説明

車両用空調装置

【課題】熱回収を省エネで行える車両用空調装置を提供することを目的とする。
【解決手段】外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、この熱回収器を通らない直接外気導入口を備え、冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入するので、外気送風手段の消費電力を低減することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用空調装置に関するものである。
【背景技術】
【0002】
従来、エンジン車では、例えば、吸排気時に内気から吸熱し、外気へ放熱する全熱交換器と冷凍サイクルを備え、暖房はエンジンの排熱を利用して行う車両用空調装置が考案されている(例えば、特許文献1参照)。
【0003】
この車両用空調装置は、内気の熱を利用して、外気の温度を高めることができるので、外気導入による熱損失を低減でき、暖房効果を向上できるもので、冷凍サイクルのエバポレータ(冷却用熱交換器)と、その空気下流側には、エンジン冷却水(温水)を熱源とするヒータコア(加熱用熱交換器)が配置してある。そして、空調の温度制御方式として、冷温風の混合割合を調整するエアミックス方式を採用しており、ヒータコアの空気上流側で、エバポレータの空気下流側に配置したエアミックスドアの開度によりヒータコアを通過する温風とヒータコアをバイパスする冷風の風量割合を調整して、車室内への吹出空気温度を制御している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平10−16531号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
このような従来の車両用空調装置においては、内気の熱を利用して、外気の温度を内気の温度に近づけることができるので、外気導入による熱損失を低減できるが、運転開始時の立ち上がりを速くするための大風量運転時に、車室内と外気の温度差がほとんどない場合でも全熱交換器を通して外気を導入しており、圧力損失が増加するため、送風機の負荷、すなわち消費電力が増えるという課題を有していた。
【0006】
そこで本発明は、上記従来の課題を解決するものであり、運転開始時の圧力損失の増加を抑制し、送風機の消費電力を抑えることができる車両用空調装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
そして、この目的を達成するために、本発明は、外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、前記給気送風路を流れる空気を加熱する加熱用車内熱交換器と、前記給気送風路を流れる空気を冷却する冷却用車内熱交換器と、冷房運転時および暖房運転時に凝縮器として外気と熱交換する車外熱交換器と、前記冷却用車内熱交換器および前記車外熱交換器と圧縮機の間で冷媒を循環させる冷凍サイクルと、前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、この熱回収器を通らない直接外気導入口を備え、冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入するものであり、これにより所期の目的を達成するものである。
【発明の効果】
【0008】
本発明によれば、冷房運転または暖房運転の開始時には、直接外気導入口より外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器を通過させず直接外気導入口より外気を導入することができるため、外気の熱回収器通過による圧力損失、すなわち外気送風手段の負荷が低減でき、外気送風手段の消費電力も低減できる。
【0009】
特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で運転する場合が多く、外気の熱回収器通過による圧力損失が通常運転より大きくなり、外気送風手段の負荷、すなわち外気送風手段の消費電力も通常運転より増加するため、熱回収器を通過させず直接外気導入口より外気を導入することにより、消費電力もより低減でき、省エネ効果のある車両用空調装置を提供するという効果を得ることができる。
【図面の簡単な説明】
【0010】
【図1】本発明の実施の形態1の車両用空調装置の概略構成図
【図2】(a)本発明の実施の形態1の車両用空調装置の初期運転モードを示す概略構成図、(b)同車両用空調装置の通常運転モードを示す概略構成図、(c)同車両用空調装置のデフロスト運転モードを示す概略構成図
【図3】本発明の実施の形態2の車両用空調装置の概略構成図
【図4】(a)本発明の実施の形態2の車両用空調装置の初期運転状態を示す概略構成図、(b)同車両用空調装置の通常運転モードを示す概略構成図
【図5】本発明の実施の形態2の熱回収器の送風路を示す概略構成図
【図6】本発明の実施の形態2の熱回収器の別の送風路を示す概略構成図
