説明

金属検出装置

大きさが異なる金属の複数の異物サンプルをそれぞれ交番磁界中に通過させたときに検波部26から出力される信号のデータと各異物サンプルの大きさを示すデータとを予め記憶しているメモリ33を備え、設定手段32は、その異物サンプルのデータに基づいて、判定手段31によって検出可能な金属の大きさを表示器36に表示させる。また、混入金属表示手段34は、判定手段31で被検査体に金属が異物していると判定されたとき、その混入金属の大きさを表示器36に表示する。検出可能な金属の大きさや被検査体に混入している金属の大きさをユーザが直観的に把握できる。

【発明の詳細な説明】
【技術分野】
本発明は、食品等の検査ラインに用いられ、被検査体に金属が混入しているかか否かを被検査体が搬送している間に検出する金属検出装置において、検出に必要なパラメータの設定操作や検出された金属の識別を直観的に行なえるようにするための技術に関する。
【背景技術】
食品等の検査ラインに用いられる金属検出装置としては、被検査体が搬送されている間に混入金属の検出が行なえるように、被検査体の搬送路に磁界を発生させ、被検査体に混入している金属による磁界の変化を検出する方法が採用されている。
図19は、磁界の変化を検出する金属検出装置10の構成を示している。
この金属検出機10は、所定周波数の信号Dを出力する信号発生器11と、信号Dを受けて被検査体1の搬送路2に所定周波数の交番磁界Eを発生する送信コイル12と、その交番磁界Eを等量ずつ受ける位置で被検査体1の搬送方向に沿って配置され、互いに差動接続された2つの受信コイル13a、13bを有し、交番磁界E中を通過する物体による磁界の変化に対応した信号を検出するための磁界変化検出部13と、磁界変化検出部13の出力信号Rを信号Dと同一周波数の信号によって同期検波する検波部16と、検波部16の出力信号に基づいて被検査体1に金属が混入しているか否かを判定する制御部17とを有している。
このように構成された従来の金属検出装置10では、被検査体1が交番磁界E中に存在していないときには、2つの受信コイル13a、13bに生起される信号の振幅が等しく位相が反転している平衡状態となるため、信号Rの振幅はゼロとなり、検波部16の出力もゼロとなるが、被検査体1が交番磁界E中に存在している場合には、被検査体1自身およびその被検査体1に混入している金属の影響により、2つの受信コイル13a、13bに生起される両信号の平衡状態がくずれ、被検査体1の移動に伴い、振幅および位相が変化する信号Rが出力される。
このときの信号Rには、混入金属の交番磁界Eへの影響によって生じる信号成分だけでなく、被検査体1自身(包装材等も含む)の交番磁界Eへの影響によって生じる信号成分が含まれており、この被検査体1自身による信号成分によって混入金属の検出限界が決定されてしまう。
この被検査体1自身の交番磁界への影響は、被検査体に含まれる水分の量、包装材の材質等によって大きく異なる。
このため、従来では、予め被検査体1の良品サンプルを交番磁界Eに通過させたときに検波部16の出力信号の振幅が最小となるように、同期検波の位相を設定し、その最小の振幅値より大きな電圧値をしきい値として自動設定あるいは手動で入力設定したり、最小の振幅値に対する倍率を手動で指定してその指定値倍の電圧をしきい値と設定して、被検査体1に対する検査を行ない、被検査体1が交番磁界Eを通過したときに、検波部16の出力信号の振幅がしきい値を越えたときにその被検査体1に金属異物が混入していると判定していた。
このように、金属検出のためのしきい値を電圧値や倍率値で設定する技術は、例えば、次の特許文献1に開示されている。
特許第2574694号
しかしながら、上記のように混入金属の有無を判定するためのしきい値を電圧値や倍率値で入力したり指定する方法では、ユーザ側ではどの程度の大きさの金属が検出できるかを直観的に知ることはできない。
また、混入金属有りと判定された被検査体にどの程度の大きさの金属が混入しているかを知ることができず、ユーザにとって使いやすいものとは言えなかった。
本発明は、この問題を解決して、判定のためのしきい値や被検査体に混入している金属をその大きさで表し、ユーザが直観的に把握でき、より使いやすい金属検出装置を提供することを目的としている。
【発明の開示】
前記目的を達成するために、本発明の請求の範囲1に記載の金属検出装置は、
信号発生器21と、
前記信号発生器21から出力された信号を受けて、該信号の周波数に等しい周波数の交番磁界を被検査体の搬送路に発生させる送信コイル22と、
前記交番磁界を受ける位置で前記搬送路に沿って配置された2つの受信コイル23a、23bを含み、前記交番磁界中を通過する物体による磁界の変化に対応する信号を出力する磁界変化検出部23と、
前記磁界変化検出部23の出力信号を、前記信号発生器21から出力された信号と等しい周波数の信号によって同期検波する検波部26と、
前記検波部26の出力信号としきい値とを比較して、被検査体に混入している金属の有無を判定する判定手段31と、
表示器36とを有する金属検出装置において、
大きさが異なる金属の複数の異物サンプルをそれぞれ前記交番磁界中に通過させたときに前記検波部26から出力される信号のデータと各異物サンプルの大きさを示すデータとを記憶しているメモリ33を備え、
前記メモリ33に記憶されている異物サンプルのデータに基づいて、前記判定手段31によって検出可能な金属の大きさを前記表示器36に表示させることを特徴としている。
また、本発明の請求の範囲2に記載の金属検出装置は、請求の範囲1に記載の金属検出装置において、
操作部35を備え、
該操作部35の操作により前記異物サンプルの大きさを指定できるようにし、該指定された大きさに対応するしきい値を前記判定手段31に設定することを特徴としている。
また、本発明の請求の範囲3に記載の金属検出装置は、
信号発生器21と、
前記信号発生器21から出力された信号を受けて、該信号の周波数に等しい周波数の交番磁界を被検査体の搬送路に発生させる送信コイル22と、
前記交番磁界を受ける位置で前記搬送路に沿って配置された2つの受信コイル23a、23bを含み、前記交番磁界中を通過する物体による磁界の変化に対応する信号を出力する磁界変化検出部23と、
