説明

管状器官内の機器を位置決めする装置および方法

患者の管状器官内の機器を検出、追跡、レジストレーションする装置および方法。機器には、ガイドワイヤチップまたは治療用機器が含まれ、検出および追跡には、カテーテル法操作の前または最中に撮影したX線透視画像を用いる。機器は、管状器官を示すモデルの画像または投影像と融合される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、医療システム全般、特に、管状器官内の機器を位置決めかつ提示する方法および装置に関する。
関連出願
本発明は、2001年10月15日に出願された国際特許出願番号PCT/IL01/00955号に関連している。
【背景技術】
【0002】
例えば管腔狭窄または動脈瘤などの生理学的異常の治療においては、インターベンショナルカーディオロジー処置がますます重要になっている。例えば、狭窄冠動脈を治療するためには、多くの場合、病変動脈部位でバルーンを膨らませ、組織切除(artherctomy)または血栓切除用機器を用い、ステント(プロテーゼ)を留置する必要がある。この場合、機器は、ガイドワイヤまたは例えばバルーン、ステント、組織切除もしくは血栓切除用機器などの治療用血管内機器である。カテーテル処置の治療ステージでは、医師がガイドワイヤを挿入し、ガイドワイヤを狭窄血管の遠位側に配置し、次いで、治療用機器(バルーンまたはステント)を狭窄位置に送達する。血管が厄介な形態を有する場合、ガイドワイヤの挿入は熟練した医師にとっても手腕を問われる仕事となる。さらに、例えば分岐部や枝部などの生体構造内でのガイドワイヤナビゲーションは常に困難な仕事である。動脈内で機器を正確に配置するために、ガイドワイヤを所定位置にナビゲイトしている最中にX線透視画像を撮影する。さらに、多くの場合、画像内の動脈を見やすくする造影剤を患者に注入する。ガイドワイヤのナビゲーションおよび位置測定をリアルタイムで支援することは、そのような場合に非常に役立つであろうし、造影剤の注入を減少させることにもなり得る。治療用機器の正確な拡張配置は治療を成功させる別の重要な要因である。例えばステントなどの治療用機器の拡張配置が最適でない場合、それに対する指示は、狭窄部分をカバーする追加ステントを送達する必要性であることは知られている。薬剤溶出ステントを検討している場合には、機器位置の問題がさらに重要になる。造影剤を追加することなく機器を自動的に正確に配置する能力には確実な利点がある。提案するナビゲーションシステムの新規性は、既に使用されているガイドワイヤおよび機器以上の追加装置を必要としないことである。必要なタスクはすべて、カテーテル処置の標準的な流れを変えることなく自動的に行われる。
【0003】
良好な品質結果を得るために機器の正確な位置決めが不可欠であるさらに別のインターベンショナルラジオロジー処置は、両心室ペーシング処置である。医師は、冠静脈樹内の異なる位置にペーシングリードを配置し、電気的刺激に対する心応答をチェックして最適な位置を選択し、選択した位置にリードを拡張配置する。問題は、チェックしたそれぞれの位置を識別し、選択した位置まで自動的にナビゲーションする方法を提供することである。
【0004】
本明細書において、用語「機器」は、ガイドワイヤチップおよび治療用機器と置換可能に用いられる。管状器官が動脈の場合、治療用機器は、例えばステントまたはバルーンなどの血管内治療用機器である。カテーテルチップ、ガイドワイヤチップまたは血管内治療用機器の周囲動脈構造に関する位置は、X線透視法でモニターする。必要に応じ、血管造影術者が、カテーテルチップからヨード液などの造影剤を放出する。造影剤はカテーテルチップから血流によって運ばれ、動脈とカテーテルチップとを示すカテーテルチップ近くの動脈構造のX線画像が得られる。得られたX線画像に基づいて、目的とする動脈構造に到達するまでガイドワイヤを進める。通常、動脈を治療するためには、ガイドワイヤチップは、病変部位を越えて、病変部位の遠位端まで通過する必要がある。次いで、ガイドワ
イヤを伝って血管内機器を動脈の病変部位に運ぶ。治療用機器の動脈内位置のモニタリングは、機器の側面に位置し、ガイドワイヤに沿って滑動する放射線不透過性マーカーの移動を追跡して実施する。マーカーはガイドワイヤに関する機器の位置を示す。
【0005】
ほとんどの既知ナビゲーション法は治療用機器の位置測定に適した特殊装置を使用する。そのような装置は、なんらかの参照座標系で機器の位置を測定するセンサーやトランスデューサを用いた光学または電磁トラッキング原理に基づき得る。許容範囲の結果を達成するためには、撮像システムおよび追跡システムが共通座標系で機器の画像および位置を提示するように十分に較正されていなければならない。装置が増えると処置のコストも増大するし、処置もより複雑になり、正確な較正が必要になる。別のタイプの機器位置決め法は、機器の正確な位置決めを限定する機械用具を使用する。これらの方法は、特定タイプの治療に役立つものであり、したがって、汎用ではない。例えば、1996年8月29日に公開された特許文献1は、用具の幾何学的位置測定と取得した超音波画像とを組み合わせる方法を記載している。しかし、超音波モダリティーは、例えば冠動脈などのいくつかの器官には適用できない。特許文献1はさらに、用具をある器官に到達させるために他の器官を横切らずにガイドする方法を記載している。特許文献1は、ある管状器官内に位置する用具をその器官内のあらかじめ設定された位置に向けてナビゲートする方法に関するものではない。ターゲットと周囲器官は、挿入中に取得した画像で見えている必要がある。したがって、データ融合における必須ステップであるレジストレーションの主要問題は、追加装置を用いること、すなわち、挿入中、超音波で器官を撮像することによって解決する。この最後の解決策は、例えばX線血管造影法の場合には有効ではない。
【0006】
機器をリアルタイムで撮像するための超音波技術の使用法を示す別の刊行物は、例えば2001年8月16日に公開された特許文献2である。特許文献2は、ボリューメトリック超音波データ、および外部センサーから得られるようなカテーテルなどのインターベンション機器の位置データから生成された断面図を重ね合わせる超音波撮像システムを開示している。インターベンション医療用機器の位置は、1つ以上の画像で、インターベンション機器が移動するにつれて、体内の器官や組織に関して示され得る。インターベンション機器の位置データは、連続更新され、位置データに比べて更新回数が少ない可能性がある組織画像に重ね合わされ、結果として、組織に関するインターベンショナン機器のリアルタイムまたは近リアルタイム画像が得られる。重ね合わされた画像によって、医療者は、患者をX線や造影剤染料にほとんど暴露することなく、血管造影などの処置を実施することができる。カテーテルの外観がバイブレーション機構または増光技術により強調された現超音波画像が参照画像と整合されることになっている。2つの画像の組み合わせは、簡単な重ね合わせによって行われる。しかし、上述のように、超音波技術は、撮像条件の変化や器官の運動を補償しないので、すべての器官には、特に冠動脈には適用できない。
【0007】
例えば、特許文献3は、移動するカテーテルを低品質の蛍光透視画像で検出し、カテーテルを高品質の3D再構成血管構造と共に提示する方法を開示している。示唆されている方法は、回転式血管造影法で撮影した画像を用いて3Dモデルを生成する診断ステージと、カテーテルのナビゲーションを蛍光透視法でガイドする治療ステージの両方で、撮像パースペクティブ幾何学の完全な情報を推測する。そのような制限的で実質的に問題の多い推測の下では、画像レジストレーションの中心問題の1つは、実質的に既知変換を実施することに帰する。さらに、示唆されている方法は、例えば形状が心拍サイクルに従って変化する動脈などの運動器官には使用できない。この方法のさらに別の欠陥は、特殊な強度変調カテーテルを使用してカテーテルを低品質蛍光透視画像で識別することである。故に、この方法は、撮像条件、静止シーンおよび特殊カテーテルについての完全な情報を必要とするので、標準的な冠動脈血管形成術には適用できない。
【0008】
したがって、当技術分野においては、診断ステージで管状器官を含めた身体部位のモデ
