説明

輪荷重比検知装置

【課題】車輪荷重を検出するために要する費用が嵩むことを抑制し、装置の車両搭載性を向上させる。
【解決手段】輪荷重比検知装置10aは、車両の車輪速を検出する各車輪速センサ45と、車両の各車輪のブレーキトルクを検知する各ブレーキトルクセンサ46と、各車輪速センサ45により検出された車輪速に応じたフロント車輪速とリア車輪速との偏差が所定値VW0以下を満たすときに各ブレーキトルクセンサ46により検知された各車輪のブレーキトルクTの比を、各車輪の輪荷重の比とする接地点μ演算部51とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車両の輪荷重比検知装置に関する。
【背景技術】
【0002】
従来、例えば車両の各車輪に作用する荷重を検出する荷重センサを備える車輪荷重検出装置が知られている(例えば、特許文献1参照)。
【特許文献1】特開2006−64650号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところで、上記従来技術に係る車輪荷重検出装置によれば、荷重センサは、車輪用軸受装置に作用する軸力に応じた磁歪材の応力変化を検出することで、車輪の荷重を検出しており、磁歪材と検出部とを備えて構成されている。しかしながら、このような車輪荷重検出装置は高価であり、車輪荷重を検出するためだけに専用の搭載スペースを確保する必要があり、費用の削減および車両搭載性を向上させることが困難であるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、車輪荷重を検出するために要する費用が嵩むことを抑制し、装置の車両搭載性を向上させることが可能な輪荷重比検知装置を提供することを目的としている。
【課題を解決するための手段】
【0004】
上記課題を解決して係る目的を達成するために、本発明の第1態様に係る輪荷重比検知装置は、車両の速度状態量(例えば、実施の形態での車輪速、または車速)を検出する速度状態量検出手段(例えば、実施の形態での各車輪速センサ45、または速度センサ)と、車両の各車輪の制動トルク(例えば、実施の形態での各ブレーキトルクT)を検知する制動トルク検知手段(例えば、実施の形態での各ブレーキトルクセンサ46、または各液圧センサ61および接地点μ演算部51)と、前記速度状態量検出手段により検出された前記速度状態量が所定条件(例えば、実施の形態でのフロント車輪速とリア車輪速との偏差が所定値VW0以下、または車速が所定車速以下)を満たすときに前記制動トルク検知手段により検知された前記各車輪の制動トルクの比を、前記各車輪の輪荷重の比とする比算出手段(例えば、実施の形態での接地点μ演算部51)とを備える。
【発明の効果】
【0005】
本発明の第1態様に係る輪荷重比検知装置によれば、予め車両に搭載されている速度状態量検出手段および制動トルク検知手段の出力に基づき各車輪の輪荷重の比(輪荷重比)を検知することができ、この輪荷重比から車両の各車輪の荷重(輪荷重)を容易に算出することができる。これにより、輪荷重比および車輪荷重を検出する専用の装置を搭載するためのスペースを車両に確保する必要が生じることを防止し、輪荷重比および車輪荷重を検出するために要する費用が嵩むことを抑制することができる。
【発明を実施するための最良の形態】
【0006】
以下、本発明の一実施形態に係る輪荷重比検知装置について添付図面を参照しながら説明する。
本実施の形態による輪荷重比検知装置10aは、例えば車両のアンチロック制御装置10に具備され、このアンチロック制御装置10は、例えば図1に示す車両のブレーキ装置10bを制御する。
【0007】
このブレーキ装置10bは、運転者によるブレーキペダル1の操作によりブレーキ液圧を発生するブレーキ液圧発生器としてマスタシリンダ2を備え、このマスタシリンダ2は、例えば左側前輪FLおよび右側後輪RRの各ホイールシリンダ3a,3bに接続される出力ポート4と、右側前輪FRおよび左側後輪RLの各ホイールシリンダ3c,3dに接続される出力ポート5とを備えている。
【0008】
マスタシリンダ2の出力ポート4と、左側前輪FLおよび右側後輪RRの各ホイールシリンダ3a,3bとは、接続路11によって接続され、この接続路11には、各ホイールシリンダ3a,3b毎に並列に常開型電磁弁12,12が介挿されている。
また、各ホイールシリンダ3a,3bと、各ホイールシリンダ3a,3b内のブレーキ液圧を解放するリザーバ13とは解放路14によって接続され、解放路14には各ホイールシリンダ3a,3b毎に並列に常閉型電磁弁15,15が介挿されている。
【0009】
リザーバ13には各ホイールシリンダ3a,3bから送られるブレーキ液が蓄えられ、このブレーキ液は、ポンプ16およびポンプ16の上流に設けられたポンプ脈動を吸収するダンパー室17が介挿された戻り路18を介してマスタシリンダ2側へ戻されるようになっている。
【0010】
また、各ホイールシリンダ3a,3bからマスタシリンダ2側へブレーキ液が流れるのを許容するチェック弁19が常開型電磁弁12と並列に設けられ、各ホイールシリンダ3a,3bからマスタシリンダ2側へブレーキ液が流れるのを許容するチェック弁20,21がポンプ16の上流側および下流側に直列に設けられている。
