説明

荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法

【課題】ビーム照射中にSOBP幅が所望の幅であるかどうかをリアルタイムに確認することにより、治療の安全性を向上する。
【解決手段】シンクロトロン4を有する荷電粒子ビーム発生装置1と、この荷電粒子ビーム発生装置1から出射されたイオンビームのブラッグピーク幅を形成するRMW装置28、及びこのRMW装置28のイオンビーム進行方向上流側及び下流側にそれぞれ設けられ、イオンビームの線量を検出する線量モニタ27及び線量モニタ31を備えた照射野形成装置16と、線量モニタ27及び線量モニタ31の検出値に基づいて、RMW装置28により形成されたイオンビームのブラッグピーク幅を演算するSOBP幅演算装置67とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陽子及び炭素イオン等の荷電粒子ビームを患部に照射して治療する荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法に関する。
【背景技術】
【0002】
癌などの患者の患部に陽子及び炭素イオン等の荷電粒子ビーム(イオンビーム)を照射する治療方法が知られている。この治療に用いる粒子線出射装置(荷電粒子ビーム出射装置)は、荷電粒子ビーム発生装置、ビーム輸送系、及び照射装置を備えている。荷電粒子ビーム発生装置で加速されたイオンビームは、第1ビーム輸送系及び回転ガントリーに設けられた第2ビーム輸送系を経て回転ガントリーに設置された照射装置に達する。イオンビームは照射装置より出射されて患者の患部に照射される。荷電粒子ビーム発生装置としては、例えば、荷電粒子ビームを周回軌道に沿って周回させる手段、共鳴の安定限界の外側で荷電粒子ビームのベータトロン振動を共鳴状態にする手段、及び荷電粒子ビームを周回軌道から取り出す出射用デフレクターを備えたシンクロトロン(円形加速器)が知られている(例えば、特許文献1)。
【0003】
イオンビームを用いた治療、例えば陽子ビームの患部への照射では、陽子ビームのエネルギーの大部分が、陽子が停止するときに放出される、すなわちブラッグピークが形成されるという特性を利用し、陽子ビームの入射エネルギーの選択により陽子を患部近傍で停止させてエネルギー(吸収線量)の大部分を患部の細胞にのみ与えるようにする。
【0004】
通常、患部は、患者の体表面からの深さ方向(イオンビームの進行方向でもあり、以下、単に深さ方向という)にある程度の厚みをもっている。その深さ方向における患部の厚み全域にわたってイオンビームを効果的に照射するためには、深さ方向においてある程度広いフラットな吸収線量範囲(拡大ブラッグピーク幅(spread-out Bragg peak)。以下、SOBP幅という。)を形成するように、イオンビームのエネルギーを調節しなければならない。
【0005】
このような観点から、従来、周方向に段階的に厚みが変化している複数の羽根部を回転軸の周囲に配置したレンジモジュレーション回転体(レンジモジュレーションホイール。以下、RMWという)が既に提唱されている(例えば、非特許文献1の2077頁、図30、非特許文献2)。複数の羽根部は回転軸に取り付けられる。RMWは、隣り合う羽根部の相互間に貫通する開口を形成している。例えば、開口をイオンビームの経路(ビーム経路という)に位置させてRMWを回転させる。開口及び羽根部が交互にビーム経路を横切る。イオンビームが開口を通過したときはビームエネルギーが減衰しないため、ブラッグピークが体内の最も深い位置に生じる。イオンビームが羽根部部を通過する際には、羽根部の厚みが厚い部分を通過するほど、このイオンビームのエネルギーの減衰度合いが大きくなり、患部の体表面に近い部分にブラックピークが形成される。RMWの回転によって、このようなブラッグピークが形成される深さ方向の位置が周期的に変動する結果、時間積分で見ると、患部の深さ方向において比較的広くフラットなブラッグピーク幅を得ることができる。また、SOBP幅の形成は、リッジフィルタを用いても可能であることが知られている(非特許文献1の2078頁、図31)。
患部へ与えた吸収線量は、イオンビーム進行軸上で患者よりも上流に置かれた線量検モニタにより吸収線量に比例する検出値を測定し、その検出値を実際の吸収線量値に換算するための係数を用いて算出できる。この線量モニタによる検出値と実際の患部に与えた吸収線量値との換算係数が、ビームの到達深度及びSOBP幅の間に相関関係を持つことが提唱されている(例えば、非特許文献2)。
【0006】
【特許文献1】USP5,363,008号
【非特許文献1】レビュー オブ サイエンティフィック インスツルメンツ64巻8号(1993年8月)のページ2074〜2084、図30〜図32(REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 64 NUMBER 8 (AUGUST 1993) P2074-2084 FIG.30-32)
【非特許文献2】フィジクス イン メディスン アンド バイオロジー48巻17号(2003年9月7日)のページ2797から2808(PHYSICS IN MEDICINE AND BIOLOGY VOLUME 48 NUMBER 17 (7 SEPTEMBER 2003) 2797-2808)
【発明の開示】
【発明が解決しようとする課題】
【0007】
本願の5名の発明者のうちの4名の発明者によってなされた発明、すなわち、RMWが回転しているときに、シンクロトロンからのイオンビームの出射をON/OFF制御する荷電粒子ビーム出射装置の発明が出願されている。その発明では、RMWを回転させつつ、例えば比較的長い時間、すなわちRMWの広い回転角度の範囲にわたってイオンビームを通過させるようにすればイオンビームの減衰度合いが大きく変動することからSOBP幅は広くなり、比較的短い時間すなわちRMWの狭い回転角度の範囲にイオンビームを通過させるようにすればイオンビームの減衰度合いがあまり変動しないためSOBP幅は狭くなる。このように、RMWの回転時にイオンビームの出射をON/OFF制御することで、1つのRMWで多様なSOBP幅を得られるので、RMWの交換頻度を低減でき、多数の患者に対し、円滑に治療を行うことができる。
【0008】
しかしながら、本願発明者等によるその発明のその後の検討によれば、上記発明には以下のような更なる改善の余地があることが分かった。
すなわち、その発明によれば、各患者ごとにビーム発生動作を制御してその患者の患部に応じたSOBP幅を得ることができるものの、そのSOBP幅が患者の患部に応じた所望の値となっているかどうかを確認するためには、ビームを途中で全部吸収させて吸収線量を測定するしかなかった。このため、ビーム照射中にリアルタイムに確認する手法が確立されておらず、治療の安全性の向上の観点において更なる改善の余地があった。
【0009】
本発明の目的は、荷電粒子ビームの照射中にSOBP幅が所望の幅であることを確認できる荷電粒子ビーム出射装置を提供することにある。
【課題を解決するための手段】
【0010】
上記した目的を達成する本発明の特徴は、荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置よりも上流側に配置された第1線量検出装置と、荷電粒子ビームの進行方向でビームエネルギー調整装置の下流側に配置された第2線量検出装置と、第1線量検出装置で検出された第1線量及び第2線量検出装置で検出された第2線量に基づいて拡大ブラッグピーク幅を算出する拡大ブラッグピーク幅演算装置とを備えたことにある。
【0011】
本発明は、第1線量検出装置で検出された第1線量及び第2線量検出装置で検出された第2線量に基づいて拡大ブラッグピーク幅を算出するため、荷電粒子ビームを照射しているときに照射対象内に形成される拡大ブラッグピーク幅が所望の幅であるかを確認することができる。
【0012】
好ましくは、第1線量及び第2線量に基づいた拡大ブラッグピーク幅の算出を、計測された第1線量と計測された第2線量との比に基づいて行うことである。この比に基づいて拡大ブラッグピーク幅を算出することにより、精度の良い拡大ブラッグピーク幅を得ることができる。
【0013】
好ましくは、算出された拡大ブラッグピーク幅が設定された幅であるかを判定する拡大ブラッグピーク幅判定装置を備えることが望ましい。これにより、その判定結果に基づいて、照射対象内に形成されたブラッグピーク幅が設定された幅になっているかを容易に確認できる。
【0014】
好ましくは、算出された拡大ブッラグピーク幅が設定された幅でないとき、荷電粒子ビーム発生装置からの荷電粒子ビームの出射を停止させると良い。これによって、照射対象に対する荷電粒子ビームを用いた治療の安全性が向上する。
【発明の効果】
【0015】
本発明によれば、荷電粒子ビームの照射中に拡大ブッラグピーク幅が所望の幅であるかを確認することができる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
(実施形態1)