ルを作出し、作出したモデルを、治療ステージで管状器官内に位置する機器を自動的に識別・追跡するために用いるシステムが求められている。このシステムは、治療ステージでX線撮像を用いるが、例えば血管などのほとんどの管状器官はX線画像では見えないのが望ましい。このシステムは、関連タイプの処置に現在必要とされている装置以上の追加装置を必要としないはずである。また、このシステムは、幾何学的変形やコンテンツの違いを克服する、診断ステップ中に撮影した画像と治療ステージ中に撮影した画像との自動レジストレーションを実施するのが望ましい。このシステムは、自動的に画像をレジストレーションし、機器の位置を測定し、機器を、関連測定データに加えて、身体部位またはその再構成モデルの参照画像と一緒に表示するであろう。このシステムは、患者に対する有害な造影剤の注入や放射線の必要性を最小限にするはずである。
【特許文献1】国際特許出願公開番号WO96/25881号明細書
【特許文献2】国際特許出願公開番号WO01/58359号明細書
【特許文献3】米国特許第6,389,104号明細書
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明の目的は、患者の管状器官内の機器の1つ以上の撮影画像を、管状器官を含む患者の身体部位を提示する参照源に自動レジストレーションを行う新規方法を提供することにある。
【課題を解決するための手段】
【0010】
この方法は、参照源の2次元参照画像を生成するステップと、撮影画像の1つ以上の第1背景画像および参照画像の1つ以上の第2背景画像を生成するステップと、参照画像から管状器官参照画像を生成するステップと、撮影画像から機器画像を生成するステップと、拘束条件付き相関に基づいて、機器画像と血管参照画像とのレジストレーションを実施するステップと、撮影画像由来情報と参照源由来情報を融合させるステップとを含む。管状器官は撮影画像では見えない。拘束条件付き相関は最終注入後画像を使用し、拘束条件付き相関ステップは、撮影画像と最終注入後画像との拘束条件付き相関を実施するステップと、参照画像と最終注入後画像との拘束条件付き相関を実施するステップとを含む。管状器官参照画像または第1背景画像もしくは第2背景画像は、改良型血管類似性演算子を用いて生成する。参照源は、1つ以上の2次元もしくは3次元モデル、または1つ以上の2次元もしくは3次元画像を含む。融合情報は、1つ以上の撮影画像由来要素と1つ以上の参照源由来要素とを含む融合画像を構成する。機器はガイドワイヤまたは治療用機器である。画像はX線画像である。管状器官は血管である。参照画像は、身体部位モデルの構成に関与する画像、または参照源から生成された合成画像である。合成画像は、参照源の平面上への投影像である。機器画像生成ステップは、管状器官内の機器を検出するステップと、機器を表す二値画像を計算するステップとを含む。機器検出ステップは、機器を識別するステップと、機器を追跡するステップとを含む。本方法はさらに、1つ以上の画像内で検出した機器を1つ以上の参照源画像で位置測定するステップを含む。本方法はさらに、疾患を評価するステップと、機器のタイプと位置についてユーザに提言を与えるステップと、指定した機器のタイプと位置についてユーザの選択を受けるステップとを含む。組合せ情報は数値データを含む。数値データは、撮影画像内の機器位置と指定機器位置との間の距離である。組合せ情報はフィードバック制御システムへの入力を含む。本方法はさらに、1つ以上の撮影画像内で検出された機器を1つ以上のモデル画像と一緒に表示装置上に表示するステップを含む。本方法はさらに、検出された機器の座標をフィードバック制御装置に送信するステップを含む。被検出機器はガイドワイヤである。撮影画像内ガイドワイヤ検出ステップは、撮影画像の二値化を実施するステップと、二値化画像を参照画像または最終注入後画像に粗くレジストレーションするステップとを含む。撮影画像内のガイドワイヤを追跡するステップは、パラメータセットにより、管状器官を示す参照画像の画素のパラメータ化を実施するステップと、少なくとも1つの撮影画像の画素にパラ
メータ化を適用し、それによって画素を含むパラメータ化画像を生成するステップと、パラメータ化画像内の画素をソートするステップと、ソートしたパラメータ化画像の画素を解析してガイドワイヤチップをセグメント化するステップとを含む。パラメータセットは、参照画像の画素と参照画像に写っている管状器官の中心線との間の最短距離と、参照画像の画素に最も近い中心線の画素のインデックスとを含む。画像内機器追跡ステップは、撮影画像上での最適経路検索ステップを含む。画像内機器は治療用機器またはペーシングリードである。識別ステップは、撮影画像のほとんどの画素をしきい値化して少なくとも1つのクラスタを得るステップと、少なくとも1つのクラスタそれぞれにスコアを割り当てるステップと、各クラスタペアにスコアを割り当てるステップとを含む。ステップcでクラスタペアに割り当てた最高スコアが所定しきい値を超えたら、そのクラスタペアをマーカーとして選択する。本方法はさらに、上記ステップを第2撮影画像に関して繰り返すステップと、第1クラスタペアは撮影画像から得たクラスタから選択し、第2クラスタペアは第2撮影画像から選択する4つ組クラスタを生成するステップと、各4つ組クラスタに、各ペアのスコアとペア間の類似性要素とを含むスコアを割り当てるステップと、クラスタペアが関与する全4つ組のスコアに基づいて、撮影画像内の各クラスタペアに第2スコアを割り当てるステップと、クラスタペアが関与する全4つ組のスコアに基づいて、第2撮影画像内の各クラスタペアに第2スコアを割り当てるステップと、最後のステップでクラスタペアに割り当てた最高スコアが所定しきい値を超えたら、そのクラスタペアを撮影画像または第2撮影画像のマーカーとして選択するステップとを含む。これらのステップは、クラスタペアが選択されるまで追加撮影画像に適合させて実施する。追跡ステップは、2つの連続撮影画像間の相関曲面および1つ以上の移動整合性基準を用いるステップを含む。本方法はさらに、画像シーケンスの取得およびパラメータをモニターするステップを含む。本方法はさらに、患者に造影剤を注入するステップを含む。本方法はさらに、最終注入後画像を自動的に決定するステップを含む。本方法はさらに、参照源を得るステップ、または参照源を生成するステップを含む。本方法はさらに、フィードバック制御を計画するステップを含む。モデルは、少なくとも2つの異なるパースペクティブから得た患者の1つ以上の画像から構成する。本方法はさらに、管状器官内の機器をナビゲートするための画像の撮影に最適なパースペクティブを決定するステップを含む。本方法はさらに、疾患を評価するステップと、機器のタイプまたは位置に関する提言をユーザに与えるステップと、指定した機器のタイプまたは位置についてユーザの選択を受けるステップとを含む。管状器官参照画像は改良型血管類似性演算子を用いて生成する。本方法は、カテーテル処置、または心室ペーシングもしくは血管形成処置時に使用する。
【0011】
本発明の別の態様は、患者の管状器官内の機器の1つ以上の撮影画像を、管状器官を含む患者の身体部位を提示する参照源に自動レジストレーションを行うことで検出し、管状器官内の機器を追跡する装置に関し、この装置は、患者の管状器官内の機器を検出するための1つ以上の検出コンポーネントと、撮影画像を管状器官を含む身体部位モデルに対してレジストレーションを行うための1つ以上のレジストレーションコンポーネントとを有する。撮影画像はX線画像である。管状器官は血管である。機器はガイドワイヤまたは治療用機器である。検出コンポーネントは、1つ以上のガイドワイヤ検出コンポーネントまたは1つ以上の治療用機器検出コンポーネントを含む。ガイドワイヤ検出コンポーネントは、1つ以上の二値化コンポーネント、1つ以上のパラメータ化コンポーネント、1つ以上のセグメント化コンポーネント、または1つ以上のベクトル提示コンポーネントを含む。機器検出コンポーネントは、1つ以上の識別コンポーネント、または1つ以上の追跡コンポーネントを含む。この装置はさらに、3次元モデルビルダー、パースペクティブ選択コンポーネント、または機器選択コンポーネントを含めた診断コンポーネントを有する。
【0012】
開示する発明のさらに別の態様は、汎用コンピュータ用のインストラクションセットを含むコンピュータ可読記憶媒体に関し、このインストラクションセットは、患者の管状器官内の機器を検出するための1つ以上の検出コンポーネントと、撮影画像を管状器官を含
む身体部位モデルに合わせ込むための1つ以上のレジストレーションコンポーネントとを有する。
