説明

電気化学分析物センサ

【課題】生体外または生体内分析物含有流体中のグルコース、ラクテートまたは酸素などの分析物レベルの測定および/またはモニタのために、基板上の導電トレースを用いて形成された電気化学分析物センサを提供する。
【解決手段】電気化学分析物は、基板50と基板に配された導電材料とを含み、導電材料が作用電極58を形成する。導電材料がセンサの表面に形成された凹状溝に配されるセンサもある。分析物、またはレベルが分析物のレベルに依存する第2の化合物の電気分解を促進させるために電子移動剤および/または触媒を与えてもよい。作用電極58と基準電極または対向/基準電極60との間に電位を形成し、生じる電流は体液中の分析物の濃度の関数である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に分析物センサに関する。特に、グルコース、ラクテートまたは酸素のような分析物のレベルを生体内および/または生体外で測定するための電気化学センサに関する。
【背景技術】
【0002】
特定の個人において、グルコースまたはラクテートもしくは酸素のような他の分析物のレベルのモニタが健康に非常に重要である。高または低レベルのグルコースまたは他の分析物が有害効果を有する場合がある。グルコースのモニタは、糖尿病患者に特に重要である。というのは、糖尿病患者は、体内のグルコースレベルを下げるためにインシュリンが必要な時期、または体内のグルコースのレベルを上げるためにグルコースがさらに必要である時期を決定しなければならないからである。
【0003】
個人で血糖レベルをモニタするために多くの糖尿病患者によって使用されている従来の技術は、定期的な血液の採取、その血液の試験片への塗布および比色定量、電気化学または光度検出による血糖レベルの測定を含む。この技術では、体内のグルコースレベルの持続的または自動的モニタができず、通常、定期的に手動で行わなければならない。グルコースのレベルの検査での一貫性は、個人によって大きく異なるという問題がある。多くの糖尿病患者は、定期的な検査を不便であると感じ、時にはグルコースレベルの検査を忘れたり、適切な検査をするのに十分な時間がなかったりする。さらに、検査に伴う痛みを避けたい患者もいるかもしれない。これらの状況の結果、高血糖症または低血糖症が発現する場合がある。個人のグルコースレベルを持続的または自動的にモニタする生体内グルコースセンサにより、個人は自分のグルコースまたは他の分析物レベルのモニタをより簡単に行うことができる。
【0004】
血液流または間質液中のグルコースなどの分析物の持続的または自動的モニターのための種々の装置が開発されている。これらの装置の多くは、患者の血管または皮下組織に直接埋め込む電気化学センサを用いている。しかし、これらの装置は、再現性をもって低コストで大量生産することが困難である場合が多い。さらに、これらの装置は、通常、大きく、嵩高く、かつ/または柔軟性がなく、多くは、患者が自分の活動を制限しない限り、病院または医院などの制御された医療施設外では効果的な使用が不可能である。
【0005】
グルコースなどの分析物のレベルの持続的または自動的生体内モニタ用として広範囲に用いることができるセンサの設計において考慮すべき重要なことは、患者にとっての快適感およびセンサが埋め込まれている期間中に行うことができる活動の範囲である。患者の正常の活動を妨げることなく、グルコースなどの分析物のレベルを持続的にモニタすることができる小さく異物感のない装置が必要とされている。分析物の持続的および/または自動的モニタにより、分析物のレベルが閾値または閾値近傍になると患者に知らせることができる。たとえば、分析物がグルコースの場合、モニタ装置は、現在高血糖症または低血糖症であること、または高血糖症または低血糖症の恐れがあることを患者に知らせるような構造になっているかもしれない。それにより患者は適切な行動をとることができる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