【0011】
マスタシリンダ2の出力ポート5と、右側前輪FRおよび左側後輪RLの各ホイールシリンダ3c,3dとは、接続路31によって接続され、この接続路31には、各ホイールシリンダ3c,3d毎に並列に常開型電磁弁32,32が介挿されている。
また、各ホイールシリンダ3c,3dと、各ホイールシリンダ3c,3d内のブレーキ液圧を解放するリザーバ33とは解放路34によって接続され、解放路34には各ホイールシリンダ3c,3d毎に並列に常閉型電磁弁35,35が介挿されている。
【0012】
リザーバ33には各ホイールシリンダ3c,3dから送られるブレーキ液が蓄えられ、このブレーキ液は、ポンプ36およびポンプ36の上流に設けられたポンプ脈動を吸収するダンパー室37が介挿された戻り路38を介してマスタシリンダ2側へ戻されるようになっている。
【0013】
また、各ホイールシリンダ3c,3dからマスタシリンダ2側へブレーキ液が流れるのを許容するチェック弁39が常開型電磁弁32と並列に設けられ、各ホイールシリンダ3c,3dからマスタシリンダ2側へブレーキ液が流れるのを許容するチェック弁40,41がポンプ36の上流側および下流側に直列に設けられている。
【0014】
常開型電磁弁12,32は、各ソレノイド12a,32aに通電のない状態では各リターンスプリング12b,32bの弾性力によって連通状態となり、マスタシリンダ2のブレーキ液圧はホイールシリンダ圧を増圧する。
また、各ソレノイド12a,32aに通電があると、各リターンスプリング12b,32bの弾性力に抗して遮断状態となり、ホイールシリンダ圧は保持される。
【0015】
常閉型電磁弁15,35は、各ソレノイド15a,35aに通電のない状態では、各リターンスプリング15b,35bの弾性力によって遮断状態となる。また、各ソレノイド15a,35aに通電があると、各リターンスプリング15b,35bの弾性力に抗して連通状態となり、各ホイールシリンダ3a,3b,3c,3dからブレーキ液が逃げてホイールシリンダ圧は減圧されるようになっている。
【0016】
なお、常開型電磁弁12,32は通電のないノーマル位置で常時開状態、通電による切換え位置で閉状態に移行し、常閉型電磁弁15,35は通電のないノーマル位置で常時閉状態、通電による切換え位置で開状態に移行するようになっているのは、異常時の作動補償、いわゆるフェールセーフの関係からである。
また、常開型電磁弁12,32では、マスタシリンダ2側から接続路11,31を介してブレーキ液圧が働くとき、このブレーキ液圧はリターンスプリング12b,32bの付勢方向と同方向、つまり開状態へ至る方向へ作用するようになっている。
【0017】
そして、常開型電磁弁12,32と、常閉型電磁弁15,35と、ポンプ16,36を駆動するモータ(図示略)とはアンチロック制御装置10によって制御される。
アンチロック制御装置10は、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)を検出する各車輪速センサ45から出力される検出信号に基づいて、各輪FL,FR,RL,RRがロック傾向であるか否かを検知し、この検知結果に応じて、各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧を、各常開型電磁弁12,32を閉弁するとともに各常閉型電磁弁15,35を開弁する減圧モードと、各常開型電磁弁12,32を閉弁するとともに各常閉型電磁弁15,35を閉弁する保持モードと、各常開型電磁弁12,32を開弁するとともに各常閉型電磁弁15,35を閉弁する増圧モードとの何れかのモード(ABS制御モード)により制御するようになっている。
【0018】
アンチロック制御装置10は、例えば図2に示すように、接地点μ演算部51と、車体減速度演算部52と、車体速演算部53と、ピークμ判定部54と、目標車輪速演算部55と、車輪速偏差演算部56と、目標トルク演算部57と、トルク偏差演算部58と、バルブ制御部59とを備えて構成されている。
そして、輪荷重比検知装置10aは、例えば、接地点μ演算部51と、各車輪速センサ45と、各ブレーキトルクセンサ46とにより構成されている。
【0019】
接地点μ演算部51は、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)を検出する各車輪速センサ45から出力される検出信号と、左右の前輪FL,FRおよび後輪RL,RRに作用するブレーキトルクT(T(j);j=1,…,4)を検出する各ブレーキトルクセンサ46から出力される検出信号とに基づいて、例えば図3に示す各物理量(つまり、ブレーキトルクTと、車輪慣性モーメントIと、車輪半径RWと、車輪回転速度ωの時間微分(dω/dt)と、各輪荷重W)による下記数式(1)から、各車輪の接地点μ(各車輪の接地点での摩擦係数)を算出する。
なお、ブレーキトルクセンサ46は、例えばブレーキキャリパーにブレーキトルクが作用したときに生じる歪みを検出する歪みゲージなどから構成されている。
【0020】
【数1】