前記磁界変化検出部23の出力信号を、前記信号発生器21から出力された信号と等しい周波数の信号によって同期検波する検波部26と、
前記検波部26の出力信号としきい値とを比較して、被検査体に混入している金属の有無を判定する判定手段31と、
表示器36とを有する金属検出装置において、
大きさが異なる金属の複数の異物サンプルをそれぞれ前記交番磁界中に通過させたときに前記検波部26から出力される信号のデータと各異物サンプルの大きさを示すデータとを記憶しているメモリ33と、
前記判定手段31によって被検査体に金属が混入していると判定されたとき、該被検査体について前記検波部26から出力された信号と、前記メモリ33に記憶されている異物サンプルのデータとに基づいて、被検査体に混入している金属の大きさを求めて前記表示器36に表示させる混入金属表示手段34とを設けたことを特徴としている。
また、本発明の請求の範囲4に記載の金属検出装置は、
信号発生器21と、
前記信号発生器から出力された信号を受けて、該信号の周波数に等しい周波数の交番磁界を被検査体の搬送路に発生させる送信コイル22と、
前記交番磁界を受ける位置で前記搬送路に沿って配置された2つの受信コイル23a、23bを含み、前記交番磁界中を通過する物体による磁界の変化に対応する信号を出力する磁界変化検出部23と、
前記磁界変化検出部23の出力信号を、前記信号発生器21から出力された信号と等しい周波数の信号によって同期検波する検波部26と、
前記検波部26の出力信号としきい値とを比較して、被検査体に混入している金属の有無を判定する判定手段31と、
表示器36とを有する金属検出装置において、
大きさが異なる金属の複数の異物サンプルをそれぞれ交番磁界中に通過させたときに検波部26から出力される信号のデータと各異物サンプルの大きさを示すデータを記憶するとともに、良品サンプルを交番磁界中に通過させた時に検波部26から出力される信号のデータを記憶するメモリ33を備え、
前記メモリ33に記憶されている異物サンプルのデータと良品サンプルのデータに基づいて、異物サンプルと良品サンプルの出力比が最大となる最適検波位相を求め、さらに該最適検波位相における良品サンプルと各異物サンプルの検波出力の比と各異物サンプルの大きさの関係を求めるとともに、前記比の基準値に対応する前記しきい値を設定することを特徴としている。
また、本発明の請求の範囲5に記載の金属検出装置は、請求の範囲4に記載の金属検出装置において、
前記交番磁界に対する前記搬送路の位置が変更可能であり、
変更により設定した異なる複数の前記位置において良品サンプルを前記交番磁界中に通過させて各位置ごとに前記しきい値を求め、各位置と当該各位置に対応する各しきい値によって検出可能な異物の大きさとを前記表示器36に表示することを特徴としている。
また、本発明の請求の範囲6に記載の金属検出装置は、請求の範囲1乃至5の何れかに記載の金属検出装置において、
大きさが異なる金属の複数の異物サンプルを前記金属検出装置の前記交番磁界中にそれぞれ通過させて前記検波部26から出力される信号のデータをマスターデータとして取得し、
当該マスターデータを他の前記金属検出装置の前記メモリ33に記憶させるとともに、前記複数の異物サンプルを他の前記金属検出装置の交番磁界中にそれぞれ通過させて検波部26から出力される信号のデータにより前記マスターデータを補正することを特徴としている。
【図面の簡単な説明】
第1図は、本発明の実施形態の構成を示す図である。
第2図は、実施形態の要部の設定モード時の処理手順を示すフローチャートである。
第3図は、異物サンプルの位置と磁界の変化との関係を説明するための図である。
第4図は、磁界の変化に対応した信号図である。
第5図は、検波出力のリサージュ波形図である。
第6図は、比と大きさとの関係を示す図である。
第7図は、設定されたしきい値に対応する大きさの表示例を示す図である。
第8図は、実施形態の要部の検査モード時の処理手順を示すフローチャートである。
第9図は、最適検波位相状態におけるリサージュ波形図である。
第10図は、混入金属の大きさの表示例を示す図である。
第11図は、検出可能な大きさの表示例を示す図である。
第12図は、検波位相を求めるための別の方法を説明するための図である。
第13図は、本発明の第2実施形態の正面図である。
第14図は、本発明の第2実施形態の平面図である。
第15図は、本発明の第2実施形態の側面図である。
第16図は、本発明の第2実施形態において搬送路の位置を変更する状態を模式的に示す正面図である。
第17図は、本発明の第2実施形態の要部の設定モード時の処理手順を示すフローチャートである。
第18図は、本発明の第2実施形態において検出可能な大きさの表示例を示す図である。
第19図は、従来装置の構成を示す図である。
【発明を実施するための最良の形態】
以下、図面に基づいて本発明の実施の形態の第1の例を説明する。
図1は、本発明を適用した金属検出装置20の構成を示している。
図1において、信号発生器21は、所定周波数の信号Dを発生して送信コイル22および後述する検波部26に出力する。
送信コイル22は、信号Dを受け、その信号Dに等しい周波数fの交番磁界Eを被検査体1の搬送路(一般的にはコンベアによって形成される)2に発生させる。
送信コイル22が発生した交番磁界Eは、磁界変化検出部23の2つの受信コイル23a、23bで受信される。磁界変化検出部23は、交番磁界Eを通過する物体による磁界の変化に対応した信号を出力するためのものであり、2つの受信コイル23a、23bは、交番磁界Eをそれぞれ等量受ける位置で且つ被検査体1の搬送方向に沿って並び、互いに差動接続されている。
なお、送信コイル22と2つの受信コイル23a、23bは、互いの相対位置が変化しないように、例えば搬送路2を囲むような共通の枠体に固定されている。
また、この送信コイル22と受信コイル23a、23bの配置には、搬送路2を挟んで送信コイル22と2つの受信コイル23a、23bとを対向させる場合、搬送路2を囲むように巻かれた送信コイル22の前後にそれぞれ受信コイル23a、23bを同軸状に配置する場合、および搬送路2の上面または下面に送信コイル22と2つの受信コイル23a、23bを同一平面上に配置する場合とがある。