本発明の好適な一実施形態である荷電粒子ビーム出射装置を、図1を用いて説明する。本実施形態の荷電粒子ビーム出射装置24は、荷電粒子ビーム発生装置1、荷電粒子ビーム発生装置1の下流側に接続されたビーム輸送系2、及び照射野形成装置である照射装置(荷電粒子ビーム照射装置)16を備えている。本実施形態の荷電粒子ビーム出射装置24は、具体的には陽子線出射装置である。
【0017】
荷電粒子ビーム発生装置1は、イオン源(図示せず)、前段加速器(例えば線形加速器)3及び主加速器であるシンクロトロン4を有する。シンクロトロン4は、一対の電極によって構成された高周波印加装置5及び高周波加速空胴(加速装置)6をイオンビームの周回軌道上に設置している。第1高周波電源8が開閉スイッチ9、10を介して高周波印加装置5の電極に接続される。高周波加速空胴6に高周波電力を印加する第2高周波電源(図示せず)が、別途設けられる。イオン源で発生したイオン(例えば、陽イオン(または炭素イオン))は前段加速器3で加速される。前段加速器3から出射されたイオンビーム(荷電粒子ビーム)はシンクロトロン4に入射される。荷電粒子ビーム(粒子線)であるイオンビームは、第2高周波電源からの高周波電力の印加によって高周波加速空胴6内に発生する電磁場に基づいてエネルギーを与えられて加速される。シンクロトロン4内を周回するイオンビームは、設定されたエネルギー(例えば100〜200MeV)まで加速された後、開閉スイッチ9を閉じることによってシンクロトロン4から出射される。すなわち、第1高周波電源8からの高周波が、開閉スイッチ9を閉じることによって、閉じられている開閉スイッチ10、及び開閉スイッチ9を通して高周波印加装置5より周回しているイオンビームに印加される。このため、安定限界内で周回しているイオンビームは、安定限界外に移行し、出射用デフレクタ11を通って出射される。イオンビームの出射の際には、シンクロトロン4に設けられた四極電磁石12及び偏向電磁石13に導かれる電流が電流設定値に保持され、安定限界もほぼ一定に保持されている。開閉スイッチ9(または開閉スイッチ10)を開いて高周波印加装置5への高周波電力の印加を停止することによって、シンクロトロン4からのイオンビームの出射が停止される。
【0018】
シンクロトロン4から出射されたイオンビームは、ビーム輸送系2により下流側のビーム経路17に輸送される。ビーム輸送系2は、四極電磁石18及び偏向電磁石19,20を備え、照射装置16に連絡されるビーム経路16に連絡される。照射装置16及びビーム経路17は、治療室(図示せず)内に設置された回転ガントリー(図示せず)に取り付けられている。四極電磁石18、偏向電磁石19及び偏向電磁石20がこの順にビーム経路17に設けられる。ビーム経路17内のイオンビームは、照射装置16へと輸送される。患者22が、回転ガントリー内に形成された治療ケージ(図示せず)内で位置決めされた治療用ベッド21に横たわっている。照射装置16から出射されたイオンビームは、その患者22の癌の患部Κ(後述の図2参照)に照射される。四極電磁石18等の電磁石を備えたビーム経路17はビーム輸送系であるとも言える。
【0019】
照射装置16の構造を、図2を用いて説明する。この図2に示すように、照射装置16は、回転ガントリーに取り付けられ、ビーム経路17に接続されるケーシング25を有する。照射装置16は、ケーシング25内に、イオンビーム進行方向の上流側より順次、ビームプロファイルモニタ26,線量モニタ(第1の線量検出装置)27,RMW装置(ブラッグピーク幅形成装置)28,第2散乱体装置29,飛程調整装置(例えば、レンジシフタ)30,線量モニタ(第2の線量検出装置)31,平坦度モニタ32,ブロックコリメータ33,患者コリメータ34、及びボーラス35を、ケーシング25内のビーム経路(ビーム軸)m上に配置している。
【0020】
ビームプロファイルモニタ26は、ビーム輸送系2から照装置16に入射されたイオンビームがビーム軸m上に位置しているかどうかを確認するモニタである。線量モニタ27は照射装置16に入射されたイオンビームの線量を検出するモニタである。図3を用いてその検出原理を説明する。線量モニタ27は、複数(ここでは例えば5枚とする)の重ね合わせた電極27a〜27cを有しており、厚さが数μm程度と非常に薄く構成されている。これら5枚の電極は、イオンビーム進行方向において、中心に位置し、線量モニタカウンタ37に接続された信号電極27a、信号電極27aを挟むように位置し、正側の電圧を印加された2枚の正電極27b、及びこれらの正電極27bをさらに挟むように最も外側に位置する2枚の接地電極27cである。これらの電極をイオンビームが通過すると、そのエネルギーにより信号電極27aと正電極27b,27bとの間で電離電荷が発生し、この発生した電離電荷は信号電極27aから取り出される。信号電極27aから取り出される電離電荷量はイオンビームの線量に比例するので、線量モニタカウンタ37でこの電離電荷量をカウントすることによって、イオンビームの線量を検出できる。ビームプロファイルモニタ26及び線量モニタ27は、ケーシング25に取り付けられた支持テーブル39上に設置される。
【0021】
図2に戻り、RMW装置28は、RMW40、RMW40を回転させる回転装置(例えばモータ)42、及びRMW40の回転角度を検出する角度計51を有する。RMW40、回転装置42及び角度計51は、ケーシング25に設置された支持部材50によって保持される。図4に示すように、RMW40は、回転軸43、回転軸43と同心円状に配置された円筒部材44、及び回転軸43に取り付けられてRMW40の半径方向に伸び、他端が円筒部材44に取り付けられた複数の羽根部45(本実施例では羽根部45A,45B,45Cの3枚)を有している。これらの羽根部45の周方向における幅は回転軸43側の端部よりも円筒部材44側の端部で広くなっている。RMW40の周方向における羽根部45の相互間には、それぞれ開口46が形成されている。これら開口46の周方向における幅も円筒部材44の内面に近づくほど広くなるように形成されている。
【0022】
各羽根部45は、RMW40の周方向において階段状に配置された複数の平面領域(段部)47を有しており、回転軸43の軸方向(ビーム軸mの方向)におけるRMW40の底面から各平面領域47までの各厚みが異なっている。すなわち、RMW40の底面から各平面領域47までのレベルが異なる。ここでは、1つの平面領域47に対するその厚みを、平面領域部分の厚みという。すなわち、羽根部45は、周方向において羽根部45の両側に位置する開口46からビーム軸mの方向における最も厚みの厚い頂部36に位置する平面領域47に向かって各平面領域部分の厚みが階段状に増加している。各平面領域47は回転軸43から円筒部材44に向かって延びており、その周方向における幅も円筒部材44に近づくほど広くなっている。
【0023】
ケーシング25に設置される支持部材50は、ビーム軸mの方向に対向する支持部50A,50Bを有し、更に支持部50Bの下流側に支持部50Cを有する。これら支持部50A,50Bはそれぞれ回転軸48,49を回転可能に支持している。RMW40は保持部50A,50Bの間に挿入され、RMW40の回転軸43が回転軸48,49に挟まれるように支持される。すなわち、回転軸43は回転軸48,49に着脱可能に取り付けられ、RMW40が交換可能となる。回転軸48,49のそれぞれの端部が回転軸43に設けられた貫通孔内に挿入されている。なお、支持部50A,50Bはケーシング25内のビーム経路をさえぎらないように配置される。回転軸43,48,49もそのビーム経路からずれた位置に配置される。
【0024】
支持部50Cに設置された回転装置42が回転軸49に連結されている。RMW40の回転角度(回転位相)を検出する角度計51が、回転軸48に連結されて支持部50Aに取り付けられている。角度計51で検出されたRMW40の回転角度の測定値は、後述する照射制御装置70の照射制御部66に入力される。
【0025】
なお、本実施形態は、図2及び図4に図示していないが、RMW装置28と第2散乱体装置29との間で、ビーム軸m上に第1散乱体が設置されている。この第1散乱体も、ケーシング25に設置される。第1散乱体は、RMW40を通過したイオンビームをビーム軸mと直交する方向に広げる機能を有する。
【0026】
第2散乱体装置29は、複数の第2散乱体55,回転テーブル56及びモータ57を有している。モータ57は、ケーシング25に取り付けられる支持部材58に設置されている。イオンビームを散乱する度合いが異なる複数の第2散乱体55は回転テーブル56上に周方向に並んで設置される。回転テーブル56がモータ57により回転されることによって、所定の第2散乱体55がビーム軸m上に配置される。モータ57の駆動は駆動制御部68によって制御される。
【0027】
飛程調整装置30は、厚みの異なる複数)の吸収体60(本実施の形態では4つ)、及び各吸収体60ごとに設けられた吸収体操作装置61を有する。この吸収体操作装置61としては、例えば圧縮空気により駆動するエアシリンダ等が用いられる。各吸収体操作装置61は吸収体駆動装置62によって駆動され、この吸収体駆動装置62は駆動制御部68によって制御される。