【0021】
上記数式(1)において、各輪荷重Wは、車両重量Mに各輪荷重比が乗算されることで算出される。
【0022】
ところで、例えば図4に示すように、アンチロック制御(ABS制御)が作動しない程度の低いスリップ率の領域、例えば駆動輪の車輪速(例えば、左右の前輪FL,FRの各車輪速の平均値:フロント車輪速)と従動輪の車輪速(例えば、左右の後輪RL,RRの各車輪速の平均値:リア車輪速)との偏差が所定値VW0以下である領域においては、スリップ率と前後力(横力が無視できる場合には摩擦力に相当)とは、輪荷重の大きさ(例えば、図4での各3000N、4500N、6000N)に拠らずに、一定の対応関係となる。
これにより、一般的な下記数式(2)に基づき、駆動輪のブレーキトルク(例えば、左右の前輪FL,FRの各ブレーキトルクの和:フロントブレーキトルクTF)と、駆動輪の輪荷重(例えば、左右の前輪FL,FRの各輪荷重の和:フロント輪荷重WF)と、従動輪のブレーキトルク(例えば、左右の後輪RL,RRの各ブレーキトルクの和:リアブレーキトルクTR)と、従動輪の輪荷重(例えば、左右の後輪RL,RRの各輪荷重の和:リア輪荷重WR)とに対して、下記数式(3)が成り立つ。
【0023】
【数2】

【0024】
【数3】

【0025】
上記数式(3)は下記数式(4)に示すように記述され、フロントブレーキトルクTFとリアブレーキトルクTRとの比は、フロント輪荷重WFとリア輪荷重WRとの比と同等になり、さらに、例えば図5に示すように、フロント車輪速とリア車輪速との偏差が所定値VW0以下となる輪荷重演算領域でのフロントブレーキトルクTFの時系列変化の傾きφ2とリアブレーキトルクTRの時系列変化の傾きφ1との比と等しくなる。
【0026】
【数4】

【0027】
つまり、フロント車輪速とリア車輪速との偏差が所定値VW0以下となる輪荷重演算領域において、各ブレーキトルクセンサ46から出力される検出信号に基づくフロントブレーキトルクTFおよびリアブレーキトルクTRの時系列変化において、複数の異なるタイミングでフロントブレーキトルクTFの時系列変化の傾きφ2とリアブレーキトルクTRの時系列変化の傾きφ1との比を算出して、算出結果のデータを蓄積し、例えば蓄積したデータの平均値などを算出することによって、フロント輪荷重WFとリア輪荷重WRとの比の算出精度を向上させることができる。
【0028】
さらに、フロント輪荷重WFとリア輪荷重WRとの比を算出した後には、各前輪側および後輪側毎において、各ブレーキトルクセンサ46から出力される左右の前輪FL,FRおよび後輪RL,RRに作用する各ブレーキトルクT(T(j);j=1,…,4)に基づき、各車輪毎の輪荷重比を算出することができる。
つまり、上記数式(4)と同様にして、例えば下記数式(5)に示すように、前輪側では、左右の前輪FL,FRの各ブレーキトルクT(j);(j=1,2)の比は、左右の各輪荷重WFL,WFRの比と同等になり、さらに、輪荷重演算領域での左右の前輪FL,FRの各ブレーキトルクT(j);(j=1,2)の時系列変化の傾きの比と等しくなる。そして、後輪側では、左右の後輪RL,RRの各ブレーキトルクT(j);(j=3,4)の比は、左右の各輪荷重WRL,WRRの比と同等になり、さらに、フロント車輪速とリア車輪速との偏差が所定値VW0以下となる輪荷重演算領域での左右の後輪RL,RRの各ブレーキトルクT(j);(j=3,4)の時系列変化の傾きの比と等しくなる。
なお、この場合の輪荷重演算領域は、例えばフロント車輪速とリア車輪速との偏差が、所定値VW0以下であって、ほぼゼロとなる領域である。
【0029】
【数5】