【0013】
本発明は、図面に関連して記載する以下の詳細な説明を読めばさらに十分に理解かつ評価されるであろう。
【発明を実施するための最良の形態】
【0014】
開示する発明は、例えば、患者の動脈、血管、または尿道などの管状器官内の機器を自動的に検出、追跡する装置および方法を提示する。開示する発明の文脈において、「機器」(デバイス)は、ガイドワイヤチップ、カテーテルチップ、または治療用機器に関する。当該管状器官が動脈の場合、治療用機器は、通常、例えば、ステント、バルーン、ペーシングリードなどの血管内治療用機器である。
【0015】
本発明は、以下の処置、すなわち、カテーテル処置、両心室ペーシング、冠動脈造影、冠動脈血管形成、末梢血管造影、末梢血管形成、頚動脈造影、頚動脈血管形成、脳血管造影/血管形成、胆管イメージングまたはインターベンションなどで実装し得るが、それらには限定されない。
【0016】
1つの好ましい実施形態において、本発明の方法は、診断ステージと治療ステージを用いる。診断ステージでは、患者の画像から、管状器官を含めた関連身体部位の2次元または3次元モデルを構成する。2次元または3次元画像は、X線装置、コンピュータ断層撮影(CT)、または任意の他の同様なモダリティーによって取得する。開示発明の1つの好ましい実施形態においては、診断ステージで、身体部位モデル構成に加えて、適切な治療用機器と治療用機器の管状器官内位置とを決定し、マークする。病変部位の形状および寸法を考慮に入れて、患者に適切な治療を施すために、治療用機器のタイプと位置を決定する。さらに、本システムは、機器挿入時に用いるのに好ましいCアームパースペクティブをマークする。1つの代替実施形態において、本システムは、モデルを生成するのではなく外部源から得たモデルを使用する。別の好ましい実施形態において、本システムは、治療ステージにおける機器の前進および形状を自動的に制御するシステム用のフィードバック制御を決定する。
【0017】
別の好ましい実施形態において、本方法は治療ステージのみを用い、治療ステージにおいて、本システムは、管状器官内の機器を検出、追跡かつ表示するために診断ステージで得るか生成したモデルと治療ステージ中に撮影した現X線画像とを併せて用いる。典型的な治療ステージでは、チップを有するガイドワイヤを身体の目的部位までナビゲートする。次いで、治療用機器をガイドワイヤ上に装着し、ガイドワイヤに沿って滑動させて目的位置までナビゲートする。一連の現X線画像内で機器を突き止め、機器上の放射線不透過性マーカーの動きを追って追跡する。1つの代替実施形態では、マーカーは不透明ではないが、代替手段またはモダリティーを用いて別の方法で見ることができる。次いで、現画像と、現画像と実質的に同じ投影角およびパラメータを用いたモデルの2次元投影像とを重ね合わせて、機器と動脈領域とを同時に示す。動脈内の機器の現在位置とマークしてある場合には目的位置との比較に基づいて、機器を動脈内で目的領域方向に進める。オペレータが機器を配置すると決めた画像内の動脈内領域に機器が現われるまでこのプロセスを繰り返す。必要に応じ、カテーテルチップから造影剤を放出して、動脈と機器を示す現画像を得る。
【0018】
現画像内に取り込んだ機器をモデルに関連して位置測定して表示する際の主要問題は、2つの情報源、すなわち、モデルと現画像がコンテンツと形状の両方で異なることである。1つの画像上で多重源由来のコンテンツを融合して提示するためには、情報源を相互に合わせ込む、すなわち、共通の座標系に変換する必要がある。共通座標系は、一方の情報
源の座標系に他方の情報源の座標系または異なる座標系を変換するものであってもよいが、その場合、すべての情報源を共通の座標系に変換する必要がある。
【0019】
コンテンツの違いは、参照モデルは、その生成時には機器が存在しなかったので、器官のみを含み、現画像は、ほとんど機器のみを含むことに由来する。管状器官は患者に造影剤を注入した後に撮影した画像上でのみ示されるので、現画像にはほとんど機器のみしか示されていない。形状の違いは、例えばCアームポジション、強度などの撮像特性の違いと、内部の機器の存在に起因する管状器官の形状の違いとから生じる。1つの好ましい実施形態において、この二重ギャップは、治療ステージで造影剤を注入して撮影し、本明細書では最終注入後画像と称される媒介画像を使うことによって埋められる。この媒介画像は、管状器官を示すので、モデルと共通のコンテンツを有する。具体的に言えば、媒介画像は、モデルの構成に関与する画像、またはモデルの適切な2次元投影像と共通のコンテンツを有する。一方、媒介画像は現画像と類似した撮像条件を有するが、現画像には管状器官が存在しないために、媒介画像のコンテンツは、ほとんどの場合現画像と異なる。したがって、本方法は、現画像から媒介画像へ、および媒介画像からモデルまたはその投影像に関与する参照画像へという2段階レジストレーションプロセスを含むのが好ましい。
【0020】
先ず、図1を見ると、全体として100と参照番号が付された、本発明を用いる1つの好ましい実施形態が示されている。システム100は、本発明の1つの例示的実施形態に従って、カテーテルまたは血管内機器を動脈内の目的位置に配置するために用いられる。このシステムは、患者103が横たわるテーブル102を含む。X線源104はテーブル102の下方に配置されており、X線は、患者103を通過してX線源104と反対側のテーブル102の上方に位置するX線カメラ105に向けてX線を投射する。X線カメラ105は、例えば、患者の1つ以上のX線画像を表すDICOMフォーマットでビデオ信号またはデジタル画像108を生成する。ビデオ信号またはデジタル画像108は、プロセッサ115のメモリ110に格納される。X線カメラで撮影された画像は、リアルタイムまたはメモリ110から読み出された後で、表示装置120、例えばモニターまたは任意の他の表示装置で見ることができる。画像は、診断ステージもしくは治療ステージ、または両ステージで撮影し得る。1つの代替実施形態において、X線源およびX線カメラは他の位置に配置し得る。さらに別の代替実施形態において、撮像装置は、例えばコンピュータトモグラフィー、磁気共鳴などの別のモダリティーであり得る。プロセッサ115は、例えば、パーソナルコンピュータ、メインフレームコンピュータなどのコンピューティングプラットフォーム、または、メモリデバイス110、CPUまたはマイクロプロセッサデバイスや、いくつかのI/Oポート(図示せず)がセットアップされた任意の他のタイプのコンピューティングプラットフォームであるのが好ましい。あるいは、プロセッサ115は、DSPチップ、または本発明の方法の実施に必要なコマンドやデータを保存するASICデバイスなどであり得る。プロセッサ115はさらに、デバイスガイダンスアプリケーションを保存する記憶装置(図示せず)を具備し得る。機器案内アプリケーションは、X線系列で機器を検出、追跡するように相互作用し、フレームを前もって取得した関連身体部位の3次元モデルにレジストレーションする一連の論理相関コンピュータプログラムおよび関連データ構造である。機器案内アプリケーションは以下で図4に関連して詳しく説明する。提案する方法のコンピュータ制御ステップは、プロセッサ115で実施し、その出力は表示装置120で表示し得る。あるいは、提案する方法のコンピュータ制御ステップは、X線カメラ105からビデオ信号またはデジタルデータ148を受信し、メモリ装置145を備えた専用プロセッサ140で実装し得る。この方法の出力は専用表示装置150で表示し得る。
【0021】
図2を見ると、患者103の動脈樹215の一部である動脈210の開口部212に配置されたチップ205を有するカテーテル200が示されている。カテーテル200は、ガイドワイヤ216上に装着された血管内機器218を動脈210内の目的位置219に
運ぶのに用い得る。カテーテル200は、例えばヨード液などの放射線不透過性液221を入れたレザーバ220に接続されており、放射線不透過性液221は、必要に応じ、ピストン222を押して、レザーバ220からカテーテルチップ205に送り、そこから放出する。カテーテルチップ205から造影剤221を放出すると、X線カメラ105により、カテーテルチップ205の周辺領域235の動脈樹の画像が得られる。得られた画像に基づいて、カテーテルチップ205を治療すべき動脈210を含む動脈系215に導く。次いで、カテーテルチップ205からガイドワイヤ216を伸ばし、X線透視を用い、造影剤を少量ずつ注入して、ガイドワイヤ216を動脈219内の病変部位に導く。ガイドワイヤ216を動脈219内に配置した後、機器218をガイドワイヤ216に沿って動脈210の治療部位に向けて挿入する。