分析物レベルの生体内モニタに加え、患者から採取されたサンプル中の分析物のレベルの測定も重要であることが多い。多くの人および多くの分析物にとって、分析物レベルの持続的モニタは必要ではなく、不都合であり、かつ/または望ましくない。生体外測定は、生体内センサを用いていないときに分析物の定期的測定を行うのに役立つことが多い。このような測定はまた、生体内センサの較正にも役立つ。これらの場合、このようなサンプルを得るのが困難であったり、サンプルを得る際の患者の不快さのために少量のサンプルを用いることが望ましいかもしれない。しかし、ほとんどの従来のセンサは、3マイクロリットルより多い量のサンプルで分析物レベルの試験を行うように設計されている。1マイクロリットル、または25ナノリットル以下ほどの少量のサンプルを生体外モニタに用いることができるセンサを有することが望ましい。このような少量のサンプルの使用により、たとえば、血液サンプルを得るために体の一部を切開することによる、サンプルを得る際に伴う不都合さまたは痛みが軽減される。
【発明を解決するための手段】
【0007】
一般に、本発明は、流体中の分析物のレベルの生体内および/または生体外測定に用いることができる分析物センサに関する。本発明のうち幾つかの実施形態は、患者のグルコースまたはラクテートなどの分析物のレベルの持続的または自動的モニタに特に有用である。本発明の1つの実施形態は、電気化学センサである。電気化学センサは、基板と、基板の表面に形成された凹状溝と、凹状溝に配された導電材料とを含む。導電材料は作用電極を形成する。
【0008】
本発明の別の実施形態は、基板と、基板の少なくとも1つの表面に形成された複数の凹状溝とを含む電気化学センサである。導電材料が、各凹状溝に配される。少なくとも1つの凹状溝内の導電材料が、作用電極を形成する。
【0009】
本発明のさらに別の実施形態は、作用電極と物質移動制限膜とを含む分析物反応電気化学センサである。物質移動制限膜は、30℃〜40℃の範囲の温度で1℃当たり3%未満の変化内に分析物の物質移動制限膜への浸透率を維持することが好ましい。
【0010】
本発明のさらに別の実施形態は、流体中の分析物レベルを測定する方法である。基板と、基板の表面に形成された凹状溝と、凹状溝に配され作用電極を形成する導電材料とを含む電気化学センサと流体とを接触させる。分析物の存在に応じてセンサに電気信号が生成される。電気信号から分析物レベルを測定することができる。
【0011】
本発明のさらに別の実施形態は、温度センサである。温度センサは、基板と、基板の表面に形成された凹状溝と、凹状溝に配される温度プローブとを含む。温度プローブは、凹状溝の間隔を有する部分に配された2つのプローブリードと、凹状溝にあり、かつ2つのプローブリードと接触して配された温度依存要素とを有する。温度依存要素は、温度変化に応じて温度プローブからの信号を変化させる温度依存特性を有する材料を用いて形成される。
【0012】
本発明のある実施形態は、流体中の分析物のレベルを測定する方法である。流体は、電気化学センサと接触して配される。電気化学センサは、基板と、基板の表面に形成された凹状溝と、凹状溝に配され作用電極を形成する導電材料と、作用電極の近傍に配される触媒とを有する。流体中の第2の化合物のレベルは、触媒によって触媒された分析物の反応によって変化する。第2の電極のレベルに応じて信号が生成される。分析物のレベルは電気信号から測定される。
【0013】
本発明の別の実施形態は、基板と、基板上に配された作用電極とを有する電気化学センサである。作用電極は、炭素材料を含み、作用電極の少なくとも一部に沿った幅が150μm以下である。
【0014】
本発明のさらに別の実施形態は、流体中の分析物のレベルを測定する電気化学センサである。基板と、基板の表面に形成された凹状溝と、凹状溝に配され作用電極を形成する導電材料とを含む。触媒が、作用電極の近傍に位置し、第2の化合物のレベルを変化させる分析物の反応を触媒する。電気化学センサは、第2の化合物のレベルに反応する信号を生成する。
【0015】
本発明のさらに別の実施形態は、皮下埋め込みに適合したセンサである。センサは、基板と、作用電極を形成するための浸出不可能な状態で基板の上に配された導電炭素とを含む。酵素が、作用電極近傍に浸出不可能な状態で配される。
【0016】
本発明のさらに別の実施形態は、基板と、基板に配された導電材料を含む電気化学センサである。導電材料は、複数のトレースを形成する。トレースのうちの少なくとも1つが作用電極を形成する。複数の導電トレースの基板の表面上での間隔は、150μm以下であることが好ましい。
【0017】