【0030】
なお、例えば図5では、フロント車輪速とリア車輪速との偏差が所定値VW0よりも大きくなることで輪荷重演算領域が解除される時刻ta以降において、駆動輪である左右の前輪FL,FRのスリップが増大し、フロント車輪速が相対的に低下することに起因して、フロント車輪速とリア車輪速との偏差が所定値以上に増大する時刻tbに到達すると、ABS制御領域が設定され、アンチロック制御の作動が開始される。これに伴い、時刻tb以降において、フロントブレーキトルクTFはアンチロック制御に応じて変化する。
【0031】
また、車両重量Mは、例えば図6に示すように予め設定された左右の前輪FL,FRおよび後輪RL,RRの全体でのブレーキトルク(4輪ブレーキトルク)と各車輪速VW(j);(j=1,…,4)の平均値(車輪速)と車両重両M(例えば、M1>M2>M3)との所定の対応関係に基づき推定される。
つまり、アンチロック制御が作動しない程度の低減速の制動において、4輪ブレーキトルクは各ブレーキトルクセンサ46から出力される検出信号に基づき算出され、各車輪速VW(j);(j=1,…,4)の平均値は各車輪速センサ45から出力される検出信号に基づき算出される。そして、4輪ブレーキトルクと各車輪速VW(j);(j=1,…,4)の平均値との間には、4輪ブレーキトルクが増大することに伴い、各車輪速VW(j);(j=1,…,4)の平均値が減少傾向に変化する対応関係があり、さらに、車両重量Mが小さいほど(M1>M2>M3)、4輪ブレーキトルクの増大に伴う各車輪速VW(j);(j=1,…,4)の平均値の減少度合いは、大きくなる。
【0032】
車体減速度演算部52は、接地点μ演算部51から出力される各車輪の接地点μと、所定定数GR0FSとに基づき、例えば下記数式(6)に示すように記述される車体減速度GRDAT(つまり、左右の前輪FL,FRおよび後輪RL,RR毎の各接地点μに基づき算出される各車体減速度GRDAT(j);j=1,…,4)を算出する。
【0033】
【数6】

【0034】
車体速演算部53は、例えば下記数式(7)に示すように記載される減速度ΔV、つまり車体減速度演算部52から出力される各車体減速度GRDAT(j)(j=1,…,4)のうちの最小値を、前回の演算処理にて算出した車体速VR0(k−1)に加算することによって、例えば下記数式(8)に示すように、今回の演算処理での車体速VR0(k)を算出する。なお、下記数式(8)は任意の自然数kにより記述されている。
【0035】
【数7】

【0036】
【数8】

【0037】
ピークμ判定部54は、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)を検出する各車輪速センサ45から出力される検出信号に基づき、各車輪の接地点μ(各車輪の接地点での摩擦係数)の最大値を検知し、この最大値をピークμとして出力する。
【0038】
目標車輪速演算部55は、車体速演算部53から出力される車体速VR0(つまり、今回の演算処理での車体速VR0(k))と、ピークμ判定部54から出力されるピークμと、所定定数aとに基づき、下記数式(9)に示すように記述される目標車輪速VWtを算出する。
【0039】
【数9】