【0022】
本発明の方法は2つのステップ群、すなわち、診断ステップ群と治療ステップ群とを含む。図3を参照すると、本発明の方法に従って、全体として250と参照番号が付された診断ステップ群のフローチャートが示されている。ステップ群250は、CアームX線血管造影装置で血管を異なるパースペクティブから撮像し、2つ以上の2次元画像を用いて管状器官の3次元再構成を行うステップ254を含む。再構成プロセスには、狭窄周囲の血管樹の分析と、関連情報、例えば、血管の中心線、境界、直径などの計算が含まれる。このステップはさらに、2001年11月15日に公開された本出願人の国際特許出願公開第01/85030号にも開示されている。次いで、ステップ258で、カテーテル法中に動脈を見るのに最適なパースペクティブを決定する。パースペクティブは、動脈を最適に表示するCアームポジションを含む。ステップ262では、再構成および関連測定データに基づいて、医師が疾患の重篤度を判断し、最適な治療用機器タイプを選択する。本システムは、所定の十分な機器情報、機器拡張配置用デフォルト位置を提供し得るが、医師は機器に関する好ましい位置を対話形式で選択することもできる。ステップ265では、動脈に沿った機器のナビゲーションに有用な追加情報、例えば、分岐点もしくは最も湾曲の大きい個所などのランドマーク、または機器の前進および拡張配置に関するフィードバック制御を決定するルールも提供される。この情報には、局所曲率、屈曲度、および局所的に好ましいCアームナビゲーション配向、すなわち、奥行きの短縮描出を最小限にする投影を含む複雑さの指標も含まれる。好ましいCアーム配向は、3D再構成時に用いるパースペクティブから、または全般的な最適配向として選択し得る。先ずステップ254を実施し、ステップ254の後に、ステップ258、262、265を、任意の必要な順序で、または同時に実施する。
【0023】
1つの代替実施形態では、モデル構築ステップをスキップし、外部源から動脈の3次元モデルを取得し、パースペクティブ決定ステップおよび機器選択ステップをスキップする。さらに別の代替実施形態では、外部源から得た動脈の3次元モデルに対してパースペクティブ決定ステップと機器選択ステップを実施する。
【0024】
図4を見ると、本発明の方法に基づく、全体として266と参照符号が付された治療ステップ群のフローチャートが示されている。治療ステップ群266は、カテーテル法または例えば血管内手術などの別の手術時に用いる。ステップ群266は、ガイドワイヤを、そのチップが病変血管部位の遠位側に配置されるように動脈に挿入するステップ270を含む。治療用機器は、ガイドワイヤ上に装着し、ガイドワイヤに沿って目的位置まで進めるのが好ましい。治療用機器は、通常、ガイドワイヤに沿って滑動するバルーンまたはバルーンとステントである。バルーンかステントまたはその両方は、目的位置に到達したら、膨らませるか、拡張配置する。ステップ271では、ガイドワイヤまたは医療用機器を目的位置に向って管状器官内に進める。ステップ272で、システムは、X線透視動画シーケンスの取得、CアームパラメータおよびECG信号をリアルタイムでモニターする。ECG信号は、ゲーティング用ツール、すなわち、参照画像と同じ心拍サイクル位相内にあるビデオストリームから画像フレームを選択するためのツールとして役立つ。ゲートフ
レームは参照画像と最も相関性が高いフレームである。必要な更新速度が心拍毎に1回より多い場合、関連画像に同期タグが与えられる。ECG信号が得られない場合、撮影画像と参照画像との相関基準に基づいて同期パラメータを推定し得る。ステップ274では、参照画像を選択または生成する。現Cアーム配向が3次元モデル再構成に関与する画像の1つの配向に近い場合、システムはこの画像を参照画像として選択する。そのような画像が存在しなければ、3次元モデルを現Cアーム配向の撮像平面上に投影して合成参照画像を構成する。任意選択ステップであり、医師の裁量に従って実施されるステップ276では、患者に造影剤を注入し、ステップ278で、造影剤注入後画像を決定するが、取得したシーケンスはすべて好ましくはヨード注入の解析を経ることを必要とする。例えば、各シーケンスの各フレームは、血管を強調する前処理を経て、血管様特徴の存在を示すスコアを受ける。本方法では、スコアを時間の関数として解析することにより、ヨード注入シーケンスを識別する。ステップ272でモニターしたECG信号を用いて、参照フレームと同期するフレームを選択する。選択されたフレームは現Cアーム配向の最終注入後画像としての役割を果たす。ECG信号が得られない場合、最終注入後フレームは、例えば、各フレームと参照画像との相関基準を用いて決定する。ナビゲーションプロセスに用いた各Cアーム配向の最終注入後画像はメモリに保存され、Cアームがナビゲーションプロセスで前に用いた配向に戻るときに読み出される。ステップ278は、シーケンスを取り込むステップ272に従って実施する。ステップ282では、最終注入後画像を参照画像に合わせ込む。これは、動脈を示す造影剤を用いると容易になる。ステップ278と282は、リアルタイムで実装する必要はない。むしろ、これらのステップは、近リアルタイムで実施し得る。ステップ282が完了した時点で、前の最終注入後画像を新しいものに取り替える。
【0025】
ナビゲーション開始時には、最終注入後画像は未だ存在していない。最終注入後画像は処置中に利用できないことがある。したがって、現画像をそのまま参照画像に合わせ込む。ステップ286では、機器、すなわち、ガイドワイヤチップまたは治療用機器上のマーカーを検出し、現画像上でリアルタイム追跡を行う。検出および追跡は、ガイドワイヤチップの場合と治療用機器の場合とでは異なる。検出プロセスおよび追跡プロセスは以下で詳細に説明する。ステップ290では、現画像を、最終注入後画像に合わせ込むか、そのまま参照画像に合わせ込む。このステップも以下でさらに詳細に説明する。ステップ294では、ステップ286で位置を検出したガイドワイヤチップまたは医療用機器を、組み合わせ画像上で参照画像と融合させて提示し、動脈、その周辺環境およびその環境内の機器の融合画像を得る。ステップ290および294も各撮影画像に関してリアルタイムで実施する。融合提示することにより、造影剤注入の必要性が低下し、正確な機器拡張配置に対する支援が得られる。ステップ298で、システムは、機器と診断ステージ中にマークしたその指定位置との間の距離、または、機器と、診断ステージで指定した、例えば分岐点、最大湾曲点などの既知ランドマークとの間の距離を決定して提示する。1つの好ましい実施形態において、決定した機器位置は、機器の前進および形状を自動制御するフィードバック制御システムへの入力として送信される。ステップ271、272、274、286、290、294および298は、機器が適性に位置決定されたと医師が判断するまで、医師の裁量に従って実施されるステップ276、278および282より高頻度に繰り返す。
【0026】
場合により、3次元モデル構築ステップをスキップする場合、治療ステップ群は外部源から得た3次元モデルを用いる必要がある。例えば、最適パースペクティブおよび機器選択ステップをスキップする場合、機器の位置とその指定位置との間の距離の測定もスキップする。
【0027】
図5を見ると、本方法と装置の識別および追跡タスクとも一体化されたレジストレーションタスクが詳細に記載されている。図5に提示するレジストレーションは、現画像を、
参照現を表す参照画像にそのまま合わせ込む場合、または最終注入後画像を媒介画像として組み込む場合に適用できる。後者の場合、2回のレジストレーションは、最終注入後画像と現画像との間、および参照画像と最終注入後画像との間で実施する。各レジストレーションは図5に従って実施するのが好ましい。レジストレーションスキームは拘束条件付き相関の原理を利用する。2つの画像I1とI2の拘束条件付き相関とは、現画像内で検出されたマーカーが参照画像内または最終注入後画像内の血管に変換されるという条件を適用することを意味するが、これは、マーカーが、血管内にあることが分っている機器に付けられているからである。同様に、参照画像を最終注入後画像に合わせ込む場合、さらなる拘束条件は、参照画像内のトレースした動脈セグメントが最終注入後画像内の血管に変換されることを要求する。一般に、拘束条件付き相関は、2つの相関曲面から1つの組合わせ相関曲面を構築すること:
CC(I1,I2)=f(C(F1,F2),C(D1,V2))
を含む。この定義は、画像I1とI2との組合せ相関曲面CC(I1,I2)が2つの相関曲面:C(F1,F2)およびC(D1,V2)(ここで、F1およびF2は画像I1およびI2の背景に存在する共通の特徴であり、したがって、C(F1,F2)は背景特徴間の相関関係を表し、D1は機器強調画像、V2は血管強調画像である)の組み合わせの結果であることを意味する。非限定的例として、相関曲面の組み合わせは2つの相関マトリックスの成分積算であり得る:CC(I1,I2)=C(F1,F2)・C(D1,V2)。2つの相関曲面を組み合わせる関数fの別の例は、第1相関マトリックスC(F1,F2)と第2相関曲面の二値化したものとの積:
CC(I1,I2)=C(F1,F2)・(C(D1,V2)>T)
である。明確を期すと、2つの画像I1とI2の間の拘束条件付き相関マトリックスは、両画像内に存在する背景特徴間の相関マトリックス内の画素の値に等しく、その場合、D1とV2の間の相関マトリックスの対応画素は一定のしきい値を超える。D1とV2の間の相関がしきい値を下回る拘束条件付き相関スコアマトリックス内の画素はゼロになる。ナビゲーションプロセスに関連を有するさまざまなレジストレーションタスクに合わせて、拘束条件付き相関の計算に関与する画像は、特定の特徴を強調する特定の形態を得ることができる。
【0028】
図5は、単一現画像の参照源へのレジストレーションというスタンドアロンタスクとして実施する典型的なレジストレーションタスクを示している。参照源は、身体部位の2次元または3次元モデルと、モデル構築に用いた画像とを含む。特に断りのない限り、本方法は、ガイドワイヤと治療用機器の両方に関連する。ステップ400では、例えばモデルなどの参照源から参照画像を生成する。参照画像I2は、例えば、参照モデルの構築に用いた画像の1つ、または現画像と同じ平面上へのモデルの投影像である。次いで、ステップ404で、現画像と参照画像から背景強調画像を生成する。背景強調画像F1、F2は、2つの画像に取り込んだ骨または血管などの共通の背景要素を含む(これは、レジストレーションが参照画像と最終注入後画像の間である場合であり、現在の例には当てはまらないが、説明を補完するために言及する)。背景の要素は、勾配強度演算子を用いて強調するのが好ましい。あるいは、特徴強調画像は、勾配ベクトル場画像、またはラプラス−ガウスフィルターを用いた画像である。ステップ408で、参照画像から血管強調参照画像V2を生成する。血管強調参照画像は血管類似性演算子を用いて生成する。改良型血管類似性演算子は以下でさらに詳細に説明する。ステップ412で、現画像I1から特定機器強調現画像D1を生成する。ガイドワイヤナビゲーションの場合、細い暗線を強調するための特殊フィルターを用いるのが好ましい。機器ナビゲーションの場合には、ドット強調フィルターを用いて機器強調画像を得ることができる。ガイドワイヤまたは機器マーカーを検出したら、検出した機器を表示する二値画像として画像D1を構築することができる。二値画像の生成については、以下に図6に関連してさらに詳細に説明する。ステップ416で、拘束条件付き相関原理の実装を用いて、現画像I1と参照I2とのレジストレーション自体を実施する。現画像を参照画像にそのまま合わせ込む場合、現画像に血管モ
デルを明示的に組み込んで現画像を強調するのが好ましい。
【0029】
現画像と最終注入後画像とのレジストレーションは、現画像と参照画像とのレジストレーションに本質的に類似している。このステップでは、参照画像と最終注入後画像とのレジストレーションは既に実施されているので、最終注入後画像は、参照画像から変換した血管モデルを組み込んで強化するのが好ましい。
【0030】
参照画像と最終注入後画像とのレジストレーションの場合、参照画像はI1の役割を果たし、最終注入後画像はI2の役割を果たす。特徴画像F1、F2と画像V2は(例えば、血管類似性演算子による)血管強調画像である。画像D1は、2Dモデルまたは3Dモデルの投影像を表す二値画像であり得る。
【0031】
(例えばバルーンまたはステントなどの)治療用機器ナビゲーション用の最終注入後画像と参照画像とのレジストレーションはいくつかの特定の態様を有する。最終注入後画像と参照画像とのレジストレーションの難しさは、撮像条件の変化や、ガイドワイヤ挿入に起因する動脈形状の変化および診断ステージとナビゲーションステージの間の他の変化に由来する。好ましいレジストレーションスキームは、画像間の厳しい変形条件下においても正確な結果を達成する拘束条件付き相関法を含めた、粗密、大域局所レジストレーションというマルチレベル型反復法を用いる。このレジストレーションプロセスは、参照画像と最終注入後画像の多重解像度ピラミッド階層表現および、例えば異なる解像度レベル用の血管類似性マップ生成などの特徴強調フィルタリングアプリケーションを利用する。レジストレーションは、大域をカバーする粗いピラミッドレベルでの拘束条件付き相関で始まる。次いで、より高い解像度レベルおよびより小さい相関窓を得るために、狭窄領域のより狭い周辺区域における反復相関を用いて微細レジストレーションを実施する。このプロセスは、狭窄個所を中心とする相関窓、または参照動脈中心線に沿って集中する複数の連続相関窓を使用するのが好ましい。微細レジストレーションの別の変形態様は、粗いレジストレーションおよび既知参照血管セグメントを用いて最終注入後画像内の血管セグメントを自動的に識別するプロセスを使用する方法である。このプロセスでは、最終注入後画像上の中心線と中心線に沿った血管の直径を計算する。次いで、一方は最終注入後画像に関する関数で、他方は参照画像に関する関数である直径の2つの1次元関数を決定する。次いで、中心線を整合させ、画像間の局所的変換を確立するために相関を用い得る。ステップ420で、両画像由来の要素を融合させて1つの画像とする。
【0032】
図6を見ると、本発明の1つの好ましい実施形態であるガイドワイヤおよび機器案内アプリケーションの操作コンポーネントが示されている。診断ステージコンポーネント500は、診断ステージおよび疾患評価ステージで得た画像の処理に関与する。
【0033】
診断ステージコンポーネント500は、3次元モデルビルダー504と、最適パースペクティブ選択コンポーネント506と、機器選択コンポーネント506と、フィードバック制御計画コンポーネント509とを含む。コンポーネント500およびそのサブコンポーネントのタスクは、図3に関連して上記に提示した方法のステップ254、258で達成される。あるいは、3次元モデルを外部源から得た場合、コンポーネント504は省いてもよい。治療ステージコンポーネント550は、検出コンポーネント552とレジストレーションコンポーネント578とを含む。レジストレーションコンポーネント578の操作は、図5に関連して上記に詳細に説明されている。検出コンポーネント552は、ガイドワイヤ検出に関連するガイドワイヤ検出コンポーネント556と、治療用機器検出に関連するタスクを担う機器検出コンポーネント580とを含む。機器検出コンポーネント580はさらに、識別コンポーネント584および追跡コンポーネント588を含む。検出コンポーネントは、使用装置に応じて起動されるようになっている。ガイドワイヤ検出コンポーネント556およびレジストレーションコンポーネント578はハイブリッドプ