2つの受信コイル23a、23bは、交番磁界Eを等量受ける位置で差動接続されているため、被検査体1や混入金属による交番磁界Eへの影響がないときには、2つの受信コイル23a、23bに生起される信号の振幅が等しく、位相が反転しているため、接続点間の信号Rの振幅はゼロとなる。
なお、ここでは、磁界変化検出部23の2つの受信コイル23a、23bが差動接続されている場合について説明するが、2つの受信コイル23a、23bに生起される信号をアナログ減算器で減算処理するように磁界変化検出部23を構成してもよい。また、2つの受信コイル23a、23bが受ける磁界が等量でない場合には、受信コイル23a、23bに生起される信号の差分を、可変抵抗器や増幅度の異なる増幅器によって補正してもよい。
また、搬送路2の近傍には、被検査体1が交番磁界E内に進入するタイミングを検出するための光学式の進入センサ24が設けられている。なお、磁界への物品の進入は、後述する検波部26の出力信号X、Yの振幅変化によって検知することもでき、その場合には、進入センサ24は省略できる。
検波部26は、磁界変化検出部23の出力信号Rを信号Dと等しい周波数の信号によって同期検波する。
この実施形態の検波部26は直交2相型で、信号Dを移相する移相器26a、移相器26aの出力信号Lと信号Rとを混合するミキサ26b、ミキサ26bの出力から被検査体1の搬送速度に対応した低周波成分を抽出するBPF26cと、信号Lの位相を90度移相する移相器26dと、信号Rと移相器26dの出力信号L′とを混合するミキサ26eと、ミキサ26eの出力から被検査体1の搬送速度に対応した低周波成分を抽出するBPF26fとによって構成されている。
検波部26の2つのBPF26c、26fから出力される信号X、Yは、A/D変換器28、29によってそれぞれディジタル値に変換され、コンピュータ構成の制御部30に入力される。
制御部30は、進入センサ24の出力信号(あるいは前記したように検波部の出力信号X、Yの振幅変化)から交番磁界Eに対する被検査体1の進入を検知して検波部26の出力信号X、Yの取り込みを行い、その取り込んだ信号のデータと予め設定されているしきい値とを比較することにより被検査体1に金属が混入しているか否かを判定し、その判定結果を出力する判定手段31と、被検査体1の検査に必要な各種のパラメータを設定するための設定手段32と、そのパラメータおよびパラメータ設定に必要なデータを記憶するための不揮発性のメモリ33と、判定手段31によって被検査体に金属が混入している判定されたとき、その混入している金属の大きさを後述する表示器36に表示させる混入金属表示手段34とを有している。
この制御部30は、操作部35および表示器36と接続され、操作部35によって設定モードが指定されたときには、設定手段32による各種のパラメータの設定処理を行ない、操作部35によって検査モードが指定されたときには、判定手段31による被検査体1の金属の混入検査とその検査結果の出力処理を行なうとともに、被検査体に金属が混入していると判定された際には、その混入している金属の大きさを表示器36に表示する。
なお、検査に必要なパラメータは、被検査体1の長さおよび搬送速度、信号発生器21が出力する信号Dの周波数、検波部26の検波位相(移相器26aの移相量)、異物の有無を判定するためのしきい値等である。
ここで、被検査体の長さや搬送速度は、検波部26の出力信号X、Yの取り込み間隔や取り込み時間、検波部26のBPF26c、26fの帯域等を決定するためのパラメータであり、信号Dの周波数は、検出しようとする金属の種類や被検査体1自身(包装材を含む)の材質に応じて選択されるパラメータである。
また、検波部26の検波位相は、混入金属に対する感度を決定するためのパラメータである。
また、判定のしきい値は、被検査体1に金属が混入されているか否かを判定するためのものであり、その設定処理は設定手段32によって行なわれる。
設定手段32は、これらのパラメータを操作部35に対する操作で手動設定あるいは半自動設定できるように構成されているが、ここでは検波位相を最適値に設定し、その検波位相において異物の有無を判定するためのしきい値を設定するための処理について説明する。なお、図1では、検波位相の設定処理のために必要な信号線のみを記載しているが、実際には、信号発生器21が出力する信号Dの周波数や検波部26のBPF26c、26fの帯域等を制御できるようになっている。
図2は、検波位相としきい値の設定に関する設定手段32の処理手順を示すフローチャートであり、以下、このフローチャートにしたがって設定処理動作を説明する。
例えば、操作部35の操作によって検波位相と判定のためのしきい値の設定処理が選択されると、移相器26aの移相量Δθを基準値(例えば0)に設定した状態で、メモリ33の所定領域33aに異物サンプルのデータDmが記憶されているか否かを判定する(S1、S2)。
異物データDmが記憶されている場合には後述の処理S9へ移行し、異物データDmが記憶されていない場合には、検出対象の金属の異物サンプルMsの大きさを示すデータの入力を指示し、オペレータが操作部35によってそのデータを入力すると、その異物サンプルMsを交番磁界E内に通過させるように指示する(S3〜S5)。これらの指示は例えば表示器36の表示で行なう。
この指示を受けたオペレータは、例えば一つの異物サンプルMs1の直径d1を、大きさを示すデータとして操作部35の操作によって入力してから、その異物サンプルMs1を搬送路2に載せて交番磁界Eに通過させる。
なお、ここでは、異物サンプルおよび混入金属の大きさを直径で示す場合について説明するが、本発明における異物サンプルおよび混入金属の大きさは、直径以外に長さ、面積、体積で示す場合も含むものとする。
設定手段32は、異物サンプルMsの磁界通過の指示を行なった後に、進入センサ24の出力信号から物品の進入が検知されると、検波部26の出力信号X、Yの取り込みを所定時間行ない、そのデータDm(1)を直径データd1と対応付けてメモリ33の所定領域33aに記憶する(S6、S7)。
