説明

触媒反応器

【課題】反応生成物の収率を一層向上させることができ、第1熱媒を供給する動力を一層低減させることができる触媒反応器を提供すること。
【解決手段】触媒反応器1は、内部に触媒21を配置してなる反応流路2と、反応流路2に隣接形成された熱媒流路3とを有してなる。反応流路2は、その内部に反応原料Mを導入すると共に反応原料Mと触媒21とを接触させて反応生成物Pを生成し排出するよう構成されている。熱媒流路3は、その内部に第1熱媒C1を通過させて反応流路2との熱交換を行うよう構成されている。熱媒流路3内には、第1熱媒C1とは温度が異なる第2熱媒C2を噴出して第1熱媒C1に混合させる第2熱媒噴出ヘッダー6が配設されている。第2熱媒噴出ヘッダー6は、反応原料Mの流れ方向Lにおける上流側に配設されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内部に配置した触媒を介して反応原料を反応させて反応生成物を生成する反応流路と、内部に熱媒を通過させて上記反応流路との熱交換を行う熱媒流路とを有してなる触媒反応器に関する。
【背景技術】
【0002】
反応原料と触媒とを接触させて化学反応を行い反応生成物を得る際には、内部に触媒を充填してなる反応管を複数有してなる多管式の反応器が用いられる。この反応器は、上記複数の反応管の外側に、この複数の反応管と熱交換を行うための熱媒流路を有している。そして、この熱媒流路に流す熱媒の温度を適温に維持することにより、上記反応管内に充填した触媒の温度を適温に維持し、目的とする反応生成物を得ている。このような反応器としては、例えば特許文献1に示すものがある。
【0003】
また、特許文献1の反応器内においては、円筒状の反応器シェル内に、複数の反応管を配設し、この反応管の長手方向に向けて、略中央部に穴(空間部)を有する穴あき円板型邪魔板と、外周部に隙間を形成する円板型邪魔板とを交互に配設して、反応器シェル内に供給された熱媒が方向を変更しながら流れるようにしている。また、穴あき円板型邪魔板の空間部内にも上記反応管を配置していることにより、生成する目的生成物の収率(生成率)を悪化させることなく、上記熱媒を供給するポンプの動力を低減させている。
【0004】
ところで、上記触媒反応器においては、まだ反応が行われていないフレッシュな反応原料が流れる上記反応管の上流側、特に反応管の入口部の近傍において、最も活発に反応が行われる。そして、上記反応が発熱反応である場合には、上記入口部の近傍に充填された触媒の温度が他の部位に比べて高温になる。このとき、この部分的に高温になった熱媒により反応管内の触媒を十分に冷却できないときには、触媒の温度が上昇し、触媒が熱により劣化してしまうホットスポットと呼ばれる現象が発生してしまう。
そのため、特許文献1の反応器においては、反応器内に熱媒が円滑に流れるようにして、上記ホットスポットの現象の発生を抑制している。
【0005】
しかしながら、上記反応生成物の収率を一層向上させ、上記熱媒を供給するポンプの動力を一層低減させるためには、上記従来の反応器では十分ではない。すなわち、反応原料による反応のピーク温度は触媒の温度に大きく依存しており、反応管の各部における触媒の温度にばらつき(温度分布)があると、反応管内において反応が均一に行われないおそれがある。そして、反応が均一に行われないことにより、反応生成物の収率も高くすることができなくなる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2001−137689号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、かかる従来の問題点に鑑みてなされたもので、反応生成物の収率を一層向上させることができ、第1熱媒を供給する動力を一層低減させることができる触媒反応器を提供しようとするものである。
【課題を解決するための手段】
【0008】
本発明は、内部に触媒を配置してなる反応流路と、該反応流路に隣接形成された熱媒流路とを有し、上記反応流路は、その内部に反応原料を導入すると共に該反応原料と上記触媒とを接触させて反応生成物を生成し排出するよう構成してあり、一方上記熱媒流路は、その内部に第1熱媒を通過させて上記反応流路との熱交換を行うよう構成してなる触媒反応器において、
上記熱媒流路内には、上記第1熱媒とは温度が異なる第2熱媒を噴出して上記第1熱媒に混合させる第2熱媒噴出ヘッダーが配設されており、かつ該第2熱媒噴出ヘッダーは、上記反応原料の流れ方向における上流側に配設されており、
上記熱媒流路を形成するプレート状熱媒管を複数個対向配設してなると共に、該プレート状熱媒管同士の間には上記反応流路を形成してなり、上記プレート状熱媒管は、上記第1熱媒を上記反応原料の流れ方向を横切る方向に流すよう上記流れ方向に並べて形成された複数の流路形成部を有しており、上記第2熱媒噴出ヘッダーは、上記複数の流路形成部のうち上記流れ方向における上流側に位置する流路形成部内に配設されていることを特徴とする触媒反応器にある(請求項1)。
【発明の効果】
【0009】
本発明の触媒反応器は、触媒を配置してなる上記反応流路とこの反応流路と熱交換を行う上記熱媒流路とを有しており、この熱媒流路内における上流側には、上記第2熱媒噴出ヘッダーを有している。そして、上記反応生成物を得る際には、上記反応流路に上記反応原料を流入させ、この反応原料を上記触媒に接触させて反応を行い、反応生成物を生成する。このとき、上記第1熱媒を上記熱媒流路内に流し、第1熱媒が反応流路と熱交換を行うことにより、反応流路内の触媒の温度を適温に維持する。
【0010】
ところで、上記反応原料による反応は、上記反応流路における上流側(上記反応原料の流れ方向における上流側)において活発に行われる。
そこで、本発明においては、上記第2熱媒噴出ヘッダーは、反応原料の流れ方向における上流側に配設されており、この第2熱媒噴出ヘッダーは上記第1熱媒とは温度が異なる第2熱媒を噴出させる。そして、第2熱媒噴出ヘッダーによる第2熱媒の噴出は、上記熱媒流路内における第1熱媒に対して直接行われ、噴出された直後に直ちに熱媒流路内の第1熱媒に混合される。