【0028】
線量モニタ31は、照射装置16に入射され、RMW装置28,第1散乱体、第2散乱体装置29及び飛程調整装置30を通過したイオンビームの線量を検出する。線量モニタ31の構造は線量モニタ27と同じである。線量モニタカウンタ38が線量モニタ31の信号電極(図示せず)から取り出された電離電荷量をカウントすることによってイオンビームの線量を検出する。また、平坦度モニタ32は第1散乱体及び第2散乱体55によって散乱されたイオンビームのビーム軸mと垂直な方向における平坦度(線量一様度)を確認するモニタである。線量モニタ31及び平坦度モニタ32は支持テーブル63上に設けられている。
【0029】
ブロックコリメータ33は、イオンビームをビーム軸mと垂直な平面方向に整形してイオンビームの照射野を粗くコリメートする。ブロックコリメータ33の開口径は駆動制御部68によって可変に制御される。患者コリメータ34はイオンビームを患部22の患部Κの形状に合わせてさらに細かくコリメートするためのものである。ボーラス35は、治療患者22の患部Κ(例えば癌や腫瘍の発生部位)の最大深さに合わせてイオンビームの到達深度を調整するものであり、ビーム軸mに垂直な平面上の各位置における飛程を、照射目標である患部Κの深さ形状に合わせて調整するものである。
【0030】
図2に戻り、荷電粒子ビーム出射装置2は、照射制御装置64を備える。照射制御装置64は、線量モニタカウンタ37,38、照射制御部(第2制御装置)66、拡大ブラッグピーク幅演算装置(以下、SOBP幅演算装置という)67、駆動制御部68及びメモリ69を有する。SOBP幅演算装置67はSOBP幅判定装置でもある。メモリ75は、中央制御装置70から出力された後述する照射条件情報を記憶する。照射制御部66は、SOBP幅を形成するための荷電粒子ビーム発生装置1からのイオンビームの出射のON・OFF制御を行う。SOBP幅演算装置67は、照射中のイオンビームのSOBP幅を算出し、このSOBP幅が設定幅となっているかどうかの判定を行う。駆動制御部68は、第2散乱体装置29のモータ57、飛程調整装置30の吸収体駆動装置62、及びブロックコリメータ33のそれぞれの駆動を制御する。更に、荷電粒子ビーム出射装置2はインターロック装置(第1制御装置)72を備える。
【0031】
以上の構成を有する荷電粒子ビーム出射装置24は、RMW40の回転角度に応じて荷電粒子ビーム発生装置1からのイオンビームの出射ON/OFFを制御することにより、複数のSOBP幅を生成することができる。以下、この原理を、図5、図6及び図7を用いて説明する。
【0032】
イオンビームがRMW40の開口46を通過したときは、ビームエネルギーは減衰しないためブラッグピークが体表面から深い第1の位置に形成される。羽根部45のうち最も厚みが厚くなる頂部36に位置する平面領域47をイオンビームが通過したときは、ビームエネルギーが最も大きく減衰されてブラックピークが体表面近くの浅い第2の位置に形成される。イオンビームが開口46と頂部36の間に位置する平面領域47を通過したときは、その平面領域47が位置する部分の厚みに応じてビームエネルギーが減衰するため、ブラッグピークは第1位置と第2位置の間に存在する第3の位置に形成される。したがって、図5及び図6におけるケースaのように、RMW40の周方向において、360°の全回転角度領域において常にビームONである場合には、RMW40の回転によりブラッグピークは第1位置と第2位置との間で周期的に変動する。この結果、ケースaは、時間積分で見ると、図7に示す深さ方向の線量分布aのように体表面近くから深い位置に至る比較的広いSOBP幅というを得ることができる。「ビームON」は、イオンビームがシンクロトロン4から出射されてRMW40を通過し照射装置16から出射される状態を意味する。これに対し、「ビームOFF」は、イオンビームがシンクロトロン4から出射されず照射装置16から出射されない状態を意味する。
【0033】
図5及び図6におけるケースbは、RMW40の周方向において、各羽根部45の比較的厚い領域(頂部36付近)ではビームOFFとし、これ以外の回転角度領域ではビームONとする。ケースbは、体表面近くの浅い部分で生じるブラッグピークがなくなるため、図7に示す深さ方向の線量分布bのように線量分布aよりもフラット部分が狭くなったSOBP幅が形成される。
【0034】
図5及び図6におけるケースcは、RMW40の周方向において、開口46及び開口46付近の各羽根部45の厚みが比較的薄い領域にてビームONとし、これら以外の回転角度領域ではビームOFFとする。ケースcは、全体にビームエネルギーの減衰量が少ないため、体表面から深い位置にブラッグピークが形成される。このため、ケースcは、図7に示す深さ方向の線量分布cのように線量分布bよりもフラット部分が狭くなったSOBP幅が形成される。
【0035】
荷電粒子ビーム出射装置24は、以上のようにRMW40の回転角度に応じてイオンビームの出射ON/OFF制御を行うことにより、1つのRMWで複数の異なるSOBP幅を形成することができる。
【0036】
RMW40の回転時にイオンビームの出射ON/OFF制御を行うことにより種々のSOBP幅を形成できることは、後述するように、非常にメリットがある。しかしながら、ある患者に対して望まれたSOBP幅が実際に形成されているかを確認できることは、イオンビームを用いた治療の安全性を高めるためにも、荷電粒子ビーム出射装置に要求される重要な要件の1つである。発明者らは、この課題を解決するために種々の検討を行い、RMW装置28に入射されるイオンビームの線量、及びRMW装置28を通過したイオンビームの線量に基づけば、イオンビームを患者に照射している状態で、患者の体内に形成されるSOBP幅を確認できることを発見した。この発明者らの検討結果を、以下に説明する。
【0037】
前述したように、線量モニタ27,31はイオンビームが入射した際の電離電荷量を計測する。計測された電離電荷量(線量計測値)は該当する線量モニタを通過するイオンビームに含まれる荷電粒子(イオン)のエネルギーとその粒子数に比例する性質を有している。このため、線量モニタ27,31から出力されたそれぞれの電離電荷量計測値を入力する線量モニタカウンタ37,38で得られる各電離電荷量のカウント値もその荷電粒子のエネルギーとその荷電粒子の粒子数に比例する。
【0038】
照射装置16内で最上流側に位置して照射装置16に入射された状態でのイオンビーム照射装置16内の構造材でエネルギーが減衰されていないイオンビーム)の線量を検出する線量モニタを参照モニタと称する。本実施形態では、線量モニタ27が参照モニタであり、線量モニタ27を、以下、参照モニタ27という。参照モニタ27は、ビーム輸送系2から照射装置16に入射された直後のイオンビームの線量を検出するので、参照モニタ27を通過する荷電粒子のエネルギーは一定である(ここでは照射装置16に入射されるイオンビームの入射エネルギーは一定であるとする)。したがって、参照モニタ27で検出された線量計測値のカウント値(以下、参照線量カウント値という)は参照モニタ27に入射されるイオンビームに含まれる荷電粒子の数に比例する。
【0039】
参照線量カウント値が荷電粒子数に比例することは、発明者らが求めた図8に示す特性より明らかである。図8において、eはRMW40の1周360°に対するビームON期間(ビームをONする角度範囲)の割合が100%、fはそのビームON期間の割合が95%、gはそのビームON期間の割合が72.5%、及びhはそのビームON期間の割合が50%のそれぞれの場合における、参照モニタ27位置での線量分布である。参照モニタ27は図3に示すように非常に薄く構成されているため、参照線量カウント値(線量モニタカウンタ37で得られたカウント値)は物質入射直後の吸収線量値に依存する。この物質入射直後の吸収線量値とは水等価厚0mmにおける吸収線量値のことである。したがって、e,f,g,hの線量分布をそれぞれ有するイオンビームにおける参照線量カウント値は、相対線量G1,G2,G3,G4(図8参照)に相当する。これらの相対線量G1,G2,G3,G4は、図8に示すようにビームON期間に比例して(すなわち荷電粒子数に比例して)増加する。すなわち、参照線量カウント値は参照モニタ27に入射されるイオンビームの荷電粒子数に比例することがわかる。
【0040】
照射装置16内で飛程調整装置30の下流側でボーラス35よりも上流側に配置された線量モニタ、すなわち線量モニタ31を正線量モニタという。正線量モニタ31は、RMW装置28の下流側でイオンビームの線量を検出するので、正線量モニタ31を通過する荷電粒子のエネルギーは、RMW40によって段階的に減衰されており、荷電粒子によって異なっている。したがって、正線量モニタ31で検出された線量計測値のカウント値(以下、正線量カウント値という)は単純に荷電粒子数に比例せず、RMW40によるエネルギーの減衰のされ方(すなわちSOBP幅)に依存する。
【0041】