本発明のある実施形態は、基板と、基板の表面に配された導電材料と有する。導電材料は、複数のトレースを形成し、それらのうちの少なくとも1つが作用電極を形成する。複数の導電トレースが、基板の幅に沿って667μm以下に1つのトレースという好ましい密度で基板の表面上に配されている。
【0018】
本発明の別の実施形態は、基板と、作用電極を形成するための基板の表面に配された導電材料と、基板上に配され作用電極と動作可能に接続されたコンタクトパッドとを有する電気センサである。コンタクトパッドは、腐食を回避または減少させるために非金属導電材料からなる。
【0019】
本発明の別の実施形態は、センサと制御装置を含む分析物モニタシステムである。センサは、基板と、基板上に配された作用電極と、作用電極と連結したコンタクトパッドとを有する。制御装置は、作用電極と連結した導電コンタクトを有し、作用電極に電位を与えるように構成されている。コンタクトパッドと導電コンタクトのうち少なくとも1つは、腐食を回避または減少させるために非金属材料からなる。
【0020】
本発明のさらに別の実施形態は、動物の分析物のレベルを測定する方法である。センサは、動物に埋め込まれる。センサは、基板と、基板上に配された複数の導電トレースと、導電トレースのうちの1つから形成される作用電極とを含む。分析物に応じて作用電極で信号が生成される。信号を分析して分析物のレベルが測定される。分析物のレベルが、閾値を越えると、電流を生成し動物の一部分に流れることにより動物に知らせる。電流は、2つの導電トレースの間に電位を加えることによって生成される。
【0021】
本発明の別の実施形態は、基板と、作用電極を形成するために基板の上に配された導電材料と、導電材料に配された触媒を有する電気センサである。触媒は、作用電極で信号を生成するための分析物の反応を触媒する。
【0022】
本発明の上記要旨は、本発明の各開示の実施形態またはすべての具体化を記載することを意図されていない。以下の図面および詳細な説明は、これらの実施形態をより具体的に例示している。
【0023】
付随の図面と関連した以下の本発明の種々の実施形態の詳細な説明を考慮することにより完全に本発明を理解することができる。
【0024】
本発明は、種々の変形および別の形態に変更することができるが、本発明の具体例を図面に示し詳細に説明する。しかし、本発明は、記載の特定の実施形態に限らないことを理解すべきである。本発明は、本発明の精神および範囲内のすべての変更、均等物および代替物を含む。
【図面の簡単な説明】
【0025】
【図1】本発明による分析物センサを用いる分析物モニタの1つの実施形態のブロック図である。
【図2】本発明による分析物センサの1つの実施形態の上面図である。
【図3】図3Aは、図2の分析物センサの断面図であり、図3Bは、本発明による分析物センサの別の実施形態の断面図である。
【図4】図4Aは、本発明による分析物センサのさらに別の実施形態の断面図であり、図4Bは、本発明による分析物センサの第4の実施形態の断面図である。
【図5】図2の分析物センサの先端部の拡大上面図である。
【図6】本発明による分析物センサの第5の実施形態の断面図である。
【図7】図6の分析物センサの先端部の拡大上面図である。
【図8】図6の分析物センサの先端部の拡大底面図である。
【図9】図2の分析物センサの側面図である。
【図10】図6の分析物センサの上面図である。
【図11】図6の分析物センサの底面図である。
【図12】本発明による分析物センサの別の実施形態である。
【発明を実施するための形態】
【0026】
本発明は、流体中のグルコース、ラクテートまたは酸素のような分析物の生体内および/または生体外測定のための分析物センサに応用できる。本発明の分析物センサは、様々な状況で利用することができる。たとえば、分析物の1つの実施形態は、患者の間質液の分析物のレベルを持続的または周期的にモニタを行うために患者の間質組織に皮下埋め込みを行うことができる。そして、これを用いて患者の血流の分析物レベルを推定することができる。本発明によると、器官、静脈、動脈、その他流体を含む体の部分への挿入を行うことができる、他の生体内分析物センサも製造することができる。生体内分析物センサは、1回限りの測定を行うように、かつ/または数時間、数日またはそれ以上にわたる期間のあいだ分析物のレベルをモニタできるように構成することができる。
【0027】