これにより、上記熱媒流路は、反応が活発に行われる反応流路における上流側と重点的に熱交換することができる。
【0011】
また、上記触媒反応器においては、上記熱媒流路内に第2熱媒を直接噴出させているものの、この第2熱媒は噴出された後に直ちに第1熱媒と混合される。そのため、熱媒流路内に第1熱媒とは温度が異なる第2熱媒が長く介在することがなく、熱媒流路内の各部における第1熱媒の温度にばらつき(温度分布)が生じることを抑制することができる。
これにより、反応流路内の各部に配置された触媒の温度にばらつきが生じることを抑制することができ、上記触媒反応器によって生成する反応生成物の収率(生産率)を向上させることができる。
【0012】
また、上記熱媒流路が上記反応が活発に行われる反応流路における上流側と重点的に熱交換することにより、反応による触媒の温度変化が激しい部位と効果的に熱交換を行うことができる。そのため、上記温度変化が激しい部位と熱交換を行うために第1熱媒の流量を増大させる必要がなく、上記熱媒流路に供給する第1熱媒の流量を減少させることができる。そのため、第1熱媒を供給する動力を低減させることができる。
【0013】
また、本発明においては、複数のプレート状熱媒管の対向配設によって、上記熱媒流路と上記反応流路とを交互に形成してなるプレート型の触媒反応器を形成することができる。そして、上記第1熱媒を、上記反応原料の流れ方向を横切る方向に向けて流すことにより、第1熱媒が上記反応流路と効果的に熱交換を行うことができる。そして、上記第2熱媒噴出ヘッダーから、上記流れ方向における上流側に位置する流路形成部内を流れる第1熱媒に、上記第2熱媒を噴出混合することにより、一層効果的に複数の反応流路の各部における触媒の温度のばらつきの発生を抑制することができる。
【0014】
それ故、本発明の触媒反応器によれば、反応生成物の収率を一層向上させることができ、第1熱媒を供給する動力を一層低減させることができる。
【図面の簡単な説明】
【0015】
【図1】参考例1における、多管式の触媒反応器を示す説明図。
【図2】参考例1における、多管式の触媒反応器を示す図で、図1におけるA−A線断面説明図。
【図3】実施例1における、プレート型の触媒反応器を示す斜視説明図。
【図4】実施例1における、プレート型の触媒反応器を示す説明図。
【図5】実施例1における、プレート型の触媒反応器を示す拡大説明図。
【図6】実施例1における、他のプレート型の触媒反応器を示す説明図。
【図7】実施例2における、プレート型の触媒反応器を示す説明図。
【図8】実施例2における、プレート型の触媒反応器を示す図で、図7におけるB−B線断面説明図。
【図9】実施例3における、他のプレート型の触媒反応器を示す説明図。
【図10】従来例における、触媒反応器を示す説明図。
【発明を実施するための形態】
【0016】
上述した本発明の触媒反応器における好ましい実施の形態につき説明する。
本発明において、上記上流側とは、上記反応流路の形成方向における中央位置よりも、上記反応原料の流れ方向における上流側のことをいう。
また、上記第2熱媒噴出ヘッダーは、上記熱媒流路内において、上記反応流路の全長に対して、この反応流路における上記反応原料の入口部から5割の長さ以下の範囲に配設することが好ましく、上記反応原料の入口部から1〜3割の長さの範囲に配設することがより好ましい。
さらに、第2熱媒噴出ヘッダーは、上記熱媒流路内において、上記反応流路における上記反応原料の入口部の近傍に配設することが好ましい。これらの場合には、一層効果的に上記触媒の温度のばらつきの発生を抑制することができる。
【0017】
また、本発明において、上記反応流路において行う反応が発熱反応である場合には、上記第1熱媒によって上記熱媒流路から上記反応流路を冷却することができる。この場合には、上記第2熱媒は、上記熱媒流路内における第1熱媒よりも低い温度とすることができる。例えば、第2熱媒の温度は、熱媒流路内における第1熱媒の温度よりも、10〜100℃低い温度とすることができ、熱媒流路内に供給する第1熱媒の温度よりも、5〜100℃低い温度とすることができる。
【0018】
一方で、上記反応流路において行う反応が吸熱反応である場合には、上記第1熱媒によって上記熱媒流路から上記反応流路を加熱することができる。また、この場合には、上記第2熱媒は、上記第1熱媒よりも高い温度とすることができる。例えば、第2熱媒の温度は、熱媒流路内における第1熱媒の温度よりも、10〜100℃高い温度とすることができ、熱媒流路内に供給する第1熱媒の温度よりも、5〜100℃高い温度とすることができる。
また、上記第2熱媒噴出ヘッダーから噴出させる第2熱媒の噴出量は、上記第1熱媒流路に供給する第1熱媒の流量に対して、5〜50[%]の量とすることができ、さらに好ましくは10〜30[%]の量とすることができる。
【0019】
上記触媒反応器においては、上記発熱反応としては、例えば、上記反応原料としてのエチレン、酸素等を上記反応流路に導入し、上記反応生成物としての酸化エチレンを生成することができる。また、例えば、上記反応原料としてのプロピレン(又はイソブチレン)、酸素等を上記反応流路に導入し、上記反応生成物としての(メタ)アクリル酸を生成することもできる。
また、上記触媒反応器においては、上記吸熱反応としては、例えば、上記反応原料としてのエチルベンゼン等を上記反応流路に導入し、上記反応生成物としてのスチレンを生成することができる。
【0020】
また、上記例外にも、上記触媒反応器においては、マレイン酸、フタール酸等の反応生成物を生成することができる。
上記反応原料としては、ガス状態の種々の反応原料ガスを用いることができ、上記触媒としては、上記反応原料による反応を活性化させる種々の触媒を使用することができる。
また、上記第1熱媒と第2熱媒とは同種のものとし、これらには、種々の溶融塩、水、種々の有機溶媒、ブライン、空気等のガス体等を用いることができる。
【0021】