ここで、異物サンプルMs1が磁束を集める作用を有する鉄のような磁性体であるとすると、図3の(a)のように、異物サンプルMs1が受信コイル23aの近傍を移動しているときには、送信コイル22から出力される磁束のうち、もともと受信コイル23aと交わっていた磁束に加えて、受信コイル23bと交わっていた磁束の一部が異物サンプルMs1に吸引されて受信コイル23aと交わるため、受信コイル23a側に生起される信号の振幅Vaが受信コイル23b側に生起される信号の振幅Vbより大きくなる。
また、図3の(b)のように、異物サンプルMs1が2つの受信コイル23a、23bの中間の位置にあるときには、送信コイル22から出力される磁束のうち、もともと受信コイル23aと交わっていた磁束の一部と、受信コイル23bと交わっていた磁束の一部とが等量ずつ異物サンプルMs1に吸引されるため、受信コイル23a側に生起される信号の振幅Vaと受信コイル23b側に生起される信号の振幅Vbとが等しくなる。
また、図3の(c)のように、異物サンプルMs1が受信コイル23bの近傍を移動しているときには、送信コイル22から出力される磁束のうち、もともと受信コイル23bと交わっていた磁束に加えて、受信コイル23aと交わっていた磁束の一部が異物サンプルMs1に吸引されて受信コイル23bと交わるため、受信コイル23b側に生起される信号の振幅Vbが受信コイル23a側に生起される信号の振幅Vaより大きくなる。
したがって、異物サンプルMs1が交番磁界Eを通過する際の信号Rの波形は、図4に示すように、振幅が増減変化する変調波となる。また、この信号Rに対して検波部26の同期検波処理によって得られる信号Xの波形は、検波部26の信号L、L′の振幅値を1とすれば、図4に示しているように信号Rの所定位相位置毎の瞬時値を結ぶ包絡線となり、信号Yの波形は信号Rの所定位相位置から90度ずれた位置(信号Dの周期をTとすればT/4だけずれた位置)毎の瞬時値を結ぶ包絡線となる。
このようにして得られた2つの信号X、Yで決まる座標点をxy座標上にプロットすると、例えば図5の(a)に示す8の字の波形(リサージュ波形)Hnが描かれる。
なお、上記のように交番磁界E中に金属の異物サンプルMs1のみを通過させた場合には、波形Hnのように、座標原点に対してほぼ対称で幅の狭いリサージュ波形が得られるので、波形全体の座標データの代わりに、頂点Qの座標(Xm,Ym)あるいはそれを極座標変換して得られる座標(r、θ)を異物サンプルMsの特徴点のデータとして記憶してもよい。
ただし、原点からの距離r、および角度θは、
r=(Xm+Ym1/2
θ=tan−1(Ym/Xm)
で表される。
このようにして直径d1の異物サンプルMsのデータDm(1)を取得してから、別の大きさの異物サンプルの直径データ入力指示と、磁界通過指示を前記同様に行い、交番磁界E中を通過した複数nの異物サンプルMs1〜Msnについての異物データDm(1)〜Dm(n)をそれぞれ求めて、その直径データd1〜dnにそれぞれ対応付けてメモリ33の所定領域33aに記憶する(S8)。
なお、同種の金属で大きさが異なる異物サンプルについて得られるリサージュ波形は、その頂点Qの極座標のうち、角度θがほぼ同一で、原点からの距離rが異物の大きさに応じて変化する相似形となる。
次に、移相器26aの移相量Δθを基準値(例えば0)に設定したままで、これから検査を行なおうとする被検査体1のうち、金属が混入していないことがわかっている良品サンプルを磁界E中に通過させるように指示する(S9)。
オペレータがこの指示にしたがって良品サンプルを搬送路2に置いて交番磁界E中を通過させると、設定手段32は前記同様に物品の交番磁界Eへの進入を進入センサ24の出力信号によって検知し(S10)、検波部26の出力信号X、Yの取り込みを所定時間行ない、その信号X、YのデータDgをメモリ33の所定領域33bに記憶する(S11)。
この良品サンプルは、通常は非磁性体であるが、その良品サンプルに含まれる水分やアルミ包装材等によって磁界を変化させるため、異物サンプルMsを通過させたときと同様に、磁界変化検出部23から振幅が増減変化する信号Rが出力され、その信号Rに対する検波部26の同期検波処理により、例えば図5の(a)のリサージュ波形Hgを描くような信号X、YのデータDgが得られる。
このようにして大きさが異なる複数の異物サンプルのデータと良品サンプルのデータが得られた段階で、設定手段32は、これらのデータに基づいて、良品サンプル(被検査体自体)の検波出力に対して、例えば最小径の異物サンプルMs(min)の検波出力の比が最大となる位相を最適検波位相θiとして求め、記憶する(S12)。
この処理は、図5の(a)に示した2つのリサージュ波形Hn、Hgのデータを用い、最小径の異物サンプルMs(min)の波形Hnの各座標(前記点Qのみでもよい)からある検波位相θdに対応した角度をもつ直線Aまでの距離の最大値Lnと、良品サンプルの波形Hgの各座標から直線Aまでの距離の最大値Lgとの比α=Ln/Lgを異なる検波位相θdについて求め、図5の(b)のように、比αが最大となる位相を最適検波位相θiと決定し、この最適検波位相θiの情報を、被検査体1の検査時に検波部26の移相器26aに設定するパラメータとしてメモリ33の所定領域33cに記憶する。
このようにして被検査体に対する最適検波位相θiが得られた後、最適検波位相θiにおける良品サンプルと各異物サンプルの検波出力との比αの値と、各異物サンプルの大きさ(直径)との関係が求められる(S13)。
即ち、図6に示すように、各異物サンプルMs1〜Msn毎の比α1〜αnを求め、その直径と比の値を近似的に関係付ける直線B(曲線でもよい)の式を求める。なお、この図では異物サンプルMs1から順番に径が大きくなっているものとする。
そして、比αが基準値αr(例えばαr=2)と等しくなる電圧Vr(前記距離Lgの2倍に相当する電圧)を、被検査体1の検査時に判定手段31に設定するしきい値Vrとして求め、これをメモリ33に記憶する(S14)。
さらに、基準値αrに対応する金属異物の直径drを直線Bから求め、その直径値を、判定手段31で検出可能な最小の金属異物の大きさとして、例えば図7のように表示器36に表示させる(S15)。