分析物の別の実施形態は、サンプル、特に少量のサンプル(たとえば、10マイクロリットル〜50ナノリットルまたはそれより少量)の分析物の存在および/またはレベルについての生体外測定に用いることができる。本発明はこれに限らないが、以下に述べる実施例によって本発明の種々の局面を理解することができる。
【0028】
本明細書において使用される用語に対し、下記定義を設ける。「対向電極」とは、作用電極と対を成す電極を意味し、対向電極には、作用電極を流れる電流と符号が逆で大きさの等しい電流が流れる。本発明の脈絡において、「対向電極」という用語は、基準電極としても機能する対向電極(つまり、対向/基準電極)を含むものとする。
【0029】
「電気化学センサ」とは、センサ上の電気化学酸化および還元反応によりサンプル中の分析物の存在を検出および/またはレベルを測定するように構成された装置である。これらの反応は、サンプル中の分析物の量、濃度、またはレベルと相関関係を有する電気信号に変換される。
【0030】
「電解」とは、電極で直接、または一以上の電子移動剤を介した化合物の電気酸化または電気還元のことである。
【0031】
化合物は、基板に捕捉されるかまたは化学結合した場合、表面上に「固定」される。
【0032】
「浸出不可」または「放出不可」化合物、または、「浸出不可能な状態で配された」化合物とは、センサの使用期間(例えば、センサが患者に埋め込まれている期間または、サンプルを測定している期間)作用電極の作用面から実質的に拡散しないように、センサ上に付着させた化合物を定義するものとする。
【0033】
構成要素は、例えば、センサの構成成分に共有結合、イオン結合、または配位結合される場合、および/または可動性を排除するポリマまたはゾル−ゲルマトリックスまたは膜に捕捉される場合、センサ内で「固定」される。
【0034】
「電子移動剤」とは、直接、または他の電子移動剤と協働して、分析物と作用電極との間で電子を運搬する化合物である。電子移動剤の一例は、レドックス媒体である。
【0035】
「作用電極」は、分析物(または、分析物のレベルにそのレベルが左右される第二の化合物)を、電子移動剤の作用で、または作用なしに、電気酸化あるいは電気還元する電極である。
【0036】
「作用面」とは、作用電極における、電子移動剤で被覆されているか、または電子移動剤に接触可能で、分析物含有流体に晒されるように構成されている部分である。
【0037】
「感知層」とは、分析物の電解を容易にする構成成分を含むセンサの構成要素である。感知層は、電子移動剤、および、分析物の反応に触媒作用を及ぼし電極での反応を生じさせる触媒、またはその両方のような構成成分を含んでいてもよい。センサの幾つかの実施形態において、感知層は、作用電極上または近傍に浸出不可能な状態で配されている。
【0038】
「非腐食性」の導電材料としては、炭素および導電性ポリマのような、非金属材料が挙げられる。
【0039】
分析物センサ装置
本発明のセンサは、様々な条件下、各種装置に利用できる。センサの詳細な構造は、センサの用途および、センサの作動条件(例えば、生体内または生体外)により決定される。分析物センサの一実施形態は、生体内での作動を目的として、患者または使用者への埋め込み用に構成される。例えば、センサは、血中の分析物レベルを直接テストするために動脈系または静脈系に埋め込むこともできる。また、センサは、間質液中の分析物レベルを測定するために間質組織に埋め込むこともできる。このレベルは、血液または他の流体中の分析物レベルと相関関係を有し、および/または分析物レベルに換算することができる。埋め込みの部位およびその深さは、センサの特定の形状、構成要素、および構造に影響を及ぼすことがある。場合によっては、センサの埋め込み深さを制限するため、皮下埋め込みの方が好ましいことがある。センサは、他の流体中の分析物レベルを測定するために、身体の他の部位に埋め込むこともできる。
【0040】
埋め込み可能な分析物センサは、持続的および/または定期的に患者の体液中の分析物レベルをモニタするため分析物モニタ装置の一部として使用することもできる。センサ42に加えて、分析物モニタ装置40は一般に、センサ42を作動させる(例えば、電極に電位を供給し、電極から測定値を得る)制御装置44、およびセンサ42からの測定値を分析する処理装置45も備えている。制御装置44および処理装置45は、組み合わせて単一ユニットとしても、別々であってもよい。