また、上記熱媒流路における上記第1熱媒の入口部と出口部とは、上記出口部から排出された第1熱媒を上記入口部へと還流させるための還流ラインによって接続されており、該還流ラインと上記第2熱媒噴出ヘッダーとは、上記出口部から排出された第1熱媒の一部を流すための分岐ラインによって接続されており、また、該分岐ラインには、これを流れる第1熱媒の温度を上昇又は低下させて上記第2熱媒を作り出すための熱交換器が配設されており、かつ、上記還流ラインには、上記出口部から排出された第1熱媒を、上記入口部及び上記分岐ラインへ送り出すための還流ポンプが配設されていることが好ましい(請求項2)。
【0022】
この場合には、上記熱交換器は、上記還流ラインから分岐して上記分岐ラインに流れる第1熱媒の一部のみと熱交換を行って上記第2熱媒を作り出すことができる。そのため、熱交換器は、第1熱媒の全体と熱交換をすることがなく、第2熱媒を少ない動力により効果的に作り出すことができる。
なお、上記還流ラインには、上記熱媒流路の出口部から排出された第1熱媒を回収するタンクを配設することができる。この場合には、上記分岐ラインは、上記タンクから上記第2熱媒噴出ヘッダーへと接続することができる。
また、上記還流ポンプは、上記熱媒流路の入口部に第1熱媒を送り出すものと、上記分岐ラインに第1熱媒を送り出すものとによって構成することもできる。
【0023】
また、上記触媒反応器は、その内部に配設した複数の反応管内に上記反応流路をそれぞれ形成していると共に、上記複数の反応管の外側には上記熱媒流路を形成しており、
上記熱媒流路における上記第1熱媒の入口部を上記反応原料の流れ方向における下流側に形成すると共に、上記熱媒流路内には上記反応原料の流れ方向を横切る邪魔板を上記流れ方向に並べて複数個配設することにより、上記熱媒流路は上記第1熱媒が上記横切る方向に向きを変えつつ上記反応原料の流れ方向とは逆方向に向けて流れる蛇行ルートを形成していることが好ましい。
【0024】
この場合は、上記複数の反応管を有してなる多管式の触媒反応器を形成することができる。そして、上記複数の反応管の外側に形成した上記熱媒流路における上流側に上記第2熱媒噴出ヘッダーを配設して、複数の反応管内に配置された触媒の温度にばらつきが生じることを抑制することができる。
【0025】
また、上記第1熱媒を、上記反応原料の流れ方向とは逆方向から流すことにより、第1熱媒が上記反応流路と効果的に熱交換を行うことができ、複数の反応流路の各部における触媒に温度のばらつきが発生することを一層効果的に抑制することができる。
なお、上記熱媒流路における上記第1熱媒の入口部は、上記第1熱媒の蛇行ルートの始点に形成し、上記熱媒流路における第1熱媒の出口部は、上記反応原料の流れ方向における上流側であって、上記蛇行ルートの終点に形成することができる。
【0026】
また、上記第2熱媒噴出ヘッダーは、上記複数の邪魔板よりも上記反応原料の流れ方向における上流側に配設されており、上記複数の邪魔板と共に上記蛇行ルートを形成していることが好ましい。
この場合には、上記熱媒流路内に上記第2熱媒噴出ヘッダーを配設することによって第1熱媒の流れを乱すことがなく、第2熱媒噴出ヘッダーも上記複数の邪魔板と共に上記第1熱媒の蛇行ルートを形成することができる。
【0027】
また、第2熱媒噴出ヘッダーを、上記複数の邪魔板よりも上流側に配設したことにより、上記第2熱媒を、上記反応流路における反応原料の入口部の近傍において上記第1熱媒に噴出混合させることができる。そのため、一層効果的に複数の反応流路の各部における触媒の温度のばらつきの発生を抑制することができる。
【0028】
また、上記プレート状熱媒管における各流路形成部は、一対のプレートを複数の接合部によって接合した後、当該一対のプレート同士の間を広げることにより形成されており、互いに対向する一対の上記プレート状熱媒管は、一方のプレート状熱媒管における上記各接合部と、他方のプレート状熱媒管における上記各流路形成部とが対向しており、上記反応流路は、上記各接合部と上記各流路形成部との間の流路間隙によって形成されていることが好ましい(請求項3)。
【0029】
この場合には、上記複数の流路形成部を有するプレート状熱媒管を形成することが容易である。また、上記一対のプレート同士の間を広げる量を調節することにより、上記反応流路を形成する流路間隙の間隙量を調節することができる。
また、上記反応流路を各接合部と各流路形成部との間の流路間隙によって形成していることにより、反応流路は、複数回に折れ曲がる波状の流路として形成される。そのため、反応流路内における反応原料の流れを乱すことができ、上記熱媒流路における第1熱媒が上記反応流路と熱交換を行う効率を向上させることができる。
【0030】
また、上記複数の流路形成部の断面形状を変化させることにより、上記流路間隙は、上記反応原料の流れ方向における下流側に位置する部分が、上流側に位置する部分よりも広くなっていることが好ましい(請求項4)。
この場合には、上記反応流路を形成する流路間隙の下流側に位置する部分に、上流側に位置する部分よりも多く触媒を配置することができ、上記反応が活発に行われる反応流路の上流側における反応活性を小さくすることができる。そのため、上記触媒の温度のばらつきの発生を一層抑制することができる。
【0031】
また、上記複数の流路形成部の断面形状は、例えば、上記上流側に位置する流路形成部の流路断面積が、上記下流側に位置する流路形成部の流路断面積よりも大きくなるよう変化させることができる。この場合には、上流側に位置する流路形成部内を流れる第1熱媒は、下流側に位置する流路形成部内を流れる第1熱媒よりも、上記反応流路内の触媒と多く熱交換を行うことができる。そのため、これによっても、上記触媒の温度のばらつきの発生を一層抑制することができる。
【0032】
また、複数の流路形成部の断面形状は、上記複数の接合部を形成する間隔を変化させておき、一対のプレートの間を広げる量を変化させることによって変化させることができる。また、上記複数の流路形成部の断面形状は、上記流れ方向における下流側に位置する流路形成部の幅を、上流側に位置する流路形成部の幅よりも小さくして、変化させることができる。