【0040】
車輪速偏差演算部56は、各車輪速センサ45から出力される各車輪速VW(つまり左右の前輪FL,FRおよび後輪RL,RRの各車輪速VW(j);j=1,…,4)の検出信号と、目標車輪速演算部55から出力される目標車輪速VWtとの偏差(VWt−VW)を算出する。
【0041】
目標トルク演算部57は、車輪速偏差演算部56から出力される各車輪の偏差(VWt−VW)と、各ブレーキトルクセンサ46から出力される各車輪のブレーキトルクTの検出信号と、所定の変換係数αと、所定の車輪慣性モーメントIとに基づき、下記数式(10)に示すように記述される各車輪の目標ブレーキトルクTtを算出する。
【0042】
【数10】

【0043】
トルク偏差演算部58は、目標トルク演算部57から出力される各車輪の目標ブレーキトルクTtと、各ブレーキトルクセンサ46から出力される各車輪のブレーキトルクTの検出信号とのブレーキトルク偏差(Tt−T)を算出する。
【0044】
バルブ制御部59は、アンチロック制御装置10によって減圧モードおよび保持モードおよび増圧モードのうちの何れかのモードの実行が選択された場合に、選択されたモードに対応する各電磁弁12,15,32,35の開閉を制御する。
さらに、バルブ制御部59は、トルク偏差演算部58から出力される各車輪のブレーキトルク偏差(Tt−T)に基づき、例えばブレーキトルク偏差(Tt−T)をゼロとするようにして、各電磁弁12,15,32,35の開閉により各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧を制御する。
【0045】
特に、バルブ制御部59は、各常開型電磁弁12,32を開弁するとともに各常閉型電磁弁15,35を閉弁する増圧モードとして、第1増大モードと該第1増大モードよりも小さいブレーキトルクTを付与する第2増大モードとを有し、ブレーキトルク偏差(Tt−T)が所定値以上の場合には、車輪速変動に対する応答性を重視して、相対的に大きなブレーキトルクTを付与する第1増圧モードを選択し、ブレーキトルク偏差(Tt−T)が所定値未満の場合には、車輪速変動の詳細な制御により車体前後振動を低減させることを重視して、相対的に小さなブレーキトルクTを付与する第2増圧モードを選択することにより、適切なブレーキトルクTを各車輪に付与するようになっている。
ここで、第1増大モードは、例えば、各常開型電磁弁12,32の開弁および各常閉型電磁弁15,35の閉弁を指示するモードであり、第2増大モードは、例えば、各常閉型電磁弁15,35の閉弁を指示すると共に、各常開型電磁弁12,32の開閉をPWM(Pulse Width Modulation)制御によってデューティ比制御するデューティ増圧である。
【0046】
本実施の形態によるアンチロック制御装置10は上記構成を備えており、次に、このアンチロック制御装置10の動作について説明する。
【0047】
先ず、例えば図7に示すステップS01においては、各車輪速センサ45から出力される検出信号に基づき、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)を取得する。
次に、ステップS02においては、各車輪のスリップ率を算出する。
次に、ステップS03においては、各輪FL,FR,RL,RRがロック傾向であるか否かを検知し、この検知結果に応じて、各常開型電磁弁12,32を閉弁するとともに各常閉型電磁弁15,35を開弁する減圧モードと、各常開型電磁弁12,32を閉弁するとともに各常閉型電磁弁15,35を閉弁する保持モードと、各常開型電磁弁12,32を開弁するとともに各常閉型電磁弁15,35を閉弁する増圧モードとの何れかのモード(ABS制御モード)を選択する。
【0048】
次に、ステップS04においては、各車輪速センサ45と各ブレーキトルクセンサ46とから出力される検出信号に基づき、上記数式(1)〜数式(10)により、各輪FL,FR,RL,RRの目標ブレーキトルクTtを算出する。
【0049】
このステップS04において、特に、各輪荷重Wを算出する際に車両重量Mに乗算される各車輪の輪荷重比を算出する際には、先ず、アンチロック制御(ABS制御)が作動しない程度の低いスリップ率の領域、例えばフロント車輪速とリア車輪速との偏差が所定値VW0以下となる輪荷重演算領域において、各ブレーキトルクセンサ46から出力される検出信号に基づくフロントブレーキトルクTFおよびリアブレーキトルクTRの時系列変化において、複数の異なるタイミングでフロントブレーキトルクTFの時系列変化の傾きφ2とリアブレーキトルクTRの時系列変化の傾きφ1との比を算出して、この算出結果のデータを蓄積し、例えば蓄積したデータの平均値などを算出する。この算出結果はフロント輪荷重WFとリア輪荷重WRとの比となる。
【0050】
次に、アンチロック制御(ABS制御)が作動しない程度の低いスリップ率の輪荷重演算領域において、各ブレーキトルクセンサ46から出力される左右の前輪FL,FRおよび後輪RL,RRに作用する各ブレーキトルクT(T(j);j=1,…,4)の時系列変化において、複数の異なるタイミングで、左右の前輪FL,FRの各ブレーキトルクT(j);(j=1,2)の時系列変化の傾きの比と、左右の後輪RL,RRの各ブレーキトルクT(j);(j=3,4)の時系列変化の傾きの比とを算出して、これらの算出結果のデータを蓄積し、各前輪側および後輪側毎において、例えば蓄積したデータの平均値などを算出する。これらの算出結果は、それぞれ左右の前輪FL,FRの輪荷重比と左右の後輪RL,RRの輪荷重比となる。