【0041】
センサの別の実施形態は、分析物レベルの生体外での測定用に使用できる。生体外センサは、制御装置および/または処理装置に接続され、分析物モニタ装置を構成する。いくつかの実施形態では、生体外分析物モニタ装置は、センサにサンプルを供給するようにも構成される。例として、分析物モニタ装置は、例えば、ウィッキングおよび/または毛管作用を用いて切開された傷からサンプルを採取するように構成することもできる。そして、そのサンプルをセンサと接触させてもよい。そのようなセンサの例は、米国特許出願第08/795,767号明細書および1998年2月6日に出願された「少量生体外分析物センサ(Small Volume in vitro Analyte Sensor)」と題するPCT特許出願第 号明細書、代理人書類番号12008.11WO01に見られ、それらを参照し本明細書において援用する。
【0042】
センサにサンプルを供給する他の方法としては、ポンプ、シリンジ、または他の機構を使用し、管状物等を通して患者からサンプルを直接センサに供給するか、またはセンサ用サンプルが得られる貯蔵装置に供給することが挙げられる。ポンプ、シリンジ、または他の機構は、連続的または定期的に、或いはテスト用サンプルを必要とする場合に作動させることができる。分析物含有流体をセンサに供給するための他の有用な装置としては、精密ろ過および/または精密透析装置が挙げられる。幾つかの実施形態、特に、精密透析装置を用いた実施形態では、分析物は、例えば浸透圧により、微細孔膜を通して体液中から担体液中に取り出された後、分析のためセンサに運ばれる。サンプルを得るための他の有用な装置としては、分析物含有液体の皮膚を通しての運搬を促進するため、逆イオントフォレシス(reverse iontophoresis)といった技術を用いて、皮膚を通して運搬された体液を収集するものがある。
【0043】
センサ
本発明に係るセンサ42は、図2に示しているように、基板50上に形成された少なくとも一つの作用電極58を有する。センサ42は、少なくとも一つの対向電極60(または対向/基準電極)および/または少なくとも一つの基準電極62(図8参照)も備えていてもよい。対向電極60および/または基準電極62は、基板50上に形成されていても、別個の装置であってもよい。例えば、対向電極および/または基準電極は、同様に患者に埋め込まれる第二の基板上に形成されるか、或いは、埋め込み可能なセンサの幾つかの実施形態では、作用電極または電極を患者に埋め込み、対向電極および/または基準電極は、患者の皮膚上に配置してもよい。埋め込み可能な作用電極を用いた皮膚上対向および/または基準電極の使用については、米国特許第5,593,852号明細書に記載されており、それらを参照し本明細書において援用する。
【0044】
作用電極または電極58は、基板50上に配された導電トレース52を用いて形成される。温度プローブ66(図8参照)のような,センサ42の他の選択自由な部分と同様に、対向電極60および/または基準電極62も、基板50上に配された導電トレース52を用いて形成できる。これら導電トレース52は、基板50の平滑面上か、または、例えば、型押し、インデンティング、あるいは、基板50に凹部を作ることによって形成される溝54内に形成することができる。
【0045】
感知層64(図3Aおよび3B参照)は、特に、裸電極上で、所望の率および/または所望の特異性で分析物を電解できない場合、分析物の電気化学的検出およびサンプル流体中のそのレベルの測定を容易にするために、しばしば作用電極58の少なくとも一つの近傍またはその上に形成される。感知層64は、分析物と作用電極58間で直接的にまたは間接的に電子を移動させるため、電子移動剤を含んでいてもよい。感知層64はまた、分析物の反応に触媒作用を及ぼすため触媒を含んでいてもよい。感知層の構成要素は、作用電極58の近傍のまたは接触している流体中またはゲル中に存在していてもよい。また、感知層64の構成要素は、作用電極58上または近傍のポリマまたはゾル−ゲルマトリックス中に配されてもよい。感知層64の構成要素は、センサ42内に浸出不可能な状態で配されているのが好ましい。センサ42の構成要素は、センサ42内に固定されているのが更に好ましい。
【0046】