【0033】
また、上記複数の流路形成部のうち上記反応原料の流れ方向における最も下流側に位置する第1流路形成部の一端部に、上記第1熱媒の入口部を形成し、当該第1流路形成部の他端部と、該第1流路形成部の上流側に位置する第2流路形成部の他端部とが接続され、かつ該第2流路形成部の一端部と、該第2流路形成部の上流側に位置する第3流路形成部の一端部とが接続され、以降同様に各流路形成部が上記流れ方向の上流側に向けて他端部同士と一端部同士とにおいて交互に接続されており、上記熱媒流路は、上記第1熱媒が上記反応原料の流れ方向を横切る方向に流れると共に、上記反応原料の流れ方向とは逆方向に向けて流れる蛇行ルートを形成していることが好ましい(請求項5)。
この場合には、上記プレート型の触媒反応器においても、上記第1熱媒が上記反応原料の流れ方向とは逆方向に向けて流れる第1熱媒の蛇行ルートを形成することができる。
【実施例】
【0034】
以下に、図面を用いて本発明の触媒反応器にかかる実施例につき説明する。
(参考例1)
本例の触媒反応器1は、図1に示すごとく、内部に触媒21を配置してなる反応流路2と、この反応流路2に隣接形成された熱媒流路3とを有してなる。上記反応流路2は、その内部に反応原料Mを導入すると共にこの反応原料Mと上記触媒21とを接触させて反応生成物Pを生成し排出するよう構成されている。一方、上記熱媒流路3は、その内部に第1熱媒C1を通過させて上記反応流路2との熱交換を行うよう構成されている。
【0035】
そして、上記熱媒流路3内には、上記第1熱媒C1とは温度が異なる第2熱媒C2を噴出して上記第1熱媒C1に混合させる第2熱媒噴出ヘッダー6が配設されている。この第2熱媒噴出ヘッダー6は、上記反応原料Mの流れ方向Lにおける上流側であって、上記反応流路2における反応原料Mの入口部(原料入口部)22の近傍に配設されている。
以下に、これを詳説する。
【0036】
図1、図2に示すごとく、本例の第2熱媒噴出ヘッダー6は、その内部に上記第2熱媒C2を導入させる箱型形状を有しており、第2熱媒C2を噴出させるための複数の噴出孔611を有している。また、第2熱媒噴出ヘッダー6は、上記反応原料Mの流れ方向Lを横切る方向に向けて配設されている。さらに、第2熱媒噴出ヘッダー6は、複数の噴出孔611をそれぞれ有する一対の噴出プレート部61を、上記反応原料Mの流れ方向Lを横切るよう配設してなる。また、第2熱媒噴出ヘッダー6には、複数の反応管4を貫通配置するための複数の貫通配置穴62が形成されている。
【0037】
また、本例においては、第2熱媒噴出ヘッダー6は、反応流路2における原料入口部22の近傍(反応流路2の全長に対して、原料入口部22から約2.5割の長さの位置)に配設されている。
また、第2熱媒噴出ヘッダー6は、切欠き部63による切欠き形状を有しており、この切欠き部63によって、上記容器本体部10の内壁との間に、第1熱媒C1を通過させるための第1熱媒通過口64を形成している。
なお、図1、図2は、触媒反応器1を模式的に示す図であり、上記反応管4の配設位置及び本数、並びに上記第2熱媒噴出ヘッダー6における噴出孔611の数、大きさ及び形成位置等は、触媒反応器1の設計条件に応じて適宜決定することができる。
【0038】
図1に示すごとく、上記触媒反応器1は、筒状の容器本体部10内に、内部に触媒21を有する複数の反応管4を配設してなる多管式のものである。複数の反応管4は、上記原料入口部22を形成する一端部同士と、上記反応原料Mの出口部(原料出口部)23を形成する他端部同士とが、それぞれ支持プレート14によって容器本体部10に支持されている。
なお、図1、図2においては、支持プレート14の全面に反応管4が配設されているが、部分的に反応管4が配設されない部分があってもよい。
【0039】
また、複数の反応管4内には、反応流路2が形成されていると共に、この反応流路2には触媒21を充填してなる触媒層が形成されている。また、上記容器本体部10内における上記複数の反応管4の外側には、上記第1熱媒C1が流れる熱媒流路3が形成されている。本例の熱媒流路3は、上記複数の反応管4の外側であって、上記容器本体部10と上記2つの支持プレート14とによって囲まれて形成されている。
【0040】
また、図1に示すごとく、容器本体部10は、上記反応原料Mが供給される供給口111と、上記反応生成物Pを排出する排出口121とを有している。また、上記容器本体部10の上流側端部には、上記供給口111を有する入口側接続部11が接続されており、上記容器本体部10の下流側端部には、上記排出口121を有する出口側接続部12が接続されている。そして、上記複数の反応管4における原料入口部22は、それぞれ上記供給口111と連通しており、上記複数の反応管4における原料出口部23は、それぞれ上記排出口121と連通している。
【0041】
上記熱媒流路3における上記第1熱媒C1の入口部(第1熱媒入口部)31は、上記反応原料Mの流れ方向Lにおける下流側に形成されており、上記熱媒流路3における上記第1熱媒C1の出口部(第1熱媒出口部)32は、上記反応原料Mの流れ方向Lにおける上流側に形成されている。本例の第1熱媒入口部31は、上記容器本体部10における下流側端部の近傍に形成されており、本例の第1熱媒出口部32は、上記容器本体部10における上流側端部の近傍に形成されている。
また、上記容器本体部10における熱媒流路3内には、上記反応原料Mの流れ方向Lを横切る邪魔板13が、上記流れ方向Lに並べて複数個配設されている。すなわち、複数の邪魔板13は、上記反応原料Mの流れ方向Lを横切る方向に向けて配設されている。また、各邪魔板13は、上記複数の反応管4を貫通配置するための複数の貫通配置穴131を有している。
【0042】
また、図1、図2に示すごとく、各邪魔板13は、切欠き部132による切欠き形状(欠円形状)を有しており、この切欠き部132によって、上記容器本体部10の内壁との間に、第1熱媒C1を通過させるための第1熱媒通過口133を形成している。