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0012】
(実施の形態1)
図1に示すように、車両用空調装置は、外気、内気の送風路と冷凍サイクルシステムで構成されている。また、図2は外気および内気の環境条件、車両用空調装置の運転状態などに応じて変更する車両用空調装置の運転モードを示す。
【0013】
外気と内気の送風路には、外気を導入する外気導入口1から車内に空調風を吹き出す空調吹出口2にかけての給気送風路3(図中の破線矢印)と、内気導入口4から内気排出口7に向かい内気を車外へ排出する内気排出路8(図中の実線矢印)と、給気送風路3に外気導入口1から空調吹出口2に向かう空気流を発生させる外気送風手段9aと、内気排出路8に内気導入口4から内気排出口7に向かう空気流を発生させる内気送風手段9bが設けられている。
【0014】
また、内気排出路8を流れる内気から吸熱し、外気導入口1から導入される外気へ放熱する熱回収器19を備えている。この熱回収器19は顕熱を熱交換する顕熱交換器である。
【0015】
また、外気の送風路には、外気を導入する直接外気導入口1aから熱回収器19を迂回して外気送風手段9aにて車内に空調風を吹き出す空調吹出口2にかけての熱回収器バイパス路30(図1、2中の点線矢印)が、内気の送風路には、車内から車両後方のトランクルームに配置した内気後方排出口23に向かい内気を車外へ排出する内気後方排出路31(図2(a)中の一点鎖線矢印)が設けられている。
【0016】
また、外気導入口1、直接外気導入口1aには、ダンパ21、21aを設けており、ダンパ21、21aの開閉により、外気を熱回収器19経由で導入するかどうかを選択できる。
【0017】
また、内気導入口4には車内の空気温度を検知する内気温検知手段としての温度センサ5が、内気排出口7には車外の空気温度を検知する外気温検知手段としての温度センサ6が設けられている。
【0018】
熱源としては、給気送風路3とは別の送風路に凝縮器として外気と熱交換する車外熱交換器12が設けられ、給気送風路3に給気送風路3を流れる空気を冷却する冷却用車内熱交換器10(蒸発器)および加熱する加熱用車内熱交換器11(エンジンの冷却水の熱を使用したヒータコア)が設けられ、冷却用車内熱交換器10および車外熱交換器12と圧縮機13の間で冷媒を循環させる冷凍サイクルを備えている。冷凍サイクルは車外熱交換器12と冷却用車内熱交換器10の間に絞り弁16(図に示すように膨張弁16aと電磁弁16bを内蔵)を備えている。
【0019】
上記構成において、車両用空調装置の運転モードについて図2を用いて説明する。
【0020】
先ず冷房運転について説明する。図2(a)は例えば外気温度が35℃で車両が停止していて冷房運転を開始した場合を示す。車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され(ダンパ21閉、ダンパ21a開、以下同様のダンパ操作の説明は省略)、熱回収器19を迂回して熱回収器バイパス路30を通り、蒸発器の冷却用車内熱交換器10通過時に冷媒の気化熱で冷却され、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。
【0021】
このように冷房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。
【0022】
特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が下がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。
【0023】
次に図2(b)は冷房運転を開始して、車内温度が例えば25℃に下がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され(ダンパ21開、ダンパ21a閉、以下同様のダンパ操作の説明は省略)、熱回収器19で外気より温度の低い内気に冷やされ、給気送風路3を通り、蒸発器の冷却用車内熱交換器10通過時に冷媒の気化熱で冷却され、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に暖められ、内気排出口7から車外へ排出される。
【0024】
このように内気より温度の高い外気と外気より温度の低い内気とを熱回収器19で熱交換して、車内温度に近づけてから外気を導入する構成にしたことにより、冷凍サイクルの冷房負荷が減り圧縮機13の消費電力を低減できる。
【0025】
次に暖房運転について説明する。図2(a)は例えば外気温度が0℃で車両が停止していて暖房運転を開始した場合を示す。車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。前述の図2(a)で説明した冷房運転との違いは、冷凍サイクルを作動させず、冷却用車内熱交換器10で外気を冷却しない点である。
【0026】
このように暖房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。