正線量カウント値がSOBP幅に依存することは、発明者らが求めた図9に示す特性より明らかである。図9において、e’はRMW40の1周360°に対するビームON期間(ビームをONする角度範囲)の割合が100%、f’はそのビームON期間の割合が95%、g’はそのビームON期間の割合が72.5%、及びh’はそのビームON期間の割合が50%のそれぞれの場合における、正線量モニタ31位置での線量分布である。なお、RMWの回転時にRMWの回転角度に基づいてイオンビームの出射ON/OFF制御を行うことにより種々のSOBP幅を形成できるは、図5〜7に示した通りである。したがって、線量分布e’,f’ ,g’ ,h’では図9に示すようにそれぞれ異なるSOBP幅が形成されており、ビームON期間が大きいほど形成されるSOBP幅も大きくなっている。e’,f’ ,g’ ,h’の線量分布をそれぞれ有する各イオンビームにおける正線量カウント値(線量モニタカウンタ38で得られたカウント値)は、図9に示す相対線量G1’,G2’,G3’,G4’となる。相対線量G1’,G2’,G3’,G4’は、図9に示すようにビームON期間が大きいほどSOBP幅が大きくなるためこのSOBP幅の影響を受けて増大する。例えば、ビームON期間の割合が100%である場合の正線量モニタ31位置での線量分布e’を、比較のために、図8において二点鎖線で示す。図8に示すように、正線量モニタ31位置での相対線量G1’は参照モニタ27位置での相対線量G1に比べてSOBP幅の影響を受け大きくなっていることがわかる。
【0042】
参照線量カウント値は、図10に示すように、ビームON期間に比例して増加する。正線量カウント値は、ビームON期間と共にSOBP幅に依存するため、ビームON期間が長くなるにつれて、図10に示すように、参照線量カウント値よりも顕著に増大する。このように、正線量カウント値はSOBP幅に依存するが、ビームON期間(荷電粒子数)にも依存するため、正線量カウント値でSOBP幅を特定するためにはイオンビームの荷電粒子数を平均化する必要がある。参照線量カウント値はイオンビームの荷電粒子数にのみ依存することから、正線量カウント値を参照線量カウント値で除することにより、その荷電粒子数を平均化できる。すなわち、正線量カウント値を参照線量カウント値で除した比(以下、正/参照線量カウント比と記載する)は、SOBP幅にのみ依存する値となる。
【0043】
図10に示す正線量カウント値及び参照線量カウント値を正/参照線量カウント比に置き換えると、図11に示す特性曲線になる。また、ビームON期間とSOBP幅には図12に示す関係がある。このため、図11及び図12に示す特性に基づいて、図13に示す正/参照線量カウント比とSOBP幅との関係を示す特性曲線を導き出せる。図13の特性曲線で表される正/参照線量カウント比とSOBP幅との関係は予め計算及び実験等により求められる。以上述べた正/参照線量カウント比がSOBP幅と関係するという特性は、発明者らが初めて見出した新たな知見である。その正/参照線量カウント比とSOBP幅との関係を示す特性の情報(例えば、図13に示す特性の情報)は、照射制御装置64のメモリ69に記憶されている。
【0044】
以上の説明は、照射装置16に入射されるイオンビームの入射エネルギーが一定であることを前提としているが、その入射エネルギーが変わると、上記した、正/参照線量モニタカウント比とSOBP幅との関係を示す特性も、図14及び図15に示す特性のように変わる。図14及び図15に示す特性は、入射エネルギーを、図8及び図9に示す特性の入射エネルギーに比べて低くしている。図14において、iはRMW40の1周360°に対するビームON期間(ビームをONする角度範囲)の割合が100%、jはそのビームON期間の割合が95%、kはそのビームON期間の割合が72.5%、及びmはそのビームON期間の割合が50%のそれぞれの場合における、参照モニタ27位置での線量分布である。図15において、i’はRMW40の1周360°に対するビームON期間(ビームをONする角度範囲)の割合が100%、j’はそのビームON期間の割合が95%、k’はそのビームON期間の割合が72.5%、及びm’はそのビームON期間の割合が50%のそれぞれの場合における、正線量モニタ31位置での線量分布である。図14に示す線量分布i,j,k,mは、図8に示す線量分布e,f,g,hに比べ、イオンビームの入射エネルギーが小さくなった分、水等価厚が減少し、また相対線量が増加する。また、図15に示す線量分布i’,j’,k’,m’は、図9に示す線量分布e’,f’ ,g’ ,h’に比べ、イオンビームの入射エネルギーが小さくなった分、同様に水等価厚が減少し、また相対線量が増加する。したがって、参照線量カウント値に相当する相対線量G5,G6,G7,G8は前述の相対線量G1,G2,G3,G4に比べて増加し、正線量カウント値に相当する相対線量G5’,G6’,G7’,G8’も前述の相対線量G1’,G2’,G3’,G4’よりも増加する。図15に示すように、形成されるSOBP幅も、図9に示すSOBP幅よりも小さくなっている。このため、照射装置16内に入射されるイオンビームの入射エネルギーが異なると、正/参照線量カウント比とSOBP幅の関係を示す特性も異なる。したがって、本実施形態では、入射エネルギーごとにそのエネルギーに対応した正/参照線量モニタカウント比とSOBP幅との関係を示す特性の情報が、照射制御装置64のメモリ69に記憶されている。
【0045】
荷電粒子ビーム出射装置24による治療開始前に、医者は、X線CT装置(図示せず)によって得られた患者22の患部K付近の断層像を用いて診断を行い、患部Kの位置及びサイズを把握すると共に、イオンビームの照射方向、最大照射深さ等の情報を治療計画装置71に入力する。治療計画装置71は、治療計画ソフトによって、入力されたイオンビームの照射方向、最大照射深さ等に基づき、SOBP幅、照射野径及び患部Kに対する目標線量等を算出する。さらに、治療計画装置71は、各種運転パラメータ(シンクロトロン4から出射されるイオンビームのエネルギー(照射装置16への入射エネルギー)、回転ガントリー角度、及びイオンビームの出射ON/OFF時におけるRMW40の各回転角度)を算出すると共に、治療に適切なRMW40を選定する。回転角度及び目標線量、さらに、図16に示された照射野径、飛程、入射エネルギー(入射Eg)、第1散乱体の厚み(SC1厚)、SOBP幅、第2散乱体55の種類(SC2種類)、飛程調整装置30におけるビーム経路に位置させる吸収体60の厚み(RS厚)及びブロックコリメータ33の開口径(BC開口径)等の上記した治療計画情報が、荷電粒子ビーム出射装置24の中央制御装置70に入力され、中央制御装置70の記憶装置(図示せず)に記憶される。以上に述べた各治療計画情報は、中央制御装置70から照射制御装置64のメモリ69に記憶される。
【0046】
ガントリー制御装置(図示せず)は、メモリ69より入力した回転ガントリー角度情報に基づいて、照射装置16のビーム経路がその角度で患者22を向くように、回転ガントリーを回転させる。患者が横たわっている治療用ベッド21を移動させて患部Kが照射装置16のビーム経路の延長線上に位置するように、治療用ベッド21の位置決めがなされる。
【0047】
照射制御装置64の駆動制御部68は、メモリ69に記憶された照射野径、飛程及び入射エネルギーの各情報を用いて、メモリ69に予め記憶されている図16に例示したような照射条件情報から、第1散乱体の厚み、SOBP幅、第2散乱体の種類、吸収体の厚み、及びブロックコリメータ開口径を選定する。駆動制御部68は、第1散乱体の厚みの情報に基づいて、ビーム軸m上に位置するようにその厚みの第1散乱体を移動させる。駆動制御部68は、選定された第2散乱体55がビーム軸m上に位置するようにモータ57を駆動して回転テーブル56を回転させる。また、駆動制御部68は、選定された吸収体60がビーム軸m上に位置するように吸収体駆動装置62を介して吸収体操作装置61操作する。駆動制御部68は、選定されたブロックコリメータ33の開口径情報に基づき、図示しない駆動装置を制御し、ブロックコリメータ33の各ブロックを駆動し、その開口径を所定の径にする。
【0048】
各種の治療計画情報は、荷電粒子ビーム出射装置24の制御室内に設置された表示装置に表示される。治療を受ける患者22に対するRMW40、ボーラス35及び患者コリメータ34が、作業員によって、照射装置16のケーシング25内に図2に示すように設置される。
【0049】
照射制御装置64のSOBP幅演算装置67は、選定された入射エネルギーに基づき、この入射エネルギーに対応した正線量/参照線量カウント比とSOBP幅との関係情報をメモリ69から読み出す。また、照射制御装置64の照射制御部66は、治療する患者22に対する、ケーシング25内に設置したRMW40の回転角度情報(例えば、後述のα1〜α6)、及び目標線量をメモリ69から読み出す。
【0050】