ロセスとして実装するのが好ましく、ハイブリッドプロセスにおいて、レジストレーションコンポーネント578は、検出コンポーネント556のさまざまなコンポーネントが起動されている間に起動されるようになっているが、明確にするために、それらのコンポーネントは別々に記載されている。ガイドワイヤを検出しているときには、ガイドワイヤ検出コンポーネント556が起動されている。ガイドワイヤ検出コンポーネント556は二値化コンポーネント566を含み、二値化コンポーネント566は、現画像全体の二値化の実施に関与する。二値化は、所定のしきい値を超える値を有する画像内のすべての画素に1の値を割り当て、他のすべての画素に0の値を割り当てる。二値化は、ガイドワイヤチップを強調するための高速前処理後に現画像上で実施するのが好ましい。通常、二値化の結果として、ガイドワイヤチップに関する1個または数個のクラスタが目につくが、その他に画像一面に散らばる複数の小さいクラスタが見られる。得られた二値画像を用い、レジストレーションコンポーネント578を使って、最終注入後画像または参照画像への粗いレジストレーションを実施する。ガイドワイヤは例えば血管などの管状器官内に位置することが分っているので、そのレジストレーションは、例えば、ガイドワイヤチップセグメントを、血管強調最終注入後画像もしくは参照画像または血管関連セグメントを提示する対応二値画像と相関させて実施し得る。粗いレジストレーションの結果として、現画像の参照画像への変換が得られる。
【0034】
パラメータ化およびセグメント化コンポーネント570は、動脈セグメントの中心線に関する画素のパラメータ化を実施する。動脈セグメントの中心線は診断ステップ中に構築されるか、外部源から得た身体部位モデルの一部である。具体的に言えば、参照画像内の各画素には2つのパラメータが割り当てられる:第1のパラメータは動脈の画素と中心線との間の最短距離である。第2のパラメータは、当該画素に最も近い中心線内の画素のインデックスである。動脈の中心線は実際には線であるから、その画素は順序付けおよびインデックス付けすることができる。パラメータ化計算は、診断ステージ中または合成参照画像が生成された時点で実施し得る。粗いレジストレーションにより求められる参照画像と現画像との変換を用いて、二値化現画像内の1の値を有する画素にパラメータを割り当てる。次いで、現画像内の画素を中心線内の一番近い画素のインデックスに従ってソートし、中心線点インデックスのX軸上での中心線からの距離の1次元関数として提示、処理し得る。ガイドワイヤチップのセグメント化は、2次元画像処理の代わりにこの関数を解析することにより効率的に実施される。セグメント化結果を用いて、当該領域を決定し、再度レジストレーションコンポーネント578を呼び出して、局所的精密レジストレーションを実施する。ガイドワイヤチップの中心点と共に、中心点に最も近い中心線内のインデックスを得る。次いで、ベクトル表示コンポーネント574が、指定パラメータ化を利用する高速アルゴリズムを用いるか、画像平面上の最適経路検索技術を用いて、ガイドワイヤチップのベクトル表示を行う。検出が完了した時点で、ガイドワイヤチップを、参照画像、3次元モデルまたは他の画像上に表示することができる。例えば、ガイドワイヤ終点位置での動脈の方向や曲率、分岐部までの距離などの数値データも得ることができる。ガイドワイヤが検出された時点で、ガイドワイヤチップのおおまかな位置が分かるので、画像の小セグメント局所レジストレーションを用いて、その後のフレームでガイドワイヤの追跡を実施する。
【0035】
治療用機器検出コンポーネント580は、機器上に配置された、X線画像内で類似した暗点を示す1つ以上、好ましくは2つのマーカーを用いて機器を検出する。医療用機器は、識別コンポーネント584により現画像内で識別される。先ず、暗点を強調するフィルタリングを用い、次いで、画像内の画素すべてに対してしきい値化を実施する。フィルターは、例えば、ヘッシアン行列のアイゲンバリューの解析に基づくラプラス−ガウスフィルターなどである。この結果、所定しきい値を超えた画素クラスタができる。通常、マーカークラスタと小数の「コンフユーザ」クラスタが存在する。クラスタをラベルし、クラスタ内の画素の全スコアを考慮に入れたスコアを割り当て、各クラスタの代表画素を選択
する。他のクラスタに比べて小さいクラスタは廃棄する。クラスタ検出パラメータは、マーカークラスタを保存する一方で、検出クラスタの数を最小限にするように調整する。次に、X線画像内では医療用機器を2つのマーカーで表すのが好ましいので、クラスタペアを考慮する。したがって、各ペアは、ペアを組む2つのクラスタが実際に2つのマーカーを表す可能性を示す。各ペアに割り当てられるスコアは、2つのクラスタスコアの積である。通常、最高スコアを有するペアがマーカーを表すと想定される。しかし、予測マーカー間距離に推定値が存在する場合、スコアに、クラスタ間の実距離と予測距離との比率の関数をかける。さらなるステップとして、これらの値を、すべてのペア推定値の合計が1に等しくなるように正規化する。しかし、1つのフレームに基づくマーカー検出では不十分な可能性がある。したがって、その代わりに、2つ以上の連続フレームを用いる。本発明の1つの非限定的実施例においては、Mが第1フレームで利用可能なペアの数を示し、Nが第2フレームで利用可能なペアの数を示すようにする。ペア1..Mが第1フレーム内の機器を表す確率は、p1,...,pMで示され、ペア1..Nが第2フレーム内の機器を表す確率はq1,...,pNで示される。両フレーム上で機器マーカーは2組のペアに相当するので、1対のポイントペア、すなわち4つ組が必要である。第1および第2フレーム内で正しいペアを見つけるために、MxN行列R〔ここで、(i,j)要素はr(i,j)=pf(i,j)であり、f(i,j)は第1フレーム上の第iペアと第2フレーム上の第jペアとの類似性を表現するある関数である〕を構成する。具体的に言えば、f(i,j)はペアのポイント間距離がどのように保存されているかを示す。r(i,j)基準は正しくないペアを除去する。r(i,j)関数の他の成分には、クラスタサイズや参照スケルトンとの距離が含まれ得る。
【0036】
行列Rの要素の合計が所定しきい値を下回る場合、フレームペアは不整合であるとして、破棄される。2つのフレームが明確な終末のない長いプロセスの一部を構成する場合、そのプロセスはリセットされる。行列Rの要素の合計が所定しきい値を上回る場合、一方のフレーム内のペアiがマーカーを表す確率は:
【0037】
【数1】

すなわち、第1フレーム内のクラスタペアiがマーカーを表す確率は、このペアが次のフレーム内の他のすべてのペアと一致する確率の合計に等しい。
【0038】
第2フレーム内のペアjの場合も同様に、第1フレームとの関連で:
【0039】
【数2】

である。したがって、シーケンスの中間の各フレーム上には、各クラスタペアについて、次のフレームとの比較により得た「前方」(“foward”)マークが付いたものと、最も近い前のフレームとの比較により得た「後方」(“back”)マークが付いたものという2つの追加推定値が存在する。各フレームを第2フレームから開始するX線透視フレームシーケンスを有する場合には、qの代わりにq(後方)ペア推定値を使用して、前のフレームからの情報を蓄積し得る。最終フレームから出発する類似法では、pの代わりにp(前方)を使用し得る。
【0040】
次いで、各フレームの各ペアに関し、2つの推定値を1つに組み合わせる:
【0041】
【数3】

次いで、あるペアlに関し、pが所定の信頼性しきい値を超える場合、マーカーはペアlで表されるとの判断が下される。
【0042】
好ましいプロセスは、2つの隣接X線透視フレームの解析から始まる。マーカーが識別されたら(一方のフレーム内の1つのペアlに関して、pが所定しきい値を超える場合)、プロセスは終了する。さもなければ、シーケンスに追加のX線透視フレームを検討するよう適応させてプロセスを一般化し、記載プロセスを用いて、3つのフレームについてp値を計算し直す。マーカーが識別されない場合、別のフレームを追加する。所定数のフレームを加えてもマーカーが識別されない場合、そのシーケンスを廃棄し、新規プレームペアを用いてプロセスを初期化する。
【0043】
