平均表面粗さが、5μmを越えると、スクラッチなどが生じ、好ましくない。
【0055】
次に、実施例2−1,2−2および従来例2の研磨パッドおよびブレークインを行なった後の従来例2の研磨パッドの研磨面のゼータ電位を、大塚電子株式会社製のゼータ電位・粒径測定システムELS−Z2を使用し、レーザードップラー法(動的・電気泳動光散乱法)により、中性の10mMのNacl溶媒を用いてそれぞれ測定した。
【0056】
その結果を、表4に示す。
【0057】
【表4】

【0058】
この表4に示すように、実施例2−1,2−2の研磨パッドの研磨面のゼータ電位の平均値は、−9.18mV,−12.38mVであるのに対して、従来例2の研磨パッドの研磨面のゼータ電位の平均値は、−133.16mVであり、従来例2に比べて、0mVに近い値となっている。
【0059】
このように、実施例2−1,2−2では、研磨面のマイナスのゼータ電位が、従来例2の研磨面のゼータ電位に比べて、0に近い値となっているので、スラリのマイナスの研磨粒子との反発が抑制されて、研磨パッドの研磨面とスラリとのなじみが良好となるので、ブレークイン時間の短縮を図ることが期待できる。
【0060】
実施例2−1,2−2では、従来例2の研磨パッドを、ブレークインしたときの研磨面のゼータ電位の平均値である−32.89mVよりも0に近い値となっており、実施例2−1,2−2では、従来例のようなブレークインを行う必要がないことを示している。
【0061】
ブレークイン時間の短縮を図るためには、研磨パッドの研磨面のゼータ電位は、−50mV以上0mV未満であるのが好ましい。
【0062】
次に、実施例2−1、従来例2およびブレークイン後の従来例2の研磨パッドを用いて、8inchのTEOS膜付のシリコンウェハの研磨を、次の条件で行ない研磨レートを評価した。
【0063】
上定盤回転数60rpm、下定盤回転数41rpm、加圧力48kPaとし、ニッタ・ハース株式会社製のスラリILD3225を用い、スラリ流量100ml/minとし、60秒間研磨した。この60秒間の研磨を、30秒間のドレッシング処理を挟んで、繰り返し行った。
【0064】
図8は、その結果を示す図である。
【0065】
▲で示される実施例2−1の研磨パッドは、●で示される従来例2の研磨パッドに比べて、研磨レートが高く、早く安定している。また、実施例2−1の研磨パッドは、□で示されるブレークイン後の従来例2と同様の研磨レートおよび安定性を示している。
【0066】
すなわち、実施例2−1は、ブレークインを行うことなく、ブレークイン後の従来例2と同様の特性を示しており、実施例2−1の研磨パッドでは、従来例2のようなブレークインが不要であることが分かる。
【0067】
また、実施例2−1,2−2および従来例2の研磨パッドを用いて研磨したシリコンウェハの平坦性を、実施例1と同様に評価した。その結果、ブレークイン無しの実施例2−1,2−2の研磨パッドを用いて研磨したシリコンウェハは、ブレークイン後の従来例2の研磨パッドを用いて研磨したシリコンウェハと同等以上の平坦性を示すGBIR、SFQRの値が得られた。
【0068】
上述の実施形態では、研磨パッドは、一層構造であったけれども、図9に示すように、下層に、例えば、ウレタンを含浸した不織布や軟質フォームからなる下地層2を設けた多層構造としてもよい。
【産業上の利用可能性】
【0069】
本発明は、シリコンウェハなどの半導体ウェハの研磨に有用である。
【符号の説明】
【0070】
1 研磨パッド 1a 研磨面

【特許請求の範囲】
【請求項1】
被研磨物の研磨に用いられる研磨パッドであって、
前記被研磨物に圧接される研磨面を有し、前記研磨面のうねりが、周期5mm〜200mmであって、最大振幅40μm以下であることを特徴とする研磨パッド。
【請求項2】
前記研磨面を有する研磨層の下層に、下地層を有する請求項1に記載の研磨パッド。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−210709(P2012−210709A)
【公開日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2012−175830(P2012−175830)
【出願日】平成24年8月8日(2012.8.8)
【分割の表示】特願2009−99768(P2009−99768)の分割
【原出願日】平成19年8月31日(2007.8.31)
【出願人】(000116127)ニッタ・ハース株式会社 (150)
【Fターム(参考)】