本例では、上記第2熱媒噴出ヘッダー6の切欠き部63と、各邪魔板13の切欠き部132との配置位置を適宜異ならせることにより、上記容器本体部10内には、上記第1熱媒C1が上記横切る方向に向きを変えつつ上記反応原料Mの流れ方向Lとは逆方向に向けて流れる熱媒流路3の蛇行ルート30が形成されている。
【0043】
また、上記第2熱媒噴出ヘッダー6は、上記複数の邪魔板13よりも上記反応原料Mの流れ方向Lにおける上流側に配設されており、上記複数の邪魔板13と共に上記蛇行ルート30を形成している。また、上記熱媒流路3における上記第1熱媒入口部31は、上記第1熱媒C1の蛇行ルート30の始点30Aに形成されており、上記熱媒流路3における第1熱媒出口部32は、上記蛇行ルート30の終点30Eに形成されている。
【0044】
なお、邪魔板13の形状は、図1、図2に示す欠円形状以外にも、外周に熱媒流路3を形成する円板形状又は中心部に熱媒流路3を形成する穴あき円板形状とすることができる。そして、円板形状の邪魔板13と穴あき円板形状の邪魔板13とを交互に配設することができる。また、この場合には、第2熱媒噴出ヘッダー6の形状は、穴あき円板形状とすることが好ましい。
【0045】
また、図1に示すごとく、上記熱媒流路3における上記第1熱媒入口部31と第1熱媒出口部32とは、第1熱媒出口部32から排出された第1熱媒C1を第1熱媒入口部31へと還流させるための還流ライン71によって接続されている。
また、還流ライン71と上記第2熱媒噴出ヘッダー6とは、上記第1熱媒出口部32から排出された第1熱媒C1の一部を流すための分岐ライン72によって接続されている。そして、この分岐ライン72には、これを流れる第1熱媒C1の温度を上昇又は低下させて上記第2熱媒C2を作り出すための熱交換器721が配設されている。
また、上記還流ライン71には、上記第1熱媒出口部32から排出された第1熱媒C1を、上記第1熱媒入口部31及び上記分岐ライン72へ送り出すための還流ポンプ711が配設されている。
【0046】
上記熱交換器721は、上記還流ライン71から分岐して上記分岐ライン72に流れる第1熱媒C1の一部のみと熱交換を行って上記第2熱媒C2を作り出すことができる。そのため、熱交換器721は、第1熱媒C1の全体と熱交換をすることがなく、第2熱媒C2を少ない動力により効果的に作り出すことができる。
また、熱交換器721は、上記反応原料Mによって発熱反応を行う場合には、上記第1熱媒C1の一部を冷却して、この第1熱媒C1よりも温度が低い第2熱媒C2を作り出すことができる。一方、熱交換器721は、上記反応原料Mによって吸熱反応を行う場合には、上記第1熱媒C1の一部を加熱して、この第1熱媒C1よりも温度が高い第2熱媒C2を作り出すことができる。
【0047】
また、本例においては、上記分岐ライン72には、この分岐ライン72に流れる第1熱媒C1の流量を調節するための流量調節弁722が配設されている。そして、この流量調節弁722の開度を調節することによって、上記還流ライン71から上記分岐ライン72に分岐して流す第1熱媒C1の流量を調節することができ、上記第2熱媒噴出ヘッダー6から噴出させる第2熱媒C2の噴出量も調節することができる。
なお、上記流量調節弁722は、上記還流ライン71に配設し、この還流ライン71に流れる第1熱媒C1の流量を調節することによって、上記第2熱媒噴出ヘッダー6から噴出させる第2熱媒C2の噴出量を調節することもできる。
【0048】
本例の触媒反応器1において、上記反応生成物Pを得る際には、上記各反応流路2に上記反応原料Mを流入させ、この反応原料Mを上記触媒21に接触させて反応を行い、反応生成物Pを生成する。
そして、上記反応原料Mによって発熱反応を行う場合には、上記熱媒流路3には、冷却媒体としての第1熱媒C1を通過させ、この第1熱媒C1によって上記反応流路2に配置した触媒21を冷却する。
【0049】
ところで、上記反応流路2における上流側、特に上記原料入口部22の近傍においては、発熱反応が行われていないフレッシュな反応原料Mが多く存在する。そのため、上記反応原料Mによる発熱反応は、特に原料入口部22の近傍において活発に行われる。
そこで、本例においては、第2熱媒噴出ヘッダー6は、反応流路2における原料入口部22の近傍(原料入口部22から約2.5割の長さの位置)に配設されており、第2熱媒噴出ヘッダー6は上記複数の噴出孔611から上記第1熱媒C1よりも温度が低い第2熱媒C2を噴出させる。そして、上記第2熱媒噴出ヘッダー6による第2熱媒C2の噴出は、上記熱媒流路3内における第1熱媒C1に対して直接行われ、噴出された直後に直ちに熱媒流路3内の第1熱媒C1に混合される。
【0050】
これにより、発熱反応が活発に行われる反応流路2における原料入口部22の近傍を重点的に冷却することができ、この原料入口部22の近傍に配置された触媒21が局所的に加熱されて劣化してしまうことを抑制することができる。
また、上記触媒反応器1においては、熱媒流路3内に第2熱媒C2を直接噴出させているものの、この第2熱媒C2は噴出された後に直ちに第1熱媒C1と混合される。そのため、熱媒流路3内に局所的に温度が低い第2熱媒C2が長く介在することがなく、熱媒流路3内の各部における第1熱媒C1の温度のばらつき(温度分布)はほとんど生じない。
これにより、反応流路2内の各部に配置された触媒21の温度にばらつきが生じることを抑制することができ、上記触媒反応器1によって生成する反応生成物Pの収率(生産率)を向上させることができる。
【0051】
また、上記発熱反応が活発に行われる反応流路2における原料入口部22の近傍を重点的に冷却することにより、発熱反応による触媒21の温度上昇が激しい部位を効果的に冷却することができる。そのため、上記温度上昇が激しい部位の冷却を行うために第1熱媒C1の流量を増大させる必要がなく、熱媒流路3に供給する第1熱媒C1の流量を減少させることができる。そのため、第1熱媒C1を供給する動力を低減させることができる。