ユーザはこの表示を確認することで、被検査体1について検出可能な金属の異物の最小の大きさを直観的に把握できる。
そして、検査モードが指定されたときに、設定手段32は、メモリ33の所定領域33cに記憶されている最適検波位相θiの情報を移相器26aに設定して検波部26の検波位相を最適検波位相θiに設定し、また、被検査体1の検査に必要なしきい値Vr等を含む他のパラメータを必要な箇所に設定する。
このようにして検査に必要なパラメータが設定された状態で、前記判定手段31による被検査体1に対する検査が行なわれる。
図8は、この検査モード中の処理手順を示すものであり、判定手段31は、被検査体1が進入センサ24によって検知されると(S21)、検波信号X、Yを一定時間取り込み(S22)、その信号の大きさとしきい値Vrとを比較して、その被検査体1に金属が混入しているか否かを判定し(S23)、その判定結果を出力する(S24)。
この検査モード中に、前記異物サンプルMsと同種で直径がdr以上の金属が混入した被検査体1が磁界E中を通過すると、検波部26から出力される信号X、Yのリサージュ波形は、図5のリサージュ波形Hn、Hgを図9に示すように最適検波位相θi分だけ回転させた(直線Aがx軸に一致するように回転させた)リサージュ波形Hn′、Hg′を時間軸上で合成したものとなるが、y軸に沿った信号Yについてみると、被検査体1が交番磁界Eを通過する時間内で被検査体1自身による磁界への影響によって生じる信号の振幅Vgに対して、混入金属の影響によって生じる信号の振幅Vnの比Vn/Vgは前記距離の比αに対応して最大となり且つ基準値αr(=2)以上となる。
即ち、上記のような最適検波位相θiが設定されているとき、判定手段31は信号Yの最大振幅としきい値Vrとを比較して混入金属の有無を判定することになる。そして、このとき、信号Yの最大振幅は2Vg(=Vr)以上でしきい値以上となるので、判定手段31からは金属が混入していることを示す信号が出力される。
また、被検査体1に金属が混入していない場合には、図9のリサージュ波形Hg′に対応した信号X、Yのみが出力されることになり、信号Yの最大振幅はしきい値Vrより小さいため、判定手段31からは金属が混入していることを示す信号は出力されない。
また、判定手段31が混入金属有りと判定した場合、混入金属表示手段34は、そのときの信号Yの最大振幅と前記直線Bに基づいて、混入している金属のおおよその大きさを推定して、これを表示器36に表示する(S25)。
例えば、信号Yの最大振幅VyとVgとの比αa(=Vy/Vg)と、最大振幅VyからVgを減算した結果とVgとの比αb(=(Vy−Vg)/Vg)とを求め、前記した直線Bの式と比αaから混入している混入金属の直径の上限値daを求め、直線Bの式と比αbから混入金属の直径の下限値dbを求め、これを被検査体1に混入している金属の大きさの範囲として、例えば図10に示すように表示器36に表示する。
この表示を確認することで、ユーザは被検査体に混入していた金属の大きさを直観的に把握できる。
なお、ここでは、混入している金属の大きさの範囲を表示しているが、複数の異物サンプルMs1〜Msnのうち、その推定した大きさの範囲に含まれる異物サンプルの大きさを表示してもよい。
また、前記説明では、設定手段32が、検出可能な金属の最小径のみを表示器36に表示し、その最小径に対応するしきい値を自動設定していたが、ユーザが指定した大きさに対応するしきい値を設定してもよい。
この場合、図11に示すように、検出可能な金属の大きさとして、異物サンプルのうち、最小径以上の異物サンプルの各直径を表示器36に表示するとともに、それらの直径のいずれかを操作部35の操作で指定できるようにし、ユーザの操作で直径が指定されたとき、その異物サンプルの最適検波位相における検波出力の最大値(あるいはそれより僅かに小さい値でもよい)をしきい値Vrとして求めて設定する。
また、検出可能な金属の最小径のみを表示し、操作部35の操作によって最小径以上の任意の直径を入力指定できるようにし、その指定された直径と前記直線Bとから比αの値を求め、その比の値と前記電圧Vgとの積をしきい値Vrとして求めて設定してもよい。
また、前記したように、検出可能な金属の大きさおよび被検査体に混入している金属の大きさを異物サンプルの大きさだけで近似的に表示する場合には、メモリ33に記憶されている異物サンプルの検波出力のデータと被検査体の検波出力とから表示する大きさを選択することができ、前記した直線Bの関係を用いないでも済む。
また、上記説明では、各異物サンプルおよび良品サンプルを1回だけ磁界中に通過させてそのデータを求めていたが、同一サンプルについて複数回ずつ磁界中に通過させて、そのデータを平均化し、その平均化されたデータに基づいて、最適検波位相や、比と大きさとの関係を求めてもよい。
また、ここでは、磁界変化検出部23の出力信号Rを直交2相型の検波部26に入力して2つの信号X、Yを求め、その両信号のデータから最適検波位相を求めていたが、検波部26が単相型、即ち、移相器26a、ミキサ26b、BPF26cのみで構成されている場合でも本発明を適用できる。
この場合には、移相器26aの移相量を少しずつ変えながら、異物サンプルおよび良品サンプルに対する出力信号Xの波形(時間軸上の波形)のデータを求め、そのデータから図12のように、移相量Δφに対する異物サンプルの振幅値の変化特性Xn(φ)と、移相量φに対する良品サンプルの振幅値の変化特性Xg(φ)とを求め、良品サンプルの振幅値Vgに対して異物サンプルの振幅値Vnの比β=Vn/Vgが最大となる移相量φdを最適検波位相θiと決定し、これを被検査体1の検査時に移相器26aに設定すれば、前記同様に、混入金属を高感度に検出することができる。
そして、その最適検波位相における検波出力と金属の大きさとの関係を求めておくことで、前記同様に検出可能な金属の大きさや、被検査体に混入している金属の大きさを表示することができる。
また、上記説明では、大きさの異なる複数の異物サンプルの異物データDmがメモリ33に記憶されていない場合について説明したが、この異物データは、金属検出装置20の製造者等が予めメモリ33の所定領域33aに記憶しておいてもよい。