これらにより、フロント輪荷重WFとリア輪荷重WRとの比と、左右の前輪FL,FRの輪荷重比と、左右の後輪RL,RRの輪荷重比とを、適宜に組み合わせて車両重量Mに作用させることで、各輪荷重Wを算出する。
【0051】
次に、ステップS05においては、各輪FL,FR,RL,RRの実際のブレーキトルクTを取得する。
次に、ステップS06においては、各輪FL,FR,RL,RRのブレーキトルク偏差(Tt−T)を算出する。
【0052】
次に、ステップS07においては、選択されたABS制御モードが増圧モードであるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS11に進む。
一方、この判定結果が「YES」の場合には、ステップS08に進む。
【0053】
ステップS08においては、各輪FL,FR,RL,RRのブレーキトルク偏差(Tt−T)が所定値以上であるか否かを判定する。
この判定結果が「YES」の場合には、ステップS09に進み、このステップS09においては、増圧モードとして第1増圧モードを設定して、ステップS11に進む。
一方、この判定結果が「YES」の場合には、ステップS10に進み、このステップS10においては、増圧モードとして第2増圧モードを設定して、ステップS11に進む。
ステップS11においては、各輪FL,FR,RL,RR毎に、選択されたABS制御モードとブレーキトルク偏差(Tt−T)とに応じて、各電磁弁12,15,32,35の開閉により各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧を制御し、リターンに進む。
【0054】
上述したように、本実施の形態による輪荷重比検知装置10aによれば、予め車両に搭載されている各車輪速センサ45および各ブレーキトルクセンサ46の出力に基づき各車輪の輪荷重の比(輪荷重比)を検知することができ、この輪荷重比から車両の各車輪の荷重(輪荷重)を容易に算出することができる。これにより、各輪荷重比および各輪荷重を検出する専用の装置を搭載するためのスペースを車両に確保する必要が生じることを防止し、各輪荷重比および各輪荷重を検出するために要する費用が嵩むことを抑制することができる。
【0055】
なお、上述した実施の形態においては、フロント輪荷重WFとリア輪荷重WRとの比と、左右の前輪FL,FRの輪荷重比と、左右の後輪RL,RRの輪荷重比とを算出するとしたが、これに限定されず、例えば全ての車輪の輪荷重比、つまり(右)前輪FRと(左)前輪FLと(右)後輪RRと(左)後輪RLとの輪荷重比を、各ブレーキトルクT(T(j);j=1,…,4)の時系列変化に基づき、いわゆる連比の形式で算出してもよい。
この場合、アンチロック制御(ABS制御)が作動しない程度の低いスリップ率の輪荷重演算領域は、例えば駆動輪である左右の前輪FL,FRの各車輪速のうち何れか遅いほうの車輪速と、従動輪である左右の後輪RL,RRの各車輪速のうち何れか速いほうの車輪速との差が、所定値VW0以下であって、ほぼゼロとなる領域である。これにより、制動時にすべりが発生し易い駆動輪側でローセレクトをおこない、すべりが発生し難い従動輪側でハイセレクトをおこなうことで、適切な輪荷重演算領域を設定することができる。
【0056】
なお、上述した実施の形態において、輪荷重演算領域は、フロント車輪速とリア車輪速との偏差が所定値VW0以下であって、ほぼゼロとなる領域であるとしたが、これに限定されず、アンチロック制御(ABS制御)が作動しない程度の低いスリップ率の領域であればよく、例えば車両の速度(車速)を検出する速度センサから出力される検出信号に基づく車速が所定車速以下の領域などであってもよい。
【0057】
なお、上述した実施の形態において、アンチロック制御装置10は、各ブレーキトルクセンサ46から出力される検出信号に基づき制御処理をおこなうとしたが、これに限定されず、例えば図8に示す上述した実施の形態の第1変形例に係るアンチロック制御装置10のように、例えば各ブレーキトルクセンサ46を省略して、各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧を検出する各液圧センサ61から出力される検出信号に基づき制御処理をおこなってもよい。
この第1変形例において、接地点μ演算部51は、上述した実施の形態での数式(1)〜数式(5)による演算処理の実行に加えて、例えば各液圧センサ61から出力される各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧Pfの検出信号と、各ホイールシリンダ3a,3b,3c,3dのブレーキシリンダ径Raと、各ブレーキパッド摩擦係数Pμと、ディスク有効径Rbとに基づき、下記数式(11)に示すように記述される各車輪のブレーキトルクTを算出する。
【0058】
【数11】