それ故、本発明の触媒反応器1によれば、反応生成物Pの収率を一層向上させると共に触媒21の寿命を一層向上させることができ、かつ第1熱媒C1を供給する動力を低減させることができる。
【0052】
なお、上記反応原料Mによる反応が吸熱反応である場合においても、この吸熱反応は、特に原料入口部22の近傍において活発に行われる。
そして、この場合には、上記熱媒流路3には、加熱媒体としての第1熱媒C1を通過させ、この第1熱媒C1によって上記反応流路2に配置した触媒21を加熱する。そして、反応流路2における原料入口部22の近傍に配設した第2熱媒噴出ヘッダー6における複数の噴出孔611から上記第1熱媒C1よりも温度が高い第2熱媒C2を噴出させ、噴出された直後に直ちに熱媒流路3内の第1熱媒C1に混合される。
【0053】
これにより、反応流路2における原料入口部22の近傍に配置された触媒21が局所的に冷却されてしまうことがほとんどない。そのため、吸熱反応の進行速度の低下を抑制し、反応生成物Pの収率を高く維持することができる。また、吸熱反応の場合においても、上記発熱反応の場合と同様に、第1熱媒C1を供給する動力を低減させることができる。
【0054】
(参考例2)
本例においては、上記参考例1に示した触媒反応器1(発明品)(図1参照)の優れた作用効果を確認する試験を行った。この確認試験においては、比較のために従来の触媒反応器9(比較品)(図10参照)についても確認試験を行った。
発明品については、触媒反応器1の容器本体部10の大きさは、直径6[m]×長さ5[m]とし、上記反応管4は内径24[mm]のものを23100本配設し、各反応管4内に触媒21を充填した。また、比較品についても同様に、触媒反応器9の容器本体部910の大きさは、直径6[m]×長さ5[m]とし、反応管94は内径24[mm]のものを23100本配設し、各反応管94内に触媒921を充填した。
【0055】
また、比較品については、図10に示すごとく、触媒反応器9内に、邪魔板913を3枚配設し、熱媒C9が蛇行して流れる熱媒流路93の蛇行ルート930を形成した。一方、発明品については、図1に示すごとく、触媒反応器1内に、上記邪魔板13を2枚配設すると共に、その上流側に上記第2熱媒噴出ヘッダー6を配設し、第1熱媒C1が蛇行して流れる熱媒流路3の蛇行ルート30を形成すると共に、第1熱媒C1に第2熱媒噴出ヘッダー6から第2熱媒C2を噴出混合した。
【0056】
そして、比較品については、図10に示すごとく、上記反応原料Mとしてのプロピレン、酸素含有ガス等を65.6[t/h]の流量で導入し、上記複数の反応管94内において触媒921を介して反応を行った。また、このとき、上記熱媒C9としての溶融塩を6000[t/h]の流量で、上記反応原料Mの流れ方向Lとは逆方向から上記熱媒流路93の蛇行ルート930に流した。また、熱媒流路93に供給する熱媒C9(溶融塩)の温度は330[℃]とした。
【0057】
そして、蛇行ルート930の各部における熱媒C9の温度を測定した。この測定を行った結果、蛇行ルート930の始点部930A(熱媒C9の入口部931の近傍)の温度T1は330[℃]、蛇行ルート930の第1折返し点930Bの温度T2は330[℃]、蛇行ルート30の第2折返し点930Cの温度T3は331[℃]、蛇行ルート30の第3折返し点930Dの温度T4は332[℃]、蛇行ルート30の終点部930E(熱媒C9の出口部932の近傍)の温度T5は337[℃]であった。
【0058】
一方、発明品については、図1に示すごとく、上記反応原料Mとしてのプロピレン、酸素含有ガス等を65.6[t/h]の流量で導入し、上記複数の反応管4内において触媒21を介して反応を行った。また、このとき、上記第1熱媒C1としての溶融塩を4400[t/h]の流量で、上記反応原料Mの流れ方向Lとは逆方向から上記熱媒流路3の蛇行ルート30に流し、上記第2熱媒C2としての溶融塩を500[t/h]の流量で、上記第2熱媒噴出ヘッダー6から噴出させた。また、また、熱媒流路3に供給する第1熱媒C1(溶融塩)の温度は333[℃]とし、第2熱媒C2(溶融塩)の温度は249[℃]とした。
【0059】
そして、蛇行ルート30の各部における第1熱媒C1の温度を測定した。この測定を行った結果、蛇行ルート30の始点部30A(第1熱媒入口部31の近傍)の温度T1は333[℃]、蛇行ルート30の第1折返し点30Bの温度T2は333[℃]、蛇行ルート30の第2折返し点30Cの温度T3は334[℃]、蛇行ルート30の第3折返し点30Dの温度T4は334[℃]、蛇行ルート30の終点部30E(第1熱媒出口部32の近傍)の温度T5は333[℃]であった。
【0060】
上記結果よりわかるのは、比較品についてはT1〜T5における最大温度差が7[℃]であるのに対し、発明品についてはT1〜T5における最大温度差が1[℃]であることである。そのため、発明品、すなわち上記第2熱媒噴出ヘッダー6を設けた触媒反応器1の構成によれば、熱媒流路3における各部の温度のばらつきが極めて少なく、反応管4内の触媒21の温度も、全体でほとんど均一に維持できることがわかった。
また、比較品については、熱媒C9の供給流量を6000[t/h]としたのに対し、発明品については、上記第1熱媒C1の供給流量と第2熱媒C2の供給流量とを合わせた熱媒全体の供給流量を4900[t/h]とすることができた。そのため、発明品によれば、熱媒の供給量を大幅に減少できることがわかった。
【0061】
また、比較品については、反応生成物Pの収率(生成率)が88[%]であったのに対し、発明品については、反応生成物Pの収率を90[%]にすることができた。さらに、発明品については、熱媒流路3における各部の温度のばらつきが極めて少ないことにより、触媒21の寿命を約30[%]延ばすことができることが試算された。
【0062】
(実施例1)
本例の触媒反応器1は、図3〜図5に示すごとく、上記熱媒流路3を形成するプレート状熱媒管5を所定の間隔をあけて複数個対向配設してなると共に、このプレート状熱媒管5同士の間に上記反応流路2を形成してなるプレート型の触媒反応器1である。