センサ42は、電極58、60、62および感知層64に加えて、以下説明するように、温度プローブ66(図6および図8参照)、物質移動制限層(mass transport limiting layer)74(図9参照)、生体親和性層(biocompatible layer)75(図9参照)、および/または他の任意の構成要素を備えていてもよい。以下説明するように、これらのアイテムのそれぞれが、センサ42の機能を高め、および/または、センサ42からの結果を促進する。
【0047】
基板
基板50は、例えば、ポリマまたはプラスチック材料、およびセラミック材料を含む各種非導電性材料を用いて形成することができる。特殊なセンサ42に適した材料は、少なくともある程度は、センサ42の所望の用途および材料の特性に基づいて決定される。
【0048】
幾つかの実施形態において、基板は柔軟性を有する。例えば、センサ42を、患者への埋め込み用に構成する場合、センサ42の埋め込みおよび/または装着により生じる患者の痛みおよび組織に対するダメージを減少させるため、(硬質センサも埋め込み可能なセンサに使用できるが)センサ42に、柔軟性を持たせることができる。柔軟な基板50は、しばしば、患者の快適性を高め、広範囲の活動を可能にする。柔軟な基板50はまた、特に、製造を容易にするため、体内センサ42にも有用である。柔軟な基板50に適した材料としては、例えば、非導電性プラスチックまたはポリマ材料や、他の非導電性で、柔軟性を有する変形可能な材料が挙げられる。有用なプラスチックまたはポリマ材料の例としては、ポリカーボネート、ポリエステル(例えば、マイラー(Mylar)(商標)およびポリエチレンテレフタレート(PET))、ポリ塩化ビニル(PVC)、ポリウレタン、ポリエーテル、ポリアミド、ポリイミドのような熱可塑性物質または、PETG(グリコール修飾ポリエチレンテレフタレート)などの、これら熱可塑性物質のコポリマが挙げられる。
【0049】
他の実施形態において、センサ42は、例えば、曲げまたは破損に対し、構造的サポートを提供するため、比較的硬質の基板50を用いて作製される。基板50として使用できる硬質材料の例としては、酸化アルミニウムおよび二酸化ケイ素のような、低導電性セラミックが挙げられる。硬質基板を有する埋め込み可能なセンサ42の利点の一つは、更なる挿入装置を使用することなくセンサ42の埋め込みを助けるようにセンサ42が、鋭い先端部および/または鋭い縁部を有することである。更に、硬質基板50は、生体外分析物モニタ用センサにも使用できる。
【0050】
多くのセンサ42およびセンサ用途において、硬質および軟質センサのいずれも適切に機能することは言うまでもない。センサ42の柔軟性は、例えば、基板50の組成および/または厚みを変えることにより、連続体に沿って制御および変化させることもできる。
【0051】
柔軟性に関し考慮すべき事項に加えて、患者の体内に戻される流体と接触する生体外センサと同様に、埋め込み可能なセンサ42も、しばしば毒性の無い基板50を有するのが望ましい。基板50は、一以上の政府機関または民間団体によって、生体内用として認可されているのが好ましい。
【0052】
センサ42は、図17に示されているように、埋め込み可能なセンサ42の挿入を容易にするため、選択自由な機構を備えていてもよい。例えば、センサ42は、挿入を容易にするため、先端部123を尖らせることもできる。更に、センサ42は、センサ42が作動している間、患者の組織内へのセンサ42の固定を助けるかかり部125を備えていてもよい。しかしながら、かかり部125は一般に、センサ42を交換するために取り除く際、皮下組織に対し殆ど損傷を与えることがないように十分小さいものである。
【0053】
基板50は、少なくとも幾つかの実施形態においては、センサ42の全長に渡って均一な寸法を有するが、他の実施形態では、図2に示しているように、基板50は、それぞれ異なった幅53、55の遠心端67と近位端65とを有する。これらの実施形態において、基板50の遠心端67は、比較的狭い幅53を有していてもよい。患者体内の皮下組織または他の部分に埋め込み可能なセンサ42では、基板50の遠心端67の幅53が狭いことにより、センサ42の埋め込みを容易にすることができる。多くの場合、センサ42の幅が狭いほど、センサの埋め込み中および埋め込み後に患者が感じる痛みはより少ない。
【0054】