荷電粒子ビーム出射装置24を用いた患部Kの治療について、以下に説明する。シンクロトロン4は、前段加速器3からのイオンビームの入射、イオンビームの加速、イオンビームの出射、及び減速を繰り返して運転される。設定エネルギーである出射エネルギーまでイオンビームが加速されると、イオンビームの加速が終了し、イオンビームがシンクロトロン4から出射可能な状態(イオンビームの出射可能な状態)になる。イオンビームの加速終了情報は、シンクロトロン4の電磁石等の状態をセンサ(図示)で監視している電磁石電源制御装置から中央制御装置70に伝えられる。
【0051】
荷電粒子ビーム出射装置24における前述したSOBP幅形成のためのイオンビームの出射ON/OFFに係る制御を、図1、図2、図5及び図17を用いて説明する。以下におけるイオンビームの出射ON/OFFに係る制御は、図5におけるケースbの一例に基づいて説明する。このケースbの一例では、黒丸の点52A、52B及び52Cがイオンビームの出射ON(出射開始)時点であり、白丸の点53A、53B及び53Cがイオンビームの出射OFF(出射停止)時点である。照射制御部66は、ケースbの制御を行うに際して、回転角度の設定値である回転角度α1〜α6(α3〜α6は図示せず)を、メモリ69から入力する。回転角度α1は基準線41から点52Aまでの角度であり、回転角度α2は基準線41から点53Aまでの角度であり、回転角度α3は基準線41から点52Bまでの角度であり、回転角度α4は基準線41から点53Bまでの角度であり、回転角度α5は基準線41から点52Cまでの角度であり、回転角度α6は基準線41から点53Cまでの角度である。回転角度α1〜α6は、基準線41がビーム軸mに位置するときを基準にした角度を示している。図5において、黒丸の位置がイオンビームの出射を開始する位置であり、白丸の位置がイオンビームの出射を停止する位置である。
【0052】
照射制御部66は、図17に示す制御フローに基づいてイオンビームの出射ON/OFFに係る制御を実行する。まず、加速器(シンクロトロン4)の加速終了信号(イオンビームが出射可能な状態になったことを示す信号)を入力する(ステップ73)。この加速終了信号は中央制御装置70から入力される。回転装置42に回転開始信号を出力する(ステップ74)。回転装置42は回転開始信号に基づいて回転される。回転装置42の回転力は回転軸49を介して回転軸43に伝えられ、RMW40が回転される。RMW40の回転数は1秒間当り100〜200回転の範囲内の回転数に設定される。回転角度の計測値が回転角度の第1設定値と一致するかが判定される(ステップ75)。角度計39で計測されたRMW40の回転角度の計測値は、照射制御部66に入力される。この計測値が出射開始信号を出力するための回転角度の第1設定値(回転角度α1、α3及びα5のいずれか)と一致するかが判定される。回転角度の計測値が第1設定値と一致した場合は、出射開始信号が出力される(ステップ76)。この出射開始信号によって、開閉スイッチ9が閉じられる。開閉スイッチ10は閉じている。第1高周波電源8から出力された高周波が高周波印加装置5より周回しているイオンビームに印加されるため、イオンビームがシンクロトロン4から出射される。このイオンビームは、照射装置16に輸送される。
【0053】
このイオンビームは、照射装置16内でビーム軸mに沿って進行する。イオンビームは、ビームプロファイルモニタ26、参照モニタ27を通過する。参照モニタ27は、イオンビームの線量(参照線量)を計測する。この参照線量計測値は線量モニタカウンタ37に入力される。回転しているRMW40を通過したイオンビームは、第1散乱体によりビーム軸mに直交する方向に拡大される。その後、イオンビームは、第2散乱体55により上記直交する方向で線量分布が平坦化され、飛程調整装置30の吸収体60を通過してエネルギーを減少されて患者22の体内における飛程が調整される。吸収体60を通過したイオンビームは、正線量モニタ31で線量(正線量)を計測され、平坦度モニタ32でビーム軸m方向に垂直な方向における平坦度が確認される。正線量計測値は線量モニタカウンタ38に入力される。イオンビームは、さらに、ブロックコリメータ33、患者コリメータ34及びボーラス35を通過して、ビーム軸mに沿って照射装置16より出射され、患部Kに照射される。
【0054】
患部Kに照射された線量が目標線量に到達したかが判定される(ステップ77)。また、回転角度の計測値が回転角度の第2設定値と一致するかが判定される(ステップ78)。正線量モニタ31によって測定された患部Kに照射される線量、及び回転角度の計測値は、常に照射制御部66に入力されている。ステップ77においては、正線量モニタ31によって測定された線量計測値の累積値が目標線量になったかが判定される。この判定結果が「YES」の場合には、ステップ78の処理に優先してステップ82の処理が実行され、出射停止信号が出力される。このビーム出射停止信号によって、開閉スイッチ9が開き、高周波印加装置5への高周波の供給が停止される。このため、シンクロトロン4からのイオンビームの出射が停止される。治療用ベッド21上の患者22に対するイオンビームの照射が終了する。回転装置42に停止信号を出力する(ステップ83)。回転装置42の回転が停止し、RMW40の回転も停止する。
【0055】
ステップ77の判定が「NO」である場合には、ステップ78の処理が実行される。ステップ78において、回転角度の計測値が出射停止信号を出力するための回転角度の第2設定値(回転角度α2、α4及びα6のいずれか)と一致したと判定された場合には、出射停止信号が出力される(ステップ79)。出射停止信号の出力により、上記したように開閉スイッチ9が開き、シンクロトロン4からのイオンビームの出射が停止される。ステップ76の出射開始信号の出力からステップ79の出射停止信号の出力までの期間は、例えば、羽根部45Aの平面領域47Aから羽根部45Bの平面領域47Bが、イオンビームが通るビーム軸mを横切る期間であって、実質的にビームONの期間である。開閉スイッチ9が閉じてシンクロトロン4からイオンビームが出射されるまでに要する時間は1/1000秒以下であり、逆に開閉スイッチ9が開いてイオンビームの出射が停止されるまでに要する時間も1/1000秒以下である。
【0056】
ステップ80で、再度、正線量モニタ31からの検出信号を基に得られた患部Kに照射された線量が目標線量に到達したかが判定される。この判定結果が「NO」の場合には、ステップ81の処理が実行される。すなわち、上記したビームONの期間が終了した後、シンクロトロン4内にイオンビームが十分に存在するかを判定する。このイオンビームの存在量(イオンビームの電流密度)は、電磁石電源制御装置がシンクロトロン4に設けられたセンサ(図示せず)の計測値を基に監視している。イオンビームの電流密度の計測値は、中央制御装置70を介して照射制御部66に入力されている。ステップ81の判定は、電流密度の計測値を用いて行われる。判定結果が「YES」の場合には、ステップ75〜80の処理が実行される。この繰り返し処理における、ステップ76の出射開始信号の出力からステップ79の出射停止信号の出力までの期間は、例えば、羽根部45Bの平面領域47Cから羽根部45Cの平面領域47Dがビーム軸mを横切る期間であって、実質的にビームONの期間である。次のステップ75〜80の繰り返し処理における、羽根部45Cの平面領域47Eから羽根部45Aの平面領域47Fがビーム軸mを横切る期間も、実質的にビームONの期間である。2つのビームONの期間の間には、図6に示すようにビームOFFの期間が存在する。ステップ75〜80の繰り返し処理時に、ステップ77または80で、線量計測値の累積値が目標線量になったと判定されると、ステップ83の処理が行われて患者22へのイオンビームの照射は終了する。
【0057】
ステップ81の判定が「NO」の場合には、ステップ73からの処理が実行される。すなわち、シンクロトロン4内を周回しているイオンビームの電流密度が低下してイオンビームの出射が不可能な場合には、シンクロトロン4を減速させる。電磁石電源制御装置がシンクロトロン4及びビーム輸送系2等に設けられた電磁石に供給する電流値を低下させる。それらの電磁石に供給される電流値がイオンビームの入射状態に保持される。イオンビームが前段加速器3からシンクロトロン4に入射される。このイオンビームは前述のように出射エネルギーになるまで加速される。イオンビームの加速終了後にスッテップ73からの処理が、照射制御部66で実行される。
【0058】
ステップ76とステップ78の間でステップ77の判定を行うため、イオンビームが回転しているRMW40を通過している間に、線量計測値の累積値が目標線量になったとき、イオンビームの出射を停止することができる。したがって、患部Kにイオンビームが過大に照射されることを防止できる。例えば、図5において、羽根部45Aと羽根部45Bとの間に位置する開口46がビーム軸mの位置に存在するときにステップ77で「YES」と判定された場合には、イオンビームの出射を停止できる。このため、その開口46がビーム軸mに位置してから回転角度の第2設定値に対する点53Aがビーム軸mに位置するまでの間におけるイオンビームの患部Kへの照射を停止できる。
【0059】