【0059】
なお、上述した実施の形態において、各ブレーキトルクセンサ46から出力される検出信号に基づき各車輪の接地点μ(各車輪の接地点での摩擦係数)を算出する接地点μ演算部51を備えると共に、目標トルク演算部57は、各ブレーキトルクセンサ46から出力される各車輪のブレーキトルクTの検出信号に基づき、各車輪の目標ブレーキトルクTtを算出するとしたが、これに限定されず、例えば図9に示す上述した実施の形態の第2変形例のように、各ブレーキトルクセンサ46は省略されてもよい。
この第2変形例に係るアンチロック制御装置10は、例えば車体減速度演算部62と、車体速演算部63と、理想スリップ率判定部64と、目標車輪速演算部65と、車輪速偏差演算部66と、目標トルク演算部67と、トルク偏差演算部68と、バルブ制御部69とを備えて構成されている。
そして、アンチロック制御装置10には、各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧を検出する各液圧センサ61から出力される検出信号が入力されている。
【0060】
車体減速度演算部62は、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)を検出する各車輪速センサ45から出力される検出信号と、所定定数GR0FSとに基づき、例えば下記数式(12)に示すように記述される車体減速度GRDAT(つまり、左右の前輪FL,FRおよび後輪RL,RR毎の各車体減速度GRDAT(j);j=1,…,4)を算出する。
【0061】
【数12】