また、材質が異なる複数の異物サンプルについてのデータを、上記処理により予めメモリ33の所定領域33aに記憶しておき、被検査体1に対する位相の設定処理の際に、その複数の異物データの任意の一つを選択できるようにして、その選択された異物データについて前記同様の処理を行なうこともできる。
以上説明したように、本発明の金属検出装置は、大きさが異なる金属の複数の異物サンプルをそれぞれ交番磁界中に通過させたときに検波部から出力される信号のデータと各異物サンプルの大きさを示すデータとを予め記憶しているメモリを備え、その異物サンプルのデータに基づいて、判定手段によって検出可能な金属の大きさを表示器に表示させているため、ユーザは、被検査体に対して検出可能な金属の大きさを直観的に把握できる。
また、操作部の操作により異物サンプルの大きさを指定できるようにし、その指定された大きさに対応するしきい値を判定手段に設定するようにしたものでは、ユーザが電圧値やそれに対する倍数値ではなく、金属の大きさそのものの指定操作でしきい値の設定が行なえ、より直感的なしきい値設定操作が可能となる。
また、混入金属表示手段によって、被検査体に混入している金属の大きさを表示するものでは、被検査体に混入している金属の大きさを直観的に把握することができ、格段に使いやすくなる。
以下、図面に基づいて本発明の実施の形態の第2の例を説明する。
なお、本例において以下に説明する構成、作用、効果以外については第1の例と実質的に同一であるので、上述した第1の例における説明(図面を含む)を援用して可及的に繰り返しを避け、必要に応じ第1の例における参照符号を用いて説明を行うものとする。
図13〜図15は本発明を適用した金属検出装置120の全体構造を示している。
これらの図において、金属検出装置120は、基台121、被検査体の搬送路をなすコンベア130、ヘッド140およびコントローラ150により構成されている。
基台121はコンベア130およびヘッド140を支持するためのものであり、その下部には、設置面(床面)に対する基台121の高さ調整ができるようにネジ式の脚122が設けられている。
コンベア130は、上向きに開いたコの字状に形成され互いに対向する状態で基台121の上部に固定された一対の側板131、132を有している。
両側板131、132の一端側(図13、図14で左端側)の上部の間には駆動ローラ133が回転自在に支持され、他端側上部の間には従動ローラ134が回転自在に支持されており、駆動ローラ133と従動ローラ134の間には搬入物品を搬送するための無端状の搬送ベルト135が掛け渡されている。
また、側板131、132の一端側上部と他端側上部の間には、駆動ローラ133側から従動ローラ134側へ移動する上側の搬送ベルト135を上面で支えて、搬入物品を水平に搬送させるための下板136が固定されている。なお、従動ローラ134側から駆動ローラ133側に戻る下側の搬送ベルト135は、この下板136の下面に近接した経路を移動するように構成されている。搬送ベルト135および下板136は、磁界に対する影響が極めて少ない合成樹脂材で形成されている。
また、駆動ローラ133は、その一端側に一体的に設けられているモータ137によって回転駆動される。
側板131、132の中央上方には横長の矩形枠状に形成されたヘッド140が配置されている。ヘッド140の中央に形成されている横長矩形の穴141には、コンベア130の搬送ベルト135および下板136が通過している。
ヘッド140の穴141の内壁部141aは全周にわたって磁束を透過させる合成樹脂の板材で形成され、ヘッド140の内部には、その内壁部141aを囲むようにして送信コイル22が巻きつけられ、その送信コイル22の前後に2つの受信コイル23a、23bが同軸状に巻きつけられている。
また、ヘッド140の外周部は、磁束を透過させない磁気シールド材で形成されている。
したがって、送信コイル22が発生する磁界Eの磁束のほとんどは、ヘッド140の内部および穴141の内側を通過することになり、その磁束は2つの受信コイル23a、23bにほぼ等量ずつ交わる。
なお、送信コイル22と2つの受信コイル23a、23bは、ヘッド140内に充填された接着材(図示せず)によって、その相対位置が変化しないように固定されている。
このヘッド140は図13〜図15に示しているように、平板状のベース板145上に固定されており、ベース板145の四隅部には基台121上部に固定されたボルト123がそれぞれ挿通し、各ボルト123に締め付けられた上下2個のナット124によって、ベース板145が固定されている。
このボルト123とナット124は、コンベア130に対するヘッド140の高さ、即ち、ヘッド140に対する被検査体の通過高さ位置を可変するための機構であり、各ボルト123に対するナット124の高さを変えることで、被検査体の通過高さ位置を相対的に可変することができる。
なお、ここでは、コンベア130の下板136の下側を通過する搬送ベルト135がヘッド140の穴141の下面に最も近接した位置、即ち、穴141に対して被検査体の通過高さが最も低い位置を基準位置とする。
基台121(コンベア130の側板131、132やヘッド140自体でもよい)には、コンベア130の一端側に搬入された被検査体がヘッド140の穴141に進入するタイミングを検出するための光学式の進入センサ24が設けられている。なお、この物品の進入タイミングは、検波部26の出力信号X、Yの振幅変化によって検知することもでき、その場合、進入センサ24は省略できる。
ヘッド140の上部に設けられたコントローラ150には、コンベア130のモータ駆動、ヘッド140の送信コイル駆動、受信コイルからの信号に対する処理等を行なうための回路が内蔵されている。
次に、本例における作用を図16〜図18を参照して説明する。
本例の金属検出装置は、前述したようにコンベア130に対するヘッド140の位置(コンベア130の高さ)を調整することができる機構を備えており、コンベア130の高さ以外の条件が同一であってもコンベア130の高さを異なる値に設定すれば、被検査体に混入している金属の検出感度も異なったものとなる場合がある。