【0027】
特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が上がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。
【0028】
次に図2(b)は暖房運転を開始して、車内温度が例えば20℃に上がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され、熱回収器19で外気より温度の高い内気に冷やされ、給気送風路3を通り、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に冷やされ、内気排出口7から車外へ排出される。
【0029】
車両のエンジンの燃焼効率が高い場合は廃熱が少ないため、暖房運転に使用できる加熱源としての加熱用車内熱交換器11の能力が不足するが、このように内気より温度の低い外気と外気より温度の高い内気とを熱回収器19で熱交換して、車内温度に近づけてから外気を導入する構成にしたことにより、加熱用車内熱交換器11の加熱源の暖房負荷を低減できる。
【0030】
次に図2(c)は熱回収器19を用いて図2(b)の暖房運転を継続して、熱回収器19の風路で凍結が発生した時のデフロスト運転しながらの暖房運転を示す。
【0031】
例えば外気温度0℃、車内温度20℃相対湿度50%で図2(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。
【0032】
この凍結を解消するため図2(c)に示すように、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、加熱用車内熱交換器11の加熱源で所定温度に昇温調整し、空調吹出口2からフロントガラスや運転者に温風を吹き出す。
【0033】
吹出された温風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で凍結した氷を融解し、デフロスト水と共に、内気排出口7から車外へ排出される。
【0034】
図2(b)の熱回収器19を用いた暖房運転と図2(c)のデフロスト運転は、一定の時間間隔で運転を切替える。例えば図2(b)を50分運転後、図2(c)を10分運転し、図2(b)の運転に戻り、順次運転を切替えながら暖房運転を継続する。
【0035】
また、別の運転手段として、車内の空気温度を検知する温度センサ5および車外の空気温度を検知する温度センサ6を用いれば、図2(b)の運転と図2(c)の運転を適宜切替えることにより、熱回収器19の凍結を防止することも可能である。
【0036】
このように車内の暖かい内気で熱回収器19の凍結を解消または防止する構成にしたことにより、暖房時に熱回収器19を用いて熱回収した省エネの暖房運転を継続できる。
【0037】
(実施の形態2)
図3〜4において、図1および図2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
【0038】
図3に示すように、車両用空調装置は、外気、内気の送風路とヒートポンプシステムで構成されている。また、図4は外気および内気の環境条件、車両用空調装置の運転状態などに応じて変更する車両用空調装置の運転モードを示す。
【0039】
外気と内気の送風路には、外気を導入する外気導入口1から車内に空調風を吹き出す空調吹出口2にかけての給気送風路3(図中の破線矢印)と、内気導入口4から内気排出口7に向かい内気を車外へ排出する内気排出路8(図中の実線矢印)と、給気送風路3に外気導入口1から空調吹出口2に向かう空気流を発生させる外気送風手段9aと、内気排出路8に内気導入口4から内気排出口7に向かう空気流を発生させる内気送風手段9bが設けられている。
【0040】
また、内気排出路8を流れる内気から吸熱し、外気導入口1から導入される外気へ放熱する熱回収器19を備えている。この熱回収器19は顕熱を熱交換する顕熱交換器である。
【0041】
また、外気の送風路には、外気を導入する直接外気導入口1aから熱回収器19を迂回して外気送風手段9aにて車内に空調風を吹き出す空調吹出口2にかけての熱回収器バイパス路30(図3、4中の点線矢印)と、内気の送風路には、車内から車両後方のトランクルームに配置した内気後方排出口23に向かい内気を車外へ排出する内気後方排出路31(図4(a)中の一点鎖線矢印)が設けられている。
【0042】
また、内気導入口4には車内の空気温度を検知する内気温検知手段としての温度センサ5が、内気排出口7には車外の空気温度を検知する外気温検知手段としての温度センサ6が設けられている。
【0043】
熱源として、給気送風路3とは別の送風路に冷房運転時凝縮器、暖房運転時蒸発器として外気と熱交換する車外熱交換器12が設けられ、給気送風路3に給気送風路3を流れる空気を冷却または加熱する第1車内熱交換器10a、第2車内熱交換器11aが設けられ、第1車内熱交換器10a、第2車内熱交換器11aおよび車外熱交換器12と圧縮機13の間で冷媒を循環させるヒートポンプを備えている。
【0044】