【0062】
なお、例えば図10に示すように、上記数式(12)において、最大速GRV0は、増圧モードにおいて車輪加速度ACLがゼロとなった時点(例えば、図10に示す時刻t0)での、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)と、各車輪速VW(j)(j=1,…,4)から算出した車体速(各車体速VR0(j);j=1,…,4)とのうちの最大値である。
また、最小速GRV1は、増圧モードにおいて最大速GRV0が設定された後に車輪加速度ACLがゼロとなった時点(例えば、図10に示す時刻t1)での、車輪速VWと車体速VR0とのうちの最小値である。
また、時間幅ΔTは、増圧モードにおいて車輪加速度ACLがゼロとなる時刻間(例えば、図10に示す時刻t0と時刻t1との間)の時間であって、車輪加速度ACLがゼロ以下かつABS制御モードとして増圧モードが実行されていることを示すGRフラグ(F_GRFLAG)のフラグ値が「0」から「1」に切り替わる時刻間の時間となる。
【0063】
車体速演算部63は、例えば上記数式(7)および上記数式(8)に基づき、車体速VR0(k)を算出する。
理想スリップ率判定部64は、例えば図11に示すように、左右の前輪FL,FRおよび後輪RL,RRの各速度(各車輪速VW(j);j=1,…,4)を検出する各車輪速センサ45から出力される検出信号に基づき算出されるスリップ率と、各車輪の接地点での摩擦係数とに対して予め設定された所定の対応関係から、例えばスリップ率が増大する所定範囲内(例えば、5〜10%の範囲内)での摩擦係数をピークμとして出力する。
【0064】
目標車輪速演算部65は、車体速演算部63から出力される車体速VR0(つまり、今回の演算処理での車体速VR0(k))と、理想スリップ率判定部64から出力されるピークμと、所定定数aとに基づき、上記数式(9)に示すように記述される目標車輪速VWtを算出する。
【0065】
車輪速偏差演算部66は、各車輪速センサ45から出力される各車輪速VW(つまり左右の前輪FL,FRおよび後輪RL,RRの各車輪速VW(j);j=1,…,4)の検出信号と、目標車輪速演算部65から出力される目標車輪速VWtとの偏差(VWt−VW)を算出する。
【0066】
目標トルク演算部67は、車輪速偏差演算部66から出力される各車輪の偏差(VWt−VW)と、所定の変換係数αと、所定の車輪慣性モーメントIとに基づき、上記数式(10)に示すように記述される各車輪の目標ブレーキトルクTtを算出する。
【0067】
トルク偏差演算部68は、各液圧センサ61から出力される各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧Pfの検出信号と、各ホイールシリンダ3a,3b,3c,3dのブレーキシリンダ径Raと、各ブレーキパッド摩擦係数Pμと、ディスク有効径Rbとに基づき、上記数式(11)に示すように記述される各車輪のブレーキトルクTを算出する。そして、目標トルク演算部67から出力される各車輪の目標ブレーキトルクTtとブレーキトルクTとのブレーキトルク偏差(Tt−T)を算出する。
【0068】
バルブ制御部69は、アンチロック制御装置10によって選択されたモードに対応する各電磁弁12,15,32,35の開閉を制御する。
さらに、バルブ制御部69は、トルク偏差演算部68から出力される各車輪のブレーキトルク偏差(Tt−T)に基づき、例えばブレーキトルク偏差(Tt−T)をゼロとするようにして、各電磁弁12,15,32,35の開閉により各ホイールシリンダ3a,3b,3c,3dのブレーキ液圧を制御する。
【0069】
特に、バルブ制御部69は、増圧モードにおいて、ブレーキトルク偏差(Tt−T)が所定値以上の場合には第1増圧モードを選択し、ブレーキトルク偏差(Tt−T)が所定値未満の場合には、第2増圧モードを選択する。
【図面の簡単な説明】
【0070】
【図1】本発明の実施の形態に係るアンチロック制御装置に係るブレーキ装置の構成図である。
【図2】本実施の形態によるアンチロック制御装置および輪荷重比検知装置の構成図である。
【図3】本実施の形態によるアンチロック制御装置に係る各物理量を示す図である。
【図4】本実施の形態による輪荷重比検知装置に係るスリップ率と前後力との対応関係の一例を示す図である。
【図5】本実施の形態による輪荷重比検知装置に係る車輪速、車輪加速度、ブレーキトルクの時系列変化の一例を示す図である。
【図6】本実施の形態による輪荷重比検知装置に係る4輪ブレーキトルクと車輪速と車両重量との対応関係の一例を示す図である。
【図7】本実施の形態によるアンチロック制御装置の動作を示すフローチャートである。
【図8】本実施の形態の第1変形例に係るアンチロック制御装置および輪荷重比検知装置の構成図である。
【図9】本実施の形態の第2変形例に係るアンチロック制御装置の構成図である。
【図10】本実施の形態の第2変形例に係るアンチロック制御装置での各速度、車輪加速度、ABS制御モード、GRフラグの時間変化の一例を示すグラフ図である。
【図11】本実施の形態の第2変形例に係るアンチロック制御装置でのスリップ率と摩擦係数との対応関係の一例を示すグラフ図である。
【符号の説明】
【0071】
10 アンチロック制御装置
10a 輪荷重比検知装置
10b ブレーキ装置
45 車輪速センサ(速度状態量検出手段)
46 ブレーキトルクセンサ(制動トルク検知手段)
51 接地点μ演算部(比算出手段、制動トルク検知手段)
61 液圧センサ(制動トルク検知手段)

【特許請求の範囲】
【請求項1】
車両の速度状態量を検出する速度状態量検出手段と、
車両の各車輪の制動トルクを検知する制動トルク検知手段と、
前記速度状態量検出手段により検出された前記速度状態量が所定条件を満たすときに前記制動トルク検知手段により検知された前記各車輪の制動トルクの比を、前記各車輪の輪荷重の比とする比算出手段と
を備えることを特徴とする輪荷重比検知装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−12878(P2010−12878A)
【公開日】平成22年1月21日(2010.1.21)
【国際特許分類】
【出願番号】特願2008−173619(P2008−173619)
【出願日】平成20年7月2日(2008.7.2)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】