図3、図4に示すごとく、上記プレート状熱媒管5は、上記第1熱媒C1を上記反応原料Mの流れ方向Lを横切る方向に流すよう上記流れ方向Lに並べて形成された複数の流路形成部53を有している。そして、上記第2熱媒噴出ヘッダー6は、上記複数の流路形成部53のうち上記流れ方向Lにおける上流側であって、反応流路2における原料入口部22の近傍に位置する流路形成部53内に配設されている。
【0063】
図5に示すごとく、本例のプレート状熱媒管5は、互いに対面させた一対のプレート51を、その一辺から他辺に向けて複数箇所において接合し、その後、一対のプレート51同士の間に流体を流し、一対のプレート51同士の間を広げて形成したものである。このプレート状熱媒管5においては、上記接合箇所にはプレート51同士が対面接合された接合部52が形成されており、この接合部52同士の間には、各プレート51がそれぞれ円弧状又は楕円弧状に膨らんでなる流路形成部53が形成されている。
【0064】
また、本例の触媒反応器1においては、互いに対向配設された一対のプレート状熱媒管5は、一方のプレート状熱媒管5における上記各接合部52と、他方のプレート状熱媒管5における上記各流路形成部53とが対向している。そして、上記反応流路2は、上記各接合部52と上記各流路形成部53との間の間隙である流路間隙Sによって形成されている。また、本例の触媒反応器1においては、上記熱媒流路3と上記反応流路2とは交互に形成されている。
また、本例の第2熱媒噴出プレート6は、パイプ形状を有しており、このパイプ形状の外周に上記第2熱媒C2を噴出させるための複数の噴出孔611を有している。
【0065】
本例の触媒反応器1においては、上記第1熱媒C1は、上記反応原料Mの流れ方向Lを横切る方向に流れ、反応流路2と効果的に熱交換を行うことができる。そして、上記第2熱媒噴出ヘッダー6から、上記流れ方向Lにおける上流側に位置する流路形成部53内を流れる第1熱媒C1に、上記第2熱媒C2を噴出混合することにより、効果的に複数の反応流路2の各部における触媒21の温度のばらつきの発生を抑制することができる。
また、上記各流路形成部53の断面形状は、上記一対のプレート51の成形時において、上記接合部52の間隔を変更し、プレート51同士の間に流す流体の圧力及び流量を調節することにより、容易に変更することができる。これにより、上記反応流路2を形成する流路間隙Sの間隙量を調節することも容易である。
【0066】
また、上記反応流路2を各接合部52と各流路形成部53との間の流路間隙Sによって形成していることにより、反応流路2は、複数回に折れ曲がる波状の流路として形成される。そのため、反応流路2内における反応原料Mの流れを乱すことができ、上記熱媒流路3における第1熱媒C1が上記反応流路2と熱交換を行う効率を向上させることができる。本例においても、その他は上記参考例1と同様であり、上記参考例1と同様の作用効果を得ることができる。
なお、上記プレート状熱媒管5は、図6に示すごとく、一対のプレート51を波状の接合プレート55によって接合してなるものとすることもできる。
【0067】
(実施例2)
本例は、図7、図8に示すごとく、上記参考例2におけるプレート型の触媒反応器1について、上記複数の流路形成部53をそれぞれ一端部531同士と他端部532同士とで交互に接続することにより、上記熱媒流路3の蛇行ルート30を形成した例である。
すなわち、本例では、図7に示すごとく、上記複数の流路形成部53のうち上記反応原料Mの流れ方向Lにおける最も下流側に位置する第1流路形成部53Aの一端部531に、上記第1熱媒入口部31を形成している。
【0068】
また、第1流路形成部53Aの他端部532と、第1流路形成部53Aの上流側に位置する第2流路形成部53Bの他端部532とを接続し、かつこの第2流路形成部53Bの一端部531と、第2流路形成部53Bの上流側に位置する第3流路形成部53Cの一端部531とを接続している。また、以降同様に、上記流れ方向Lの上流側に向けて各流路形成部53を他端部532同士と一端部531同士とにおいて交互に接続している。
なお、熱媒流路3の蛇行ルート30は、複数の流路形成部53の各他端部532と、この上流側に位置する複数の流路形成部53の各他端部532とをまとめて接続し、また、複数の流路形成部53の各一端部531と、この上流側に位置する複数の流路形成部53の各一端部531とをまとめて接続して形成することができる。
【0069】
また、図8に示すごとく、上記複数の流路形成部53の接続は、各プレート状熱媒管5同士についても同様に行っている。すなわち、第1熱媒入口部31は、各プレート状熱媒管5に対しても同様に形成されている。また、内部に接続通路541を有する接続ヘッド54によって、各プレート状熱媒管5の第1流路形成部53Aの他端部532と、各プレート状熱媒管5の第2流路形成部53Bの他端部532とが接続されており、また、各プレート状熱媒管5の第2流路形成部53Bの一端部531と、各プレート状熱媒管5の第3流路形成部53Cの一端部531とが接続されている。また、以降同様に、上記流れ方向Lの上流側に向けて各プレート状熱媒管5の各流路形成部53を他端部532同士と一端部531同士とにおいて交互に接続されている。
【0070】
上記各流路形成部53の接続により、上記第1熱媒C1が上記反応原料Mの流れ方向Lを横切る方向に流れると共に、上記反応原料Mの流れ方向Lとは逆方向に向けて流れる熱媒流路3の蛇行ルート30を形成することができる。
本例においては、上記第1熱媒C1が上記反応原料Mの流れ方向Lとは逆方向に流れるため、熱媒流路3と反応流路2との熱交換を一層効率的に行うことができる。
本例においても、その他は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。
【0071】
(実施例3)