ここでヒートポンプの構成を説明する。
【0045】
圧縮機13の高圧冷媒吐出側に四方弁14、四方弁14と車外熱交換器12の間に逆止弁15、車外熱交換器12と第1車内熱交換器10aの間に絞り弁16(図に示すように膨張弁16aと電磁弁16bを内蔵)、第2車内熱交換器11aと車外熱交換器12の間に逆止弁17と絞り弁18(図に示すように膨張弁18aと電磁弁18bを内蔵)を設け、ヒートポンプを構成している。ここで本実施の形態では、前述の外気温検知手段としての温度センサ6を、車外熱交換器12の吸込み側に設けている。
【0046】
そして、内気排出路8を流れる内気から吸熱し、外気導入口1から導入される外気へ放熱する熱回収器19を備えている。この熱回収器19は顕熱を熱交換する顕熱交換器である。
【0047】
そして本願の特徴は車外熱交換器12に熱回収器19を通過した内気を送風するものであり、本実施の形態では、車外熱交換器12の一部を内気排出口7と熱回収器19の間の内気排出路8に設けている。
【0048】
図5および図6は熱回収器19の送風路の構成を示す。
【0049】
給気送風路3において、第一開口部24は外気導入口1と熱回収器19の間に設け、第二開口部25は空調吹出口2と熱回収器19の間に設け、外気切替部28aは外気導入口1と第一開口部24または第二開口部25との接続を切替え、外気切替部28bは空調吹出口2と第一開口部24または第二開口部25との接続を切替える。内気排出路8において、第三開口部26は内気導入口4と熱回収器19の間に設け、第四開口部27は内気排出口7と熱回収器19の間に設け、内気切替部29aは内気導入口4と第三開口部26または第四開口部27との接続を切替え、内気切替部29bは内気排出口7と第三開口部26または第四開口部27との接続を切替える。
【0050】
上記構成において、表1に記載の各運転モードについて図4を用いて説明する。
【0051】
【表1】

【0052】
先ず冷房運転について説明する。図4(a)は例えば外気温度が35℃で車両が停止していて冷房運転を開始した場合を示す。冷房運転時の冷媒の流れは、圧縮機13→四方弁14→逆止弁15→車外熱交換器12→絞り弁16→第1車内熱交換器10a→圧縮機13で、第2車内熱交換器11aには冷媒は流さない。
【0053】
このような冷媒の流れの中、車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、蒸発器として作用する第1車内熱交換器10a通過時に冷媒の気化熱で冷却され、冷媒の流れていない第2車内熱交換器11aを通り、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。
【0054】
このように冷房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。
【0055】
特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が下がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。
【0056】
次に図4(b)は冷房運転を開始して、車内温度が例えば25℃に下がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され、熱回収器19で外気より温度の低い内気に冷やされ、給気送風路3を通り、蒸発器として作用する第1車内熱交換器10a通過時に冷媒の気化熱で冷却され、冷媒の流れていない第2車内熱交換器11aを通り、空調吹出口2からフロントガラスや運転者に冷風を吹き出す。吹出された冷風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に暖められ、内気排出口7から車外へ排出される。
【0057】
このように外気より温度の低い内気をそのまま排出せず、熱回収器19で外気と熱交換させ、さらに車外熱交換器12を通過してから排出する構成にしたことにより、第1車内熱交換器10aでの冷媒による冷却負荷が減り圧縮機13の消費電力を低減できる。
【0058】
しかも、外気温度が高く冷凍サイクル内の冷媒の蒸発温度も高くなってしまうような場合にも、凝縮器として作用する車外熱交換器12に外気より温度の低い内気を送風して冷媒の液化を促進できるので、第1車内熱交換器10aでの冷媒の蒸発温度も低くでき、冷房能力の低下を抑制できる。
【0059】
次に暖房運転について説明する。図4(a)は例えば外気温度が0℃で車両が停止していて暖房運転を開始した場合を示す。暖房運転時の冷媒の流れは、圧縮機13→四方弁14→第2車内熱交換器11a→絞り弁18→車外熱交換器12→電磁弁16b→圧縮機13で、第1車内熱交換器10aには冷媒は流さない。
【0060】