上記したケースbの一例においては、点52Aから点53Aまでの領域、点52Bから点53Bまでの領域及び点52Cから点53Cまでの領域はRMW40におけるイオンビーム通過領域である。点53Aから点52Bまでの領域、点53Bから点52Cまでの領域及び点53Cから点52Aまでの領域はRMW40におけるイオンビームの通過しない領域(イオンビーム非通過領域)である。ケースbの一例について説明したが、1つのRMW40に対して、出射開始信号を出力するための回転角度の第1設定値、及び出射停止信号を出力するための回転角度の第2設定値を変えることにより種々のSOBP幅を形成することができる。図6に示す各「ビームON」は開口46をイオンビームが通過しているが、イオンビームが開口46を通過せず頂部36を通過させるように制御することも可能である。照射制御部66は、例えば、図5において、点53Cがビーム軸mに到達したときに出射開始信号を出力し、点52Aがビーム軸mに到達したときに出射停止信号を出力する。
【0060】
以上に述べた照射制御部66によるイオンビームの出射ON/OFF制御により、治療計画で定めた、患者22に対する所望のSOBP幅を患部Kに形成することができる。
【0061】
イオンビームを照射装置16から出射している間、駆動制御部68は、第2散乱体装置29,飛程調整装置30、及びブロックコリメータ33の機器状態情報をそれぞれリアルタイムに(又は例えば一定周期おきに)入力する。それらの機器状態情報は、それらの機器に設置したセンサ(図示せず)で検出される。駆動制御部68はこれらの機器状態情報がメモリ69から読み出し第2散乱体の種類、吸収体の厚み、及びブロックコリメータ開口径の情報のうち該当する情報と一致するかを判定する。一致しない機器状態情報がある場合、すなわちその判定が「NO」である場合には、駆動制御部68はインターロック装置72にインターロック信号を出力する。インターロック装置72は、そのインターロック信号に基づいて開閉スイッチ10を開く。このため、開閉スイッチ9が閉じた状態であっても、第1高周波電源8からの高周波の高周波印加装置5への供給が停止され、シンクロトロン4からのイオンビームの出射が停止される。なお、その判定が「YES」である場合には、インターロック装置72は開閉スイッチ10を開かないため、開閉スイッチ9が閉じられていると、シンクロトロン4からのイオンビームの出射が継続される。
【0062】
SOBP幅演算装置67は、照射中のイオンビームのSOBP幅が所定の幅となっているかどうかの判定を行う。この詳細は、以下に説明する。SOBP幅演算装置67は、線量モニタ27で検出され線量モニタカウンタ37でカウントされたイオンビームの、RMW装置28の上流側における線量、及び線量モニタ31で検出され線量モニタカウンタ38でカウントされたイオンビームの、RMW装置28の下流側における線量が入力される。(正確にはそれぞれ電離電荷量が入力され、SOBP幅演算装置67にて線量に換算される)。イオンビームを患者22に照射している間、参照モニタ27での検出信号を基に線量モニタカウンタ37で得られた参照線量、及び正線量モニタ31での検出信号を基に線量モニタカウンタ38で得られた正線量が、リアルタイムに(又は例えば一定周期おきに)が、照射制御装置64のSOBP幅演算装置67に入力される。SOBP幅演算装置67は、入力した参照線量及び正線量に基づいて正/参照線量カウント比を算出し、及びメモリ69に記憶されている正/参照線量カウント比とSOBP幅との関係を示す特性の情報を用いて、算出された正/参照線量カウント比に対するSOBP幅を算出する。SOBP幅演算装置67は、算出されたSOBP幅が、中央制御装置70から入力した治療計画情報であるSOBP幅(SOBP幅設定値)と一致するかを判定する。算出されたSOBP幅(実SOBP幅)が患者22の体内で形成されている実際のSOBP幅である。実SOBP幅がSOBP幅設定値に一致していない場合、SOBP幅演算装置67はインターロック信号(SOBP幅異常信号)をインターロック装置72に出力する。このとき、インターロック装置72は、スイッチOFF信号を開閉スイッチ10に出力し、開閉スイッチ10を開く。このため、第1高周波電源8から高周波印加装置5への高周波の供給が停止され、シンクロトロン4からのイオンビームの出射が停止される。実SOBP幅がSOBP幅設定値に一致している場合、SOBP幅演算装置67はSOBP幅正常信号をインターロック装置72に出力するため、インターロック装置72はスイッチOFF信号を出力しない。このため、所望のSOBP幅が患者22の体内に形成されているとして、患者22へのイオンビームの照射が継続される。このイオンビームの照射は、前述したように正線量モニタ31の検出信号を基に得られた正線量が目標線量に達するまで行われる。SOBP幅演算装置67から出力されたSOBP幅異常信号またはSOBP幅正常信号は、表示装置54に表示される。SOBP幅演算装置67はSOBP幅判定装置でもある。なお、SOBP幅設定値は、患者22によって異なり、同一の患者22でも治療の進行に伴う患部Kの縮小により異なる。
【0063】
本実施形態の荷電粒子ビーム出射装置24によれば、RMW40を回転させた状態でイオンビームをON/OFF制御するため、回転方向において、RMW40内でイオンビームが通過する領域を、RMW40の回転方向において、変化させることができる。このため、1つのRMW40で、患者22の体表面からの深さ方向で異なる幅を有する複数のSOBP幅を形成することができ、1つのRMW40を複数の患者に使用することができる。すなわち、1つのRMW40を用いて治療できる患者数が増加する。また、1つのRMW40を用いて、複数のSOBP幅を形成することができるため、荷電粒子ビーム出射装置24を有するがん治療センタで準備するRMWの個数が低減できる。1つのRMW40で複数のSOBP幅を形成できることは、照射装置16に設置されたRMWの交換回数が減少する。これは、治療の準備に要する時間が短縮されることになり、荷電粒子ビーム出射装置24における患者の治療人数が増加できる。特に、本実施形態は、イオンビームのON/OFF制御をRMW40の回転角度(具体的には回転角度の計測値及び設定値)に基づいて行っているため、特定のSOBP幅を精度良く形成することができる。ビームのON/OFF制御を行うRMWの回転角度を変えることによって、種々のSOBP幅を形成することができる。
【0064】
シンクロトロン4では、加速されるイオンの数が同じであるため、ビームONの期間を短縮しても、第1高周波電源8から高周波印加装置5に供給する出射用の高周波のパワーを増加することによって、ビームONの期間中にシンクロトロン4から出射されるイオンビームの電流密度を増大できる。このため、ビームONの期間が短くても患者に照射される線量率(単位時間当りで単位体積当りに照射される放射線量)を増大できる。厚さの薄い患部K、または体積が小さい患部Kを有する患者22に対しては、電流密度が増大されたイオンビームを照射することによってイオンビームの照射時間を短縮できる。この照射時間の短縮は、患者22の負担を軽減でき、1年間当りの治療人数を増加できる。ビームONの期間を短縮する場合でも、出射用の高周波のパワーを前述のように増大することによって、周回する全てのイオンビームを実質的にシンクロトロン4から出射させることができるため、シンクロトロン4等の機器の放射化の度合いが低下する。
【0065】
加速器としてシンクロトロンの代りにサイクロトロンを用い、サイクロトロンから出射されたイオンビームを照射装置16に導くことが考えられる。しかしながら、サイクロトロンは、シンクロトロンのように減速工程がなく、イオンビームの入射、加速及び出射の各工程を連続して行うため、「ビームON」の期間を短くすると、単位時間当りに照射装置16から出射されるイオンの数が減少する。しかしながら、患部Kに対する線量率は変わらない。これは、SOBP幅を減少させる、つまり、照射体積を減らしていることと等価である。この結果、「ビームON」の期間を短くしても、厚さの薄い患部K、または体積が小さい患部Kを有する患者22に対しては、イオンビームの照射時間が変わらない。サイクロトロンにおいて「ビームOFF」をイオンビームの加速過程または加速後に行えば、捨てられるイオンビーム量が多くなり、サイクロトロン等の機器の放射化が増加する。
【0066】
本実施形態の荷電粒子ビーム出射装置24によれば、RMW40に対するビームON/OFF制御により形成された実SOBP幅がSOBP幅設定値であるか否かをイオンビームの照射中にリアルタイムに確認することができる。実SOBP幅がSOBP幅設定値でない場合にはイオンビームの出射を停止できるので、治療計画で設定したSOBP幅と異なる異常なSOBP幅が患者22内で形成されることを避けることができる。このため、イオンビームによる治療の安全性が著しく向上する。すなわち、本実施形態によれば、治療計画で設定したSOBP幅が患者22の体内に形成されるときにのみ、イオンビームを患者22に照射できる。
【0067】