治療用機器が確認できた時点で治療用機器追跡コンポーネント588を起動させる。システムは機器追跡ステップに切り替わるが、このステップは、処理能力をさして必要としないので、リアルタイムで実施されるタスクである。効果的であるためには、機器追跡ステップは、2つの連続画像を取得する間の時間より短い時間で行う必要がある。追跡ステップは、連続フレームを解析し、識別されたマーカーを追跡して行う。追跡段階で、治療用機器追跡コンポーネントは、2つのマーカーが検出される現フレームFcと、既知マーカー座標M1およびM2を有する前フレームFpとを受信する。画像Fp上でM1およびM2位置の周囲の小区域Wp1およびSp2を選択し、画像Fc上でM1、M2位置の周囲の大区域Wc1およびWc2を選択する。大区域の半径からフレームFpとFcの間の可能な最大マーカー移動を推定する。Wp1、Wp2、Wc1およびWc2区域は、ドット様特徴を強調する前処理フィルタリング、例えば、ヘッシアン行列のアイゲンバリュー解析に基づくフィルターであるラプラス−ガウスフィルターなどに通すのが好ましい。次いで、Wp1とWc2との相関およびWp2とWc2との相関を実施する。正規化相関、位相相関または勾配ベクトル場相関を用いるのが好ましいが、相関は特定タイプには限定されない。結果として、2つの相関曲面C1およびC2を得る。相関曲面上のピークは、マーカーの現位置となる候補であるWc1およびWc2内の区域を表す。T=(t1,t2,...,tn)をC1上で検出された顕著な極大値セットを示すものとし、S=(s1,s2,...,sm)をC2上で検出された顕著な極大値セットを示すものとする。各ピークは、対応相関値C1(t)およびC2(s)に等しいスコアを有する。前の画像から現画像への2つのマーカーのどの可能なシフトペア(ti,sj)も、ペアスコアV(t,s)を与える移動整合性基準テストに合格する。具体的に言えば、V(t,s)は、ベクトルM2−M1およびs−tの差の測度であり得る、すなわち、マーカー位置の間隔と方向はフレーム間で保存されるはずである。どのペアも、C1(t)、C2(s)およびV(t,s)を合わせた集合スコア、例えば、p=(C1(t)+C2(s))V(t,s)を得る。最大集合スコアを得たペアは、マーカーのシフトと見なされ、現フレーム上のマーカー位置は前の位置およびシフトを用いて計算する。上述のように、追跡機器を示す二値画像は、図5に関連して上記に説明した機器強調画像(D1)としてレジストレーションプロセスに用いられる。
【0044】
上述のように、本発明は改良型血管類似性演算子IVR(p)を使用する。従来型血管類似性演算子VR(p)は、画素pを強調するのに、グレイレベルが1方向に大きい正の
二次導関数を有し、その直交方向に小さい二次導関数を有するヘッシアン行列のアイゲンバリューを用いる。(例えば、隔壁の境界線などの)階段様特徴から血管のような管状特徴を識別しやすくするために、上記で詳述したように、二次導関数の特性に加えて小勾配を必要とする改良型血管類似性演算子を用いる。改良型血管類似性IVR(p)に関する式中の追加勾配項は、例えば、以下の形態:IVR(p)=VR(p)・F(│g│)〔ここで、F(│g│)は、勾配の大きさ│g│が0の場合には1に等しく、勾配の大きさが増大するにつれ減少する〕を有し得る。
【0045】
提案する発明は、管状器官内に機器を配置する方法および装置を開示する。本発明は、管状器官のモデルを構成し、治療用機器およびその位置を医師に提言する任意選択診断ステージを開示する。あるいは、ユーザは、外部源からモデルを得てもよい。次いで、治療ステージで、本装置は、治療ステージで撮影した画像をモデルに自動レジストレーションを行い、管状器官内の機器の検出、追跡、ナビゲーションを支援する方法を用いる。本システムはさらに、管状器官内の機器を関連測定データと共に表示することができる。提案する方法は、診断ステージで撮影した画像と治療ステージで撮影した画像の間の幾何学的変形およびコンテンツの違いによるレジストレーション上の問題を克服する。本装置は、治療ステージではX線または別のイメージングモダリティーを使用するが、例えば血管などのほとんどの管状器官はX線画像では見えない。本システムは、関連タイプの処置に現在必要とされている装置以上の追加装置を必要としない。さらに、本システムは、患者にとって有害な造影剤注入や放射線の必要性を最小限にする。
【0046】
提案するシステムは、治療ステージで管状器官が見えないX線画像を使用する。しかし、他のモダリティーも使用可能である。管状器官を示すモダリティーを用いれば、プロセスは大きく簡易化されるであろう。上記に提示したコンポーネントの説明は実行可能な実装を示唆している。本システムを、本方法の異なる部分を実施しかつ異なる態様で協働する他の多くのコンポーネントに分割して用い得ることは明らかである。本発明が、上記に具体的に示し、説明したものに限定されないことは、当業者には分るであろう。さらに正確に言えば、本発明の範囲は以下の特許請求の範囲によってのみ規定される。
【図面の簡単な説明】
【0047】
【図1】提案する発明が使用される典型的な環境の図。
【図2】本発明の1つの好ましい実施形態に従って動脈系内をナビゲートされている機器の図。
【図3】本発明の1つの好ましい実施形態による、診断ステップに関連する操作ステップを説明するブロック図。
【図4】本発明の1つの好ましい実施形態による、治療ステップに関連する操作ステップを説明するブロック図。
【図5】本発明の1つの好ましい実施形態によるレジストレーション法を示すフローチャート。
【図6】本発明の1つの好ましい実施形態によるアプリケーションコンポーネントのブロック図。

【特許請求の範囲】
【請求項1】
患者の管状器官内機器の少なくとも1つの撮影画像の、管状器官を含む患者の身体部位を提示する参照源に対する自動レジストレーション方法であって、
参照源の2次元参照画像を生成するステップと、
撮影画像の少なくとも1つの第1背景画像と、参照画像の少なくとも1つの第2背景画像を生成するステップと、
参照画像から管状器官参照画像を生成するステップと、
撮影画像から機器画像を生成するステップと、
拘束条件付き相関に基づいて、機器画像と血管参照画像とのレジストレーションを実施するステップと、
撮影画像由来情報と参照源由来情報を融合させるステップと
を備える方法。
【請求項2】
撮影画像では管状器官が視認されない、請求項1に記載の方法。
【請求項3】
拘束条件付き相関が最終注入後画像を用い、拘束条件付き相関ステップが、撮影画像と最終注入後画像との拘束条件付き相関を実施するステップと、参照画像と最終注入後画像との拘束条件付き相関を実施するステップとを含んでなる、請求項1に記載の方法。
【請求項4】
改良型血管類似性演算子を用いて、管状器官参照画像または第1背景画像もしくは第2背景画像を作成する、請求項3に記載の方法。
【請求項5】
参照源が少なくとも1つの2次元モデルを含んでなる、請求項1に記載の方法。
【請求項6】
参照源が少なくとも1つの3次元モデルを含んでなる、請求項1に記載の方法。
【請求項7】
参照源が少なくとも1つの2次元画像を含んでなる、請求項1に記載の方法。
【請求項8】
参照源が少なくとも1つの3次元画像を含んでなる、請求項1に記載の方法。
【請求項9】
融合情報が、少なくとも1つの撮影画像由来要素と、少なくとも1つの参照源由来要素とを含む融合画像を構成する、請求項1に記載の方法。
【請求項10】
機器がガイドワイヤである、請求項1に記載の方法。
【請求項11】
画像がX線画像である、請求項1に記載の方法。
【請求項12】
機器が治療用機器である、請求項1に記載の方法。
【請求項13】
管状器官が血管である、請求項1に記載の方法。
【請求項14】
参照画像が身体部位のモデル構成に関与する画像である、請求項1に記載の方法。
【請求項15】
参照画像が参照源から生成された合成画像である、請求項1に記載の方法。
【請求項16】
合成画像が参照源の平面上への投影像である、請求項15に記載の方法。
【請求項17】
機器画像生成ステップが、
管状器官内の機器を検出するステップと、
機器を表す二値化画像を計算するステップと
を含んでなる、請求項1に記載の方法。
【請求項18】
機器検出ステップが、
機器を識別するステップと、
機器を追跡するステップと
を含んでなる、請求項17に記載の方法。
【請求項19】
少なくとも1つの画像内で検出された機器を、少なくとも1つの参照源画像を用いて位置測定するステップをさらに含んでなる、請求項18に記載の方法。
【請求項20】
さらに、
疾患を評価するステップと、
機器のタイプおよび位置に関する提言をユーザに与えるステップと、
指定した機器のタイプおよび位置についてユーザの選択を受けるステップと
をさらに含んでなる、請求項19に記載の方法。
【請求項21】
組合せ情報が数値データを含んでなる、請求項20に記載の方法。
【請求項22】
数値データが、撮影画像内の機器位置と指定機器位置との間の距離である、請求項21に記載の方法。
【請求項23】
組合せ情報がフィードバック制御システムへの入力を含んでなる、請求項20に記載の方法。
【請求項24】
表示装置上に、少なくとも1つの撮影画像内で検出された機器を少なくとも1つのモデル画像と一緒に表示するステップをさらに含んでなる、請求項17に記載の方法。