このような冷媒の流れの中、車内温度が外気温度に近く車内外で温度差が小さいため、外気は外気送風手段9aの運転により直接外気導入口1aから導入され、熱回収器19を迂回して熱回収器バイパス路30を通り、冷媒の流れていない第1車内熱交換器10aを通り、凝縮器として作用する第2車内熱交換器11a通過時に冷媒の凝縮熱で加熱され、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、車両の走行風や外気導入による車内圧力上昇により、内気は内気後方排出路31を通り車両後方のトランクルームに配置した内気後方排出口23から車外へ排出される。
【0061】
このように暖房運転の開始時に、直接外気導入口1aより外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器19を通過させず直接外気導入口1aより外気を導入することができるため、外気の熱回収器19通過による圧力損失、すなわち外気送風手段9aの負荷が低減でき、外気送風手段9aの消費電力も低減できる。
【0062】
特に運転開始時には立ち上がりを速くするため通常運転より大きな風量で外気送風手段9aを運転する場合が多く、外気の熱回収器19通過による圧力損失は車内温度が上がった状態の通常運転より大きくなり、外気送風手段9aの負荷、すなわち外気送風手段9aの消費電力も通常運転より増加するため、熱回収器19を通過させず直接外気導入口1aより外気を導入することにより、消費電力もより低減できる。
【0063】
次に図4(b)は暖房運転を開始して、車内温度が例えば20℃に上がった場合を示す。外気は外気送風手段9aの運転により外気導入口1から導入され、熱回収器19で外気より温度の高い内気に冷やされ、給気送風路3を通り、冷媒の流れていない第1車内熱交換器10aを通り、凝縮器として作用する第2車内熱交換器11a通過時に冷媒の凝縮熱で加熱され、空調吹出口2からフロントガラスや運転者に温風を吹き出す。吹出された温風は、内気となり車内を循環し、内気送風手段9bの運転により内気導入口4から内気排出路8中の熱回収器19で外気に冷やされ、内気排出口7から車外へ排出される。
【0064】
このように外気より温度の高い内気をそのまま排出せず、熱回収器19で外気と熱交換させ、さらに車外熱交換器12を通過してから排出するようにしたので、第2車内熱交換器11aでの冷媒による加熱負荷が減り圧縮機13の消費電力を低減できる。
【0065】
しかも、外気温度が低く冷凍サイクル内の冷媒の凝縮温度も低くなってしまうような場合にも、蒸発器として作用する車外熱交換器12に外気より温度の高い内気を送風して冷媒の蒸発を促進できるので、第1車内熱交換器10aでの冷媒の凝縮温度も高くでき、暖房能力の低下を抑制できる。
【0066】
次に熱回収器19を用いて図4(b)の暖房運転を継続して、熱回収器19の風路で凍結が発生した時のデフロスト運転しながらの暖房運転を説明する。例えば外気温度0℃、車内温度20℃相対湿度50%で図4(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。
【0067】
この凍結を解消するため図5および図6に示すように、熱回収器19内において、給気送風路3と内気排出路8をそれぞれ流れる外気および内気の向きを外気切替部28a、外気切替部28b、内気切替部29a、内気切替部29bにて一定の時間間隔で反転させる。
【0068】
図5において、外気切替部28aは外気導入口1と第二開口部25を接続し、外気切替部28bは空調吹出口2と第一開口部24を接続し、内気切替部29aは内気導入口4と第三開口部26を接続し、内気切替部29bは内気排出口7と第四開口部27を接続する構成である。
【0069】
この構成で図4(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部の第四開口部27近傍で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。この凍結(または結露)を解消するため、一定時間が経過すると図6の構成に切替える。
【0070】
図6において、外気切替部28aは外気導入口1と第一開口部24を接続し、外気切替部28bは空調吹出口2と第二開口部25を接続し、内気切替部29aは内気導入口4と第四開口部27を接続し、内気切替部29bは内気排出口7と第三開口部26を接続する構成である。
【0071】
この構成で図4(b)の運転を継続すると、内気排出路8中の車室内の湿気は熱回収器19内部の第三開口部26近傍で外気との熱交換で結露し、更に運転を継続すると凍結が起こる。この凍結を解消するため、一定時間が経過すると図5の構成に切替える。
【0072】
このように熱回収器19内において、給気送風路3と内気排出路8をそれぞれ流れる気体の向きを反転手段により切替える構成にしたことにより、内気排出路8で発生した結露が内気排出路8内へ蒸発し、内気排出路8内の湿度を高めることで、熱交換運転を継続しながら結露水を外気に排出できる。
【0073】
また、熱回収器19内において、給気送風路3と内気排出路8をそれぞれ流れる気体の向きを反転手段により切替える構成にしたことにより、内気排出路8で発生した氷が内気排出路8内へ融解し、内気排出路8内を移動することで、熱交換運転を継続しながらデフロスト運転を同時に行うことができ、暖房時に熱回収器19を用いて熱回収した省エネの暖房空調運転を継続できる。