SOBP幅演算装置67から出力されたSOBP幅異常信号またはSOBP幅正常信号が表示装置54に表示されるため、医者(または放射線技師)は患者22内で形成されているSOBP幅の正常(または異常)を確認できる。このため、万が一、表示装置54にSOBP幅異常信号(SOBP幅異常情報)が表示されても、インターロック装置72等の異常により、シンクロトロン4からのイオンビームの出射が停止されない場合には、医者(または放射線技師)は制御室内のオペレータコンソール(図示せず)に設けられたビーム出射停止ボタンを押すことにより、開閉スイッチ10を開くことができる。すなわち、手動でシンクロトロン4からのイオンビームの出射を停止できる。
【0068】
実SOBP幅とSOBP幅設定値とが一致しない場合は、参照モニタ27と正線量モニタ31との間に配置された機器、すなわち、RMW装置28、第1散乱体、第2散乱体装置29、飛程調整装置30のいずれかに何らかの異常があることが検出されたことになる。但し、本実施形態では前述したように、検出された、第1散乱体、第2散乱体装置29、飛程調整装置30の機器状態情報に異常がなければ、RMW装置28に係わる異常(すなわち所望のSOBP幅が形成されていない)と特定できる。なお、正線量モニタ31をRMW装置28と第2散乱体装置29との間に設け、純粋にRMW装置28の機器状態のみを検出するような構成としてもよい。
【0069】
本実施形態における、実SOBP幅の正常(または異常)の確認する構成は、RMW40におけるビームのON/OFF制御を行う場合に限らず、RMWの回転中にイオンビームのON/OFF制御を行わない照射装置16において、患者毎に交換して設置されたRMWの確認に用いることも可能である。通常、RMWには識別子(例えばバーコード)が取り付けられ、照射装置16側にはその識別子を読むリーダが設けられており、間違ったRMW40が取り付けられた場合にはイオンビームの出射を不能にするインターロック機能が設けられる。実SOBP幅の正常(または異常)の確認する構成の適用によって、例えば何らかの原因によりこのインターロック機能が働かない場合でも、前述した実SOBP幅の異常の確認によって間違ったRMWの設置を検出でき、イオンビームの出射を停止できる。したがって、荷電粒子ビーム出射装置の安全性をさらに向上できる。また、RMWではなくSOBP幅を形成するリッジフィルタを用いる荷電粒子ビーム出射装置であっても、前述した実SOBP幅の正常(または異常)の確認する構成の適用によって、間違ったリッジフィルタを設置した場合に患者へのイオンビームの出射を阻止することができる。
【0070】
(実施形態2)
本発明の他の実施形態である荷電粒子ビーム出射装置を、図18を用いて以下に説明する。本実施形態の荷電粒子ビーム出射装置24Aは、荷電粒子ビーム出射装置24における、シンクロトロン4を有する荷電粒子ビーム発生装置1を、サイクロトロン4Aを有する荷電粒子ビーム発生装置1Aに置き替え、ビーム輸送系2にエネルギー変更装置86を付加した構成を有する。照射装置16はRMW装置28を有する。
【0071】
荷電粒子ビーム発生装置1Aは、加速装置85を有するサイクロトロン4A、イオン源84及びエネルギー変更装置86を備える。エネルギー変更装置86は、サイクロトロン4A付近でビーム輸送系2に設置される。エネルギー変更装置86は、イオンビームを通過させてエネルギーを損失させる板状の複数のディグレーダ(図示せず)、エネルギーの低くなったイオンビームを偏向する偏向電磁石(図示せず)、偏向電磁石通過後のイオンビームの一部分を切り出すアパーチャ(図示せず)、及びイオンビームのビーム輸送系2下流側への輸送をシャットアウトするビームシャッタ(図示せず)を備える。
【0072】
照射制御部66によるイオンビームのON/OFF制御は、図17に示すステップ73〜83にもとづいて行われる。しかし、ステップ76で照射制御部72から出力される出射開始信号は、イオン源電源装置87に出力される。イオン源電源装置87は、出射開始信号の入力によりイオン源84に電力を供給する。イオン源84は起動されてイオンビームを出射させる。このイオンビームは、サイクロトロン4Aに入射され、加速装置81によって設定エネルギーまで加速される。設定エネルギーまで加速されたイオンビームは、出射用デフレクタ11を介してサイクロトロン4Aから出射される。その後、ステップ79または82で出力される出射停止信号がイオン電源装置87に出力され、イオン源電源装置87がイオン源84への電力の供給を停止させる。イオンビームのサイクロトロン4Aへの入射が停止され、サイクロトロン4Aからのイオンビームの出射も停止される。
【0073】
また、イオンビームの出射中において、SOBP幅演算装置67がSOBP幅異常信号を出力した場合には、インターロック装置72がイオン源電源装置87に電力供給停止信号を出力する。イオン源電源装置87からイオン源84への電力の供給が停止され、サイクロトロン4Aからのイオンビームの出射が停止される。
【0074】
実施形態2は、実施形態1で得られる、(1)厚さの薄い患部K、または体積が小さい患部Kを有する患者22に対する、電流密度が増大されたイオンビームを照射することによってイオンビームの照射時間の短縮、(2)機器の放射化度合いの低下、の2つの効果以外の実施形態1で生じる効果を得ることができる。
【0075】
なお、イオンビームのON/OFF制御は、イオン源84の起動/停止以外に、エネルギー変更装置86のビームシャッタを開閉することによって行うことも可能である。また、偏向電磁石15への電源供給の制御により、イオンビームの経路を変更させて、照射装置16へのイオンビームの入射のON/OFFを制御してもよい。
【図面の簡単な説明】
【0076】
【図1】本発明の第1実施形態の荷電粒子ビーム出射装置の全体構成図である。
【図2】図1に示す照射装置の詳細構成を表す縦断面図である。
【図3】図1に示す線量モニタの概略構成を示す構成図である。
【図4】図1に示すRMWの斜視図である。
【図5】図4に示したRMWの平面図であり、イオンビームの出射のケースa〜cを例として示したものである。
【図6】図5に示すケースa〜cにおけるそれぞれのビームON及びビームOFFを時系列で示した図である。
【図7】図5に示すケースa〜cのそれぞれに対する深さ方向の線量分布及びSOBP幅を示す図である。
【図8】ビームON期間の割合を4種類に変化させて照射した場合の参照モニタ位置で得られる線量分布を表す図である。
【図9】ビームON期間の割合を4種類に変化させて照射した場合の正線量モニタ位置で得られる線量分布を表す図である。
【図10】正線量モニタ及び参照モニタにおける、ビームON期間での線量カウント値の変化を示す特性図である。
【図11】ビームON期間における正/参照線量カウント比の変化を示す特性図である。
【図12】ビームON期間におけるSOBP幅の変化を示す特性図である。
【図13】SOBP幅に対する正/参照線量カウント比の変化を示す特性図である。
【図14】入射エネルギーを低くした場合における、ビームON期間の割合を4種類に変化させて照射した場合の参照モニタ位置で得られる線量分布を表す図である。
【図15】入射エネルギーを低くした場合における、ビームON期間の割合を4種類に変化させて照射した場合の正線量モニタ位置で得られる線量分布を表す図である。
【図16】図2に示す照射制御装置のメモリに記憶された治療計画情報の一例を示す説明図である。
【図17】図1に示す照射制御部で実行される制御ステップに係るフローチャートである。
【図18】本発明の他の実施例である実施形態2の荷電粒子ビーム出射装置の全体構成図である。

【特許請求の範囲】
【請求項1】
荷電粒子ビームを照射対象に対して出射する荷電粒子ビーム出射装置おいて、
前記荷電粒子ビームを発生する荷電粒子ビーム発生装置と、
前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有し、前記ビームエネルギー調整装置を通過した前記荷電粒子ビームを前記照射対象に対して出射する照射装置と、
前記荷電粒子ビームの進行方向で前記ビームエネルギー調整装置の上流側に配置された第1線量検出装置と、
前記荷電粒子ビームの進行方向で前記ビームエネルギー調整装置の下流側に配置された第2線量検出装置と、
前記第1線量検出装置で検出された第1線量及び前記第2線量検出装置で検出された第2線量に基づいて前記拡大ブラッグピーク幅を算出する拡大ブラッグピーク幅演算装置とを備えたことを特徴とする荷電粒子ビーム出射装置。
【請求項2】
前記第1線量及び前記第2線量に基づいた前記拡大ブラッグピーク幅の算出を、前記第1線量と前記第2線量との比に基づいて行う前記拡大ブラッグピーク幅演算装置を備えた請求項1記載の荷電粒子ビーム出射装置。
【請求項3】
前記ビームエネルギー調整装置は厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を含んでいる請求項1記載の荷電粒子ビーム出射装置。
【請求項4】
前記回転体の回転時に、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を制御する制御装置を備えた請求項3記載の荷電粒子ビーム出射装置。
【請求項5】