本例は、図9に示すごとく、上記プレート状熱媒管5における複数の流路形成部53の断面形状を変化させることにより、上記反応流路2における流路間隙Sの間隙量の調節を行った例である。本例では、上記複数の流路形成部53の断面形状を変化させることにより、上記反応原料Mの流れ方向Lにおける下流側に位置する流路間隙Sの部分を、上流側に位置する流路間隙Sの部分よりも広くしている。
【0072】
本例においては、上記複数の流路形成部53の断面形状は、上記反応原料Mの流れ方向Lにおいて段階的に変化させている。具体的には、上記流れ方向Lの最も上流側に位置する幾つか(本例では2個)の第1流路形成部53Aを、略円形状に近い形状に形成し、上記流れ方向Lの最も下流側に位置する幾つか(本例では3個)の第3流路形成部53Cを楕円形状に形成し、残り(本例では10個)の第2流路形成部53Bを第3流路形成部53Cよりも大きな楕円形状に形成している。
これにより、上記流れ方向Lの最も上流側に位置する第1流路間隙S1を最も小さくすると共に上記流れ方向Lの最も下流側に位置する第3流路間隙S3を最も大きくし、残りの第2流路間隙S2を両者の中間の大きさにすることができる。
【0073】
この場合には、上記反応流路2を形成する流路間隙Sの下流側に位置する部分に、上流側に位置する部分よりも多く触媒21を配置することができ、上記反応が活発に行われる反応流路2の上流側における反応活性を小さくすることができる。そのため、上記触媒21の温度のばらつきの発生を一層抑制することができる。
本例においても、その他は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。
【符号の説明】
【0074】
1 触媒反応器
13 邪魔板
2 反応流路
21 触媒
22 原料入口部
23 原料出口部
3 熱媒流路
30 蛇行ルート
31 第1熱媒入口部
32 第1熱媒出口部
4 反応管
5 プレート状熱媒管
51 プレート
52 接合部
53 流路形成部
6 第2熱媒噴出ヘッダー
71 還流ライン
711 還流ポンプ
72 分岐ライン
721 熱交換器
C1 第1熱媒
C2 第2熱媒
M 反応原料
P 反応生成物
L 流れ方向
S 流路間隙

【特許請求の範囲】
【請求項1】
内部に触媒を配置してなる反応流路と、該反応流路に隣接形成された熱媒流路とを有し、上記反応流路は、その内部に反応原料を導入すると共に該反応原料と上記触媒とを接触させて反応生成物を生成し排出するよう構成してあり、一方上記熱媒流路は、その内部に第1熱媒を通過させて上記反応流路との熱交換を行うよう構成してなる触媒反応器において、
上記熱媒流路内には、上記第1熱媒とは温度が異なる第2熱媒を噴出して上記第1熱媒に混合させる第2熱媒噴出ヘッダーが配設されており、かつ該第2熱媒噴出ヘッダーは、上記反応原料の流れ方向における上流側に配設されており、
上記熱媒流路を形成するプレート状熱媒管を複数個対向配設してなると共に、該プレート状熱媒管同士の間には上記反応流路を形成してなり、上記プレート状熱媒管は、上記第1熱媒を上記反応原料の流れ方向を横切る方向に流すよう上記流れ方向に並べて形成された複数の流路形成部を有しており、上記第2熱媒噴出ヘッダーは、上記複数の流路形成部のうち上記流れ方向における上流側に位置する流路形成部内に配設されていることを特徴とする触媒反応器。
【請求項2】
請求項1において、上記熱媒流路における上記第1熱媒の入口部と出口部とは、上記出口部から排出された第1熱媒を上記入口部へと還流させるための還流ラインによって接続されており、該還流ラインと上記第2熱媒噴出ヘッダーとは、上記出口部から排出された第1熱媒の一部を流すための分岐ラインによって接続されており、また、該分岐ラインには、これを流れる第1熱媒の温度を上昇又は低下させて上記第2熱媒を作り出すための熱交換器が配設されており、
かつ、上記還流ラインには、上記出口部から排出された第1熱媒を、上記入口部及び上記分岐ラインへ送り出すための還流ポンプが配設されていることを特徴とする触媒反応器。
【請求項3】
請求項1又は2において、上記プレート状熱媒管における各流路形成部は、一対のプレートを複数の接合部によって接合した後、当該一対のプレート同士の間を広げることにより形成されており、互いに対向する一対の上記プレート状熱媒管は、一方のプレート状熱媒管における上記各接合部と、他方のプレート状熱媒管における上記各流路形成部とが対向しており、上記反応流路は、上記各接合部と上記各流路形成部との間の流路間隙によって形成されていることを特徴とする触媒反応器。
【請求項4】
請求項3において、上記複数の流路形成部の断面形状を変化させることにより、上記流路間隙は、上記反応原料の流れ方向における下流側に位置する部分が、上流側に位置する部分よりも広くなっていることを特徴とする触媒反応器。
【請求項5】
請求項1〜3のいずれか一項において、上記複数の流路形成部のうち上記反応原料の流れ方向における最も下流側に位置する第1流路形成部の一端部に、上記第1熱媒の入口部を形成し、当該第1流路形成部の他端部と、該第1流路形成部の上流側に位置する第2流路形成部の他端部とが接続され、かつ該第2流路形成部の一端部と、該第2流路形成部の上流側に位置する第3流路形成部の一端部とが接続され、以降同様に各流路形成部が上記流れ方向の上流側に向けて他端部同士と一端部同士とにおいて交互に接続されており、
上記熱媒流路は、上記第1熱媒が上記反応原料の流れ方向を横切る方向に流れると共に、上記反応原料の流れ方向とは逆方向に向けて流れる蛇行ルートを形成していることを特徴とする触媒反応器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−158676(P2010−158676A)
【公開日】平成22年7月22日(2010.7.22)
【国際特許分類】
【出願番号】特願2010−26642(P2010−26642)
【出願日】平成22年2月9日(2010.2.9)
【分割の表示】特願2004−177352(P2004−177352)の分割
【原出願日】平成16年6月15日(2004.6.15)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】