【0074】
なお本実施の形態では一定の時間間隔で図5と図6の構成を切替えると説明したが、車内の空気温度を検知する温度センサ5および車外の空気温度を検知する温度センサ6を用いて、熱回収器19の結露や凍結を行うか否かを適宜切替える。
【産業上の利用可能性】
【0075】
本発明にかかる車両用空調装置は、冷房運転または暖房運転の開始時には、直接外気導入口より外気を導入する構成にしたことにより、運転開始時の車室内と外気の温度差がほとんどない場合には、熱回収器を通過させず直接外気導入口より外気を導入することができるため、外気の熱回収器通過による圧力損失、すなわち外気送風手段の負荷、消費電力の低減を可能とするものであるので、車両用空調装置として有用である。
【符号の説明】
【0076】
1 外気導入口
1a 直接外気導入口
2 空調吹出口
3 給気送風路
4 内気導入口
5、6 温度センサ
7 内気排出口
8 内気排出路
9a 外気送風手段
9b 内気送風手段
10 冷却用車内熱交換器
10a 第1車内熱交換器
11 加熱用車内熱交換器
11a 第2車内熱交換器
12 車外熱交換器
13 圧縮機
14 四方弁
15、17 逆止弁
16、18 絞り弁
16a、18a 膨張弁
16b、18b 電磁弁
19 熱回収器
21、21a ダンパ
23 内気後方排出口
24 第一開口部
25 第二開口部
26 第三開口部
27 第四開口部
28a、28b 外気切替部
29a、29b 内気切替部
30 熱回収器バイパス路
31 内気後方排出路

【特許請求の範囲】
【請求項1】
外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、
内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、
前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、
前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、
前記給気送風路を流れる空気を加熱する加熱用車内熱交換器と、
前記給気送風路を流れる空気を冷却する冷却用車内熱交換器と、
冷房運転時および暖房時に凝縮器として外気と熱交換する車外熱交換器と、
前記冷却用車内熱交換器および前記車外熱交換器と圧縮機の間で冷媒を循環させる冷凍サイクルと、
前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、
この熱回収器を通らない直接外気導入口を備え、
冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入することを特徴とする車両用空調装置。
【請求項2】
暖房運転中の所定時間、直接外気導入口より外気を導入することを特徴とする請求項1に記載の車両用空調装置。
【請求項3】
外気を導入する外気導入口から車内に空調風を吹き出す空調吹出口にかけての給気送風路と、
内気を導入する内気導入口から内気を車外へ排出する内気排出口にかけての内気排出路と、
前記給気送風路に前記外気導入口から前記空調吹出口に向かう空気流を発生させる外気送風手段と、
前記内気排出路に前記内気導入口から前記内気排出口に向かう空気流を発生させる内気送風手段と、
前記給気送風路を流れる空気を冷却または加熱する第1車内熱交換器および第2車内熱交換器と、
冷房運転時凝縮器、暖房運転時蒸発器として外気と熱交換する車外熱交換器と、
前記第1車内熱交換器、前記第2車内熱交換器および前記車外熱交換器と圧縮機の間で冷媒を循環させるヒートポンプと、
前記内気排出路を流れる内気と前記外気導入口から導入される外気とを熱交換させて熱回収する熱回収器と、
この熱回収器を通らない直接外気導入口を備え、
冷房運転または暖房運転の開始時には、前記直接外気導入口より外気を導入することを特徴とする車両用空調装置。
【請求項4】
給気送風路と内気排出路をそれぞれ流れる気体の向きを反転させる反転手段を備え、暖房運転時、前記内気排出路を流れる気体の向きが反転することで、前記内気排出路で発生した結露が前記内気排出路内へ蒸発し、前記内気排出路内の湿度を高めることを特徴とする請求項3記載の車両用空調装置。
【請求項5】
給気送風路と内気排出路をそれぞれ流れる気体の向きを反転させる反転手段を備え、暖房運転時、前記内気排出路を流れる気体の向きが反転することで、前記内気排出路で発生した氷が前記内気排出路内へ融解し、前記内気排出路内を移動することを特徴とする請求項3記載の車両用空調装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−171522(P2012−171522A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−36763(P2011−36763)
【出願日】平成23年2月23日(2011.2.23)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】