前記記荷電粒子ビームの出射及び出射停止の制御を前記回転体の回転角度に基づいて行う前記制御装置を備えた請求項4記載の荷電粒子ビーム出射装置。
【請求項6】
前記ビームエネルギー調整手段は、前記荷電粒子ビームの進行方向における厚みが異なるリッジフィルタである請求項1記載の荷電粒子ビーム出射装置。
【請求項7】
前記拡大ブラックピーク幅を表示する表示装置を備えた請求項1記載の荷電粒子ビーム出射装置。
【請求項8】
荷電粒子ビームを照射対象に対して出射する荷電粒子ビーム出射装置おいて、
前記荷電粒子ビームを発生する荷電粒子ビーム発生装置と、
前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有し、前記ビームエネルギー調整装置を通過した前記荷電粒子ビームを前記照射対象に対して出射する照射装置と、
前記荷電粒子ビームの進行方向で前記ビームエネルギー調整装置の上流側に配置された第1線量検出装置と、
前記荷電粒子ビームの進行方向で前記ビームエネルギー調整装置の下流側に配置された第2線量検出装置と、
前記第1線量検出装置で検出された第1線量及び前記第2線量検出装置で検出された第2線量に基づいて前記拡大ブラッグピーク幅を算出し、算出された前記拡大ブラッグピーク幅が設定された幅であるかを判定する拡大ブラッグピーク幅判定装置とを備えたことを特徴とする荷電粒子ビーム出射装置。
【請求項9】
算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記荷電粒子ビームの出射を停止するように前記荷電粒子ビーム発生装置を制御する第1制御装置を備えた請求項8記載の荷電粒子ビーム出射装置。
【請求項10】
前記算出された拡大ブラックピーク幅を表示する表示装置を備えた請求項8記載の荷電粒子ビーム出射装置。
【請求項11】
前記第1線量及び前記第2線量に基づいた前記拡大ブラッグピーク幅の算出を、前記第1線量と前記第2線量との比に基づいて行う前記拡大ブラッグピーク幅判定装置を備えた請求項8記載の荷電粒子ビーム出射装置。
【請求項12】
前記ビームエネルギー調整装置は厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を含んでいる請求項8記載の荷電粒子ビーム出射装置。
【請求項13】
前記回転体の回転時に、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を制御する第2制御装置を備えた請求項12記載の荷電粒子ビーム出射装置。
【請求項14】
前記記荷電粒子ビームの出射及び出射停止の制御を前記回転体の回転角度に基づいて行う前記第2制御装置を備えた請求項13記載の荷電粒子ビーム出射装置。
【請求項15】
前記ビームエネルギー調整手段は、前記荷電粒子ビームの進行方向における厚みが異なるリッジフィルタである請求項8記載の荷電粒子ビーム出射装置。
【請求項16】
前記回転体は、厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える複数の前記羽根部を有する請求項12記載の荷電粒子ビーム出射装置。
【請求項17】
前記荷電粒子ビーム発生装置がシンクロトロン及びサイクロトロンのいずれか一方を含んでいる請求項1または請求項8記載の荷電粒子ビーム出射装置。
【請求項18】
高周波印加装置を有するシンクロトロンを含む前記荷電粒子ビーム発生装置と、算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記シンクロトロンからの前記荷電粒子ビームの出射を停止するために、前記高周波印加装置への高周波の印加を停止させる前記第1制御装置を備えた請求項9記載の荷電粒子ビーム出射装置。
【請求項19】
厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を含んでいる前記ビームエネルギー調整装置と、
前記回転体の回転時に、前記シンクロトロンからの前記荷電粒子ビームの出射及び出射停止を制御する第2制御装置とを備え、
前記第2制御装置は、前記荷電粒子ビームの出射及び出射停止の制御を、前記高周波印加装置への高周波の供給及び供給停止を制御することによって行う請求項18記載の荷電粒子ビーム出射装置。
【請求項20】
サイクロトロン及び前記サイクロトロンに前記荷電粒子ビームを入射するイオン源を含む前記荷電粒子ビーム発生装置と、算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記サイクロトロンからの前記荷電粒子ビームの出射を停止するために、前記イオン源への電力の供給を停止させる前記第1制御装置を備えた請求項9記載の荷電粒子ビーム出射装置。
【請求項21】
サイクロトロン及び前記サイクロトロンに前記荷電粒子ビームを入射するイオン源を含む前記荷電粒子ビーム発生装置と、前記サイクロトロンから出射された前記荷電粒子ビームのエネルギーを変更するエネルギー変更装置と、算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記照射装置への前記荷電粒子ビームの輸送を停止するために、前記エネルギー変更装置に設けられるシャッターを閉じる前記第1制御装置を備えた請求項9記載の荷電粒子ビーム出射装置。
【請求項22】
荷電粒子ビーム発生装置から出射された荷電粒子ビームを、前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有する照射装置より出射させる荷電粒子ビーム出射方法において、
前記荷電粒子ビーム進行方向において、前記ビームエネルギー調整装置の上流側で前記荷電粒子ビームの第1線量を検出し、前記ビームエネルギー調整装置の下流側で前記荷電粒子ビームの第2線量を検出し、
前記第1線量及び前記第2線量に基づいて前記拡大ブラッグピーク幅を算出することを特徴とする荷電粒子ビーム出射方法。
【請求項23】
前記第1線量及び前記第2線量に基づいた前記拡大ブラッグピーク幅の算出を、
前記第1線量と前記第2線量との比に基づいて行う請求項22記載の荷電粒子ビーム出射方法。
【請求項24】
前記ビームエネルギー調整装置に含まれている、厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を回転させているときに、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を行う請求項22記載の荷電粒子ビーム出射方法。
【請求項25】
前記記荷電粒子ビームの出射及び出射停止を前記回転体の回転角度に基づいて行う請求項24記載の荷電粒子ビーム出射方法。
【請求項26】
荷電粒子ビーム発生装置から出射された荷電粒子ビームを、前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有する照射装置より出射させる荷電粒子ビーム出射方法において、
前記荷電粒子ビーム進行方向において、前記ビームエネルギー調整装置の上流側で前記荷電粒子ビームの第1線量を検出し、前記ビームエネルギー調整装置の下流側で前記荷電粒子ビームの第2線量を検出し、
前記第1線量及び前記第2線量に基づいて前記拡大ブラッグピーク幅を算出し、算出された前記拡大ブラッグピーク幅が設定された幅であるかを判定することを特徴とする荷電粒子ビーム出射方法。
【請求項27】
算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記荷電粒子ビームの出射を停止する請求項26記載の荷電粒子ビーム出射方法。
【請求項28】
算出された前記拡大ブラックピーク幅を表示装置に表示する請求項26記載の荷電粒子ビーム出射方法。
【請求項29】
前記第1線量及び前記第2線量に基づいた前記拡大ブラッグピーク幅の算出を、
前記第1線量と前記第2線量との比に基づいて行う請求項26記載の荷電粒子ビーム出射方法。
【請求項30】
前記ビームエネルギー調整装置に含まれている、厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を回転させているときに、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を行う請求項26記載の荷電粒子ビーム出射方法。
【請求項31】
前記記荷電粒子ビームの出射及び出射停止を前記回転体の回転角度に基づいて行う請求項30記載の荷電粒子ビーム出射方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2007−296321(P2007−296321A)
【公開日】平成19年11月15日(2007.11.15)
【国際特許分類】
【出願番号】特願2007−64601(P2007−64601)
【出願日】平成19年3月14日(2007.3.14)
【出願人】(000005108)株式会社日立製作所 (27,607)
【出願人】(506025899)ザ ボード オブ レジェンツ オブ ザ ユニバーシティ オブ テキサス システム (3)
【Fターム(参考)】