そこで、本例では、第1の例で説明したような制御手順により、予め記憶した異物サンプルのデータと良品サンプルのデータに基づいて判定手段により検出可能な金属の大きさを表示器に表示させ、または操作部の操作により異物サンプルの大きさを指定してしきい値設定を行うことにより被検査体に対して検出可能な金属の大きさを直観的に把握できるようにするだけでなく、さらにコンベア130の高さ(ヘッド140に対する相対的な位置)を変えて各位置ごとに第1の例で説明した制御動作を繰り返して前記しきい値をそれぞれ求め、各位置と当該各位置に対応する検出可能な異物の大きさを前記表示器に表示することにより、コンベア130の最も好ましい位置(最も感度の高い位置)を検出可能な異物の大きさとして表示し、任意に選択することができるようにしたものである。
図16に模式的に示すように、ヘッド140に対するコンベア130の位置を、基準位置(a)と、基準位置(a)から所定寸法(例えば10mm)上昇させた位置(b)と、位置(b)からさらに所定寸法(例えば15mm、)上昇させた位置(c)(従って基準位置からは25mm)とにそれぞれ設定し、各位置ごとに、検出可能な金属異物の直径drを求める。
上記手順を図17のフローチャートに従って説明するが、図17においてステップS101からS115までは、第1の例において図2を参照して説明したステップS1からS15までと同一であるので、前述したように第1の例における前記説明(図面を含む)を援用し、以下においてはS116以降の手順について説明する。
基準値αrに対応する金属異物の直径drを直線Bから求めて判定手段31で検出可能な最小の金属異物の大きさとして表示器36に表示させた(S115)後、この基準値αr及び検出可能な最小の金属異物の大きさをメモリ33に記憶する(S116)。なお、以上の1回目の手順はコンベア130を例えば図16(a)に示す基準位置に設定した状態で実行する。
ここで、コンベア130の高さの変更を求める指示を表示器36に表示させる(S117)。この指示を受けたオペレータは、前述したボルト123とナット124による機構を調整してコンベア130に対するヘッド140の高さを調整し、コンベア130のヘッド140に対する高さを変更する。本例では例えば図16(b)に示す位置に変更・設定し、操作部から変更後のコンベア位置を入力する。
本例では、コンベア130の位置をm回変え(例えば2回変えて図16で示す3つの位置(a),(b),(c)に設定し)、各位置ごとに基準値αr及び検出可能な最小の金属異物の大きさを求める操作を繰り返すこととし、その繰り返し回数が満足されない場合には、良品サンプルの通過指示(S109)に始まり、各高さごとに基準値αr及び検出可能な最小の金属異物の大きさを記憶する(S116)までの動作を繰り返す(S118、NOの場合)。
所定繰り返し回数mが満足された場合には(S118、YESの場合)、基準値αr及び検出可能な最小の金属異物の大きさをコンベア高さごとに表示器36に表示する(S120)。
図18は、表示器36の最終的な表示画面を示すものであり、異なる複数のコンベア高さ(基準位置からの変更量で表示)においてそれぞれ検出可能な異物(金属)の大きさが表示されており、さらにカーソルによって所望のコンベア高さ又は異物(金属)の大きさを選択してリターンキーで確認するように求める指示が表示がされている。
この指示を受けたオペレータは、操作部35によりカーソルを操作して所望のコンベア高さ及び異物(金属)の大きさを選択し、コンベア高さをその値に設定することで、選択した異物(金属)の大きさを検出感度として設定することができる。
従って、検出感度が最も高く、異物の検出に最適なコンベア高さを選択して、高感度で異物の検出を行うことができる。又は、必ずしも最高の感度でなく、実際に必要とする検出感度及びコンベア高さを選択し、その高さにコンベア位置を設定して必要な検出感度を得ることもできる。
図18に示すように、本例では3つの高さごとに検出可能な異物(金属)の大きさを表示し、その結果としては中間の図16(b)に示す位置において最も検出感度が高い結果となった場合を示した。すなわち、コンベア130はヘッド140に最も近い基準位置(図16(a))や基準位置から相当離れた位置(図16(c))にあるよりも、これらの中間位置である基準位置から適当な距離だけ離れた位置(図16(b))にある場合に検出感度が最も高くなった。
しかしながら、この傾向は一例にすぎず、送信コイル122及び2つの受信コイル123a,123bがヘッド140のいかなる位置にどのような態様で設けられているか等のさらに具体的な構成により、コンベア130のヘッド140に対する最適な位置(感度が最も高くなる位置)は変化しうる。
しかし、基本的に本例の如き構成を有していれば、コンベア130の複数の位置について検出感度を表示して任意に選択できるので、コンベア130とヘッド140の機構的なバリエーションに係わらず、常に異物の検出に最適なコンベア高さを選択して、異物の検出を行うことができる効果に変わりはない。
また、本例ではコンベア高さの変更は、ヘッド140の昇降機構により手動で行っていたが、動力を用いた昇降機構により操作部35からの操作で行うこととし、設定後のコンベア高さは自動的に制御部30に入力されるようにしてもよい。その場合には、最終画面で所望のコンベア高さを選択した場合には、制御部30の制御によりコンベア高さを自動的に当該高さに設定するように構成してもよい。
また、本例では、ヘッド140を昇降させてコンベア130のヘッド140に対する相対的な高さ(位置)を変更していたが、逆に固定されたヘッド140に対してコンベア130を昇降させてもよい。
また、本例では、コンベア130の位置を基準位置から順次段階的に上昇させて測定を繰り返したが、もちろん測定に先立って設定するコンベア130の位置は、どのような順序でも良い。例えば、最高位置、基準位置、最低位置の順でもよい。
以上説明した本発明の実施の形態の2つの例では、各金属検出装置ごとに複数の異物サンプルを交番磁界中に通過させて異物のデータを取得し、各装置ごとに各装置のメモリ33に記憶させていた。しかし、このような異物サンプルのデータの取得は、マスター装置となる1台の特定の金属検出装置において原則として1回だけ行い、このデータをマスターデータとして他の多数の金属検出装置に移植して利用してもよい。