【請求項25】
検出された機器の座標をフィードバック制御装置に送信するステップをさらに含んでなる、請求項17に記載の方法。
【請求項26】
機器がガイドワイヤである、請求項17に記載の方法。
【請求項27】
撮影画像内のガイドワイヤを検出するステップが、
撮影画像の二値化を実施するステップと、
二値化画像の参照画像または最終注入後画像への粗いレジストレーションを実施するステップと
を含んでなる、請求項26に記載の方法。
【請求項28】
機器がガイドワイヤである、請求項18に記載の方法。
【請求項29】
画像内のガイドワイヤを追跡するステップが、
パラメータセットにより、管状器官を示す参照画像内の画素のパラメータ化を実施するステップと、
少なくとも1つの撮影画像の画素にパラメータ化を適用して、画素を含むパラメータ化画像を生成するステップと、
パラメータ化画像内の画素をソートするステップと、
ソートされたパラメータ化画像の画素を解析してガイドワイヤチップをセグメント化するステップと
を含んでなる、請求項28に記載の方法。
【請求項30】
パラメータセットが、
参照画像内の画素と参照画像から見た管状器官の中心線との間の最短距離と、
参照画像内の画素に最も近い中心線内画素のインデックスと
を含んでなる、請求項29に記載の方法。
【請求項31】
画像内の機器を追跡するステップが、撮影画像上での最適経路検索ステップを含んでなる、請求項28に記載の方法。
【請求項32】
機器が治療用機器である、請求項18に記載の方法。
【請求項33】
機器がペーシングリードである、請求項18に記載の方法。
【請求項34】
識別ステップが、
a. 撮影画像内の実質的にすべての画素をしきい値化して、少なくとも1つのクラスタを得るステップと、
b. 少なくとも1つのクラスタそれぞれにスコアを割り当てるステップと、
c. 各クラスタペアにスコアを割り当てるステップと、
d. ステップcでクラスタペアに割り当てた最高スコアが所定しきい値を超えたら、そのクラスタペアをマーカーとして選択するステップと
を含んでなる、請求項32に記載の方法。
【請求項35】
さらに、
e. 第2撮影画像にステップaからdを実施するステップと、
f. 第1クラスタペアは撮影画像から得たクラスタから取り、第2クラスタペアは第2撮影画像から取る4つ組クラスタを生成するステップと、
g. 各4つ組クラスタに、各ペアのスコアとペア間の類似性要素とを含んでなるスコアを割り当てるステップと、
h. 撮影画像内の各クラスタペアに、そのクラスタペアが関与する全4つ組のスコアに基づいて第2スコアを割り当てるステップと、
i. 第2撮影画像内の各クラスタペアに、そのクラスタペアが関与する全4つ組のスコアに基づいて第2スコアを割り当てるステップと、
j. ステップiでクラスタペアに割り当てた最高スコアが所定しきい値を超えたら、そのクラスタペアを撮影画像または第2撮影画像内のマーカーとして選択するステップと
を含んでなる、請求項34に記載の方法。
【請求項36】
クラスタペアが選択されるまで、撮影画像を追加して前記請求項のステップを適合させて実行する、請求項35に記載の方法。
【請求項37】
追跡ステップが、2つの連続撮影画像間の相関局面と少なくとも1つの移動整合性基準とを使用するステップを含んでなる、請求項32に記載の方法。
【請求項38】
画像シーケンスの取得およびパラメータをモニターするステップをさらに含んでなる、請求項1に記載の方法。
【請求項39】
患者に造影剤を注入するステップをさらに含んでなる、請求項1に記載の方法。
【請求項40】
最終注入後画像を自動的に決定するステップをさらに含んでなる、請求項39に記載の方法。
【請求項41】
参照源を入手するステップをさらに含んでなる、請求項1に記載の方法。
【請求項42】
参照源を生成するステップをさらに含んでなる、請求項1に記載の方法。
【請求項43】
フィードバック制御を計画するステップをさらに含んでなる、請求項1に記載の方法。
【請求項44】
少なくとも2つの異なるパースペクティブから取得した患者の2つ以上の画像からモデルを構成する、請求項6に記載の方法。
【請求項45】
管状器官内の機器をナビゲートするために画像の撮影に最適なパースペクティブを決定するステップをさらに含んでなる、請求項1に記載の方法。
【請求項46】
さらに、
疾患を評価するステップと、
機器のタイプまたは位置に関する提言をユーザに与えるステップと、
指定した機器タイプまたは位置についてのユーザの選択を受けるステップと
を含んでなる、請求項1に記載の方法。
【請求項47】
改良型血管類似性演算子を用いて、管状器官参照画像を生成する、請求項1に記載の方法。
【請求項48】
カテーテル処置中に使用する、請求項1に記載の方法。
【請求項49】
両心室ペーシング法中に使用する、請求項1に記載の方法。
【請求項50】
血管形成術中に使用する、請求項1に記載の方法。
【請求項51】
患者の管状器官内の機器の少なくとも1つの撮影画像を、管状器官を含む患者の身体部位を提示する参照源に自動的にレジストレーションを行うことで検出し、管状器官内の機器を追跡する装置であって、
患者の管状器官内の機器を検出するための少なくとも1つの検出コンポーネントと、
少なくとも1つの撮影画像を、管状器官を含む身体部位のモデルにレジストレーションを行うための少なくとも1つのレジストレーションコンポーネントと
を備える装置。
【請求項52】
撮影画像がX線画像である、請求項51に記載の装置。
【請求項53】
管状器官が血管である、請求項51に記載の装置。
【請求項54】
機器がガイドワイヤである、請求項51に記載の装置。
【請求項55】
機器が治療用機器である、請求項51に記載の装置。
【請求項56】
検出コンポーネントが少なくとも1つのガイドワイヤ検出コンポーネントを含んでなる、請求項51に記載の装置。
【請求項57】
検出コンポーネントが少なくとも1つの治療用機器検出コンポーネントを含んでなる、請求項51に記載の装置。
【請求項58】
ガイドワイヤ検出コンポーネントが少なくとも1つの二値化コンポーネントを含んでなる
、請求項56に記載の装置。
【請求項59】
ガイドワイヤ検出コンポーネントが少なくとも1つのパラメータ化コンポーネントを含んでなる、請求項56に記載の装置。
【請求項60】
ガイドワイヤ検出コンポーネントが少なくとも1つのセグメント化コンポーネントを含んでなる、請求項56に記載の装置。
【請求項61】
ガイドワイヤ検出コンポーネントが少なくとも1つのベクトル提示コンポーネントを含んでなる、請求項56に記載の装置。
【請求項62】
機器検出コンポーネントが少なくとも1つの識別コンポーネントを含んでなる、請求項57に記載の装置。
【請求項63】
機器検出コンポーネントが少なくとも1つの追跡コンポーネントを含んでなる、請求項57に記載の装置。
【請求項64】
3次元モデルビルダーを備えた診断コンポーネントをさらに含んでなる、請求項51に記載の装置。
【請求項65】
診断コンポーネントがさらにパースペクティブ選択コンポーネントを含んでなる、請求項64に記載の装置。
【請求項66】
診断コンポーネントがさらに機器選択コンポーネントを含んでなる、請求項64に記載の装置。
【請求項67】
汎用コンピュータ用インストラクションセットを含むコンピュータ可読記憶媒体であって、インストラクションセットが、
患者の管状器官内の機器を検出するための少なくとも1つの検出コンポーネントと、
少なくとも1つの撮影画像を管状器官を含む身体部位モデルにレジストレーションを行うための少なくとも1つのレジストレーションコンポーネントと
を含んでなる、コンピュータ可読記憶媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2008−534109(P2008−534109A)
【公表日】平成20年8月28日(2008.8.28)
【国際特許分類】
【出願番号】特願2008−503675(P2008−503675)
【出願日】平成17年3月31日(2005.3.31)
【国際出願番号】PCT/IL2005/000360
【国際公開番号】WO2006/103644
【国際公開日】平成18年10月5日(2006.10.5)
【出願人】(506022898)パイエオン インコーポレイテッド (6)
【氏名又は名称原語表記】PAIEON INC.
【Fターム(参考)】