その場合、他の金属検出装置においては、当該マスターデータをメモリに記憶させるとともに、マスターデータの取得に用いた複数の異物サンプルを当該装置の交番磁界中に実際に通過させてデータを取得し、そのデータで前記マスターデータを補正するものとする。かかる構成とすれば、メモリに記憶する異物サンプルのデータの生成がマスター装置において一括して行え、しかも各金属検出装置ごとに補正するので微妙な各装置ごとのくせにも対応することができる。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】


【特許請求の範囲】
【請求項1】
信号発生器(21)と、
前記信号発生器から出力された信号を受けて、該信号の周波数に等しい周波数の交番磁界を被検査体の搬送路に発生させる送信コイル(22)と、
前記交番磁界を受ける位置で前記搬送路に沿って配置された2つの受信コイル(23a、23b)を含み、前記交番磁界中を通過する物体による磁界の変化に対応する信号を出力する磁界変化検出部(23)と、
前記磁界変化検出部の出力信号を、前記信号発生器から出力された信号と等しい周波数の信号によって同期検波する検波部(26)と、
前記検波部の出力信号としきい値とを比較して、被検査体に混入している金属の有無を判定する判定手段(31)と、
表示器(36)とを有する金属検出装置において、
大きさが異なる金属の複数の異物サンプルをそれぞれ前記交番磁界中に通過させたときに前記検波部から出力される信号のデータと各異物サンプルの大きさを示すデータとを記憶しているメモリ(33)を備え、
前記メモリに記憶されている異物サンプルのデータに基づいて、前記判定手段によって検出可能な金属の大きさを前記表示器に表示させることを特徴とする金属検出装置。
【請求項2】
操作部(35)を備え、
該操作部の操作により前記異物サンプルの大きさを指定できるようにし、該指定された大きさに対応するしきい値を前記判定手段に設定することを特徴とする請求項1記載の金属検出装置。
【請求項3】
信号発生器(21)と、
前記信号発生器から出力された信号を受けて、該信号の周波数に等しい周波数の交番磁界を被検査体の搬送路に発生させる送信コイル(22)と、
前記交番磁界を受ける位置で前記搬送路に沿って配置された2つの受信コイル(23a、23b)を含み、前記交番磁界中を通過する物体による磁界の変化に対応する信号を出力する磁界変化検出部(23)と、
前記磁界変化検出部の出力信号を、前記信号発生器から出力された信号と等しい周波数の信号によって同期検波する検波部(26)と、
前記検波部の出力信号としきい値とを比較して、被検査体に混入している金属の有無を判定する判定手段(31)と、
表示器(36)とを有する金属検出装置において、
大きさが異なる金属の複数の異物サンプルをそれぞれ前記交番磁界中に通過させたときに前記検波部から出力される信号のデータと各異物サンプルの大きさを示すデータとを記憶しているメモリ(33)と、
前記判定手段によって被検査体に金属が混入していると判定されたとき、該被検査体について前記検波部から出力された信号と、前記メモリに記憶されている異物サンプルのデータとに基づいて、被検査体に混入している金属の大きさを求めて前記表示器に表示させる混入金属表示手段(34)とを設けたことを特徴とする金属検出装置。
【請求項4】
信号発生器(21)と、
前記信号発生器から出力された信号を受けて、該信号の周波数に等しい周波数の交番磁界を被検査体の搬送路に発生させる送信コイル(22)と、
前記交番磁界を受ける位置で前記搬送路に沿って配置された2つの受信コイル(23a、23b)を含み、前記交番磁界中を通過する物体による磁界の変化に対応する信号を出力する磁界変化検出部(23)と、
前記磁界変化検出部の出力信号を、前記信号発生器から出力された信号と等しい周波数の信号によって同期検波する検波部(26)と、
前記検波部の出力信号としきい値とを比較して、被検査体に混入している金属の有無を判定する判定手段(31)と、
表示器(36)とを有する金属検出装置において、
大きさが異なる金属の複数の異物サンプルをそれぞれ交番磁界中に通過させたときに検波部から出力される信号のデータと各異物サンプルの大きさを示すデータを記憶するとともに、良品サンプルを交番磁界注に通過させた時に検波部から出力される信号のデータを記憶するメモリ(33)を備え、
前記メモリに記憶されている異物サンプルのデータと良品サンプルのデータに基づいて、異物サンプルと良品サンプルの出力比が最大となる最適検波位相を求め、さらに該最適検波位相における良品サンプルと各異物サンプルの検波出力の比と各異物サンプルの大きさの関係を求めるとともに、前記比の基準値に対応する前記しきい値を設定することを特徴とする金属検出装置。
【請求項5】
前記交番磁界に対する前記搬送路の位置が変更可能であり、
変更により設定した異なる複数の前記位置において良品サンプルを前記交番磁界中に通過させて各位置ごとに前記しきい値を求め、各位置と当該各位置に対応する各しきい値によって検出可能な異物の大きさとを前記表示器に表示することを特徴とする請求項4記載の金属検出装置。
【請求項6】
大きさが異なる金属の複数の異物サンプルを前記金属検出装置の前記交番磁界中にそれぞれ通過させて前記検波部から出力される信号のデータをマスターデータとして取得し、
当該マスターデータを他の前記金属検出装置の前記メモリに記憶させるとともに、前記複数の異物サンプルを他の前記金属検出装置の交番磁界中にそれぞれ通過させて検波部から出力される信号のデータにより前記マスターデータを補正することを特徴とする請求項1乃至5の何れかに記載の金属検出装置。

【国際公開番号】WO2004/086095
【国際公開日】平成16年10月7日(2004.10.7)
【発行日】平成18年6月29日(2006.6.29)
【国際特許分類】
【出願番号】特願2005−503989(P2005−503989)
【国際出願番号】PCT/JP2004/002838
【国際出願日】平成16年3月5日(2004.3.5)
【出願人】(302046001)アンリツ産機システム株式会社 (238)
【Fターム(参考)】