患者の通常の活動中に分析物を継続的または定期的にモニタするために設計された皮下への埋め込み可能なセンサ42では、患者に埋め込まれるセンサ42の遠心端67の幅53は、2mm以下、好ましくは1mm以下、更に好ましくは0.5mm以下である。センサ42が幅の異なる領域を持たない場合には、センサ42の全幅は一般に、例えば、2mm、1.5mm、1mm、0.5mm、0.25mmまたはそれ以下であろう。しかしながら、より幅の広いまたは狭いセンサも使用できる。特に、静脈または動脈への挿入用、或いは、患者の動きが制限されている場合、例えば、患者がベッドまたは病院内に拘束されている場合、より幅の広い埋め込み可能なセンサを使用することもできる。
【0055】
少量の生体外サンプルを測定するために設計されたセンサ42では、幅53が狭いことにより、正確な読取値に必要なサンプル量を減らすことができる。センサ42の幅53が狭いことにより、センサ42の全ての電極が近接して集められ、よって全ての電極をカバーするために必要とされるサンプル量が少なくなる。生体外センサ42の幅は、センサ42に対して利用可能なサンプル量およびセンサ42が配置されているサンプル室の寸法によって少なくともある程度は変えてもよい。
【0056】
図2に戻って、電極のコンタクトパッド49と制御装置のコンタクトとの間の接続を容易にするため、センサ42の近位端65の幅55は、遠心端67よりも広くてもよい。センサ42のこの先端の幅が広いほど、コンタクトパッド49を大きくすることができる。これにより、制御装置(例えば、図1のセンサ制御装置44)のコンタクトにセンサ42を適切に接続するために必要とされる精密度を低下させることができる。しかしながら、センサ42の最大幅は、患者の簡便性および快適性のため、および/または、分析物モニタの望ましいサイズに適合するように、センサ42が依然小さいものであるよう制約される場合がある。例えば、図1に示しているセンサ42のような、皮下に埋め込み可能なセンサ42の近位端65の幅55は、0.5mm〜15mm、好ましくは1mm〜10mm、更に好ましくは3mm〜7mmの範囲内である。しかしながら、より幅の広いまたは狭いセンサもこれらの生体内および生体外用途に使用できる。
【0057】
基板50の厚さは、以下説明するように、基板材料の機械的特性(例えば、材料の強度、引張り応力、および/または柔軟性)、その使用により基板50への応力が発生するセンサ42の所望用途、並びに、基板50に形成されたあらゆる溝または窪みの深さにより決められる。一般に、患者が通常の活動に従事しながら、分析物レベルを持続的または定期的にモニタするための皮下に埋め込み可能なセンサ42の基板50の厚さは、50〜500μmであり、好ましくは100〜300μmである。しかしながら、特に他のタイプの生体内および生体外センサ42においては、より厚い基板50やより薄い基板50を使用することもできる。
【0058】
センサ42の長さは、様々な要因によって、広範囲に渡る値を取ることができる。埋め込み可能なセンサ42の長さに影響を及ぼす要因としては、患者への埋め込み深さや、柔軟性を有する小型センサ42を上手に操作し、センサ42とセンサ制御装置44とを接続するための患者の能力が挙げられる。図1に示されている分析物モニタ用の皮下に埋め込み可能なセンサ42の長さは、0.3〜5cmの範囲内であり得るが、より長いまたはより短いセンサも使用できる。センサ42が幅の狭い部分と広い部分とを有する場合、センサ42の幅の狭い部分(例えば、患者の皮下に挿入される部分)の長さは一般に約0.25〜0.2cmである。しかしながら、より長い部分やより短い部分を使用してもよい。この幅の狭い部分の全体、または一部分のみを患者の皮下に埋め込むことができる。
【0059】
他の埋め込み可能なセンサ42の長さは、少なくともある程度は、センサ42が埋め込まれるまたは挿入される患者の部位によって変化するであろう。生体外センサの長さは、分析物モニタ装置の特定の構造、特に、制御装置のコンタクトとサンプルとの間の距離により、広範囲に渡って変化し得る。
【0060】
導電トレース
作用電極58を構成するために、基板上に少なくとも一つの導電トレース52を形成する。更に、電極(例えば、更なる作用電極、並びに、対向、対向/基準、および/または基準電極)および、温度プローブなどの、他の構成要素としての使用を目的として、基板50上に他の導電トレース52を形成してもよい。必須ではないが、導電トレース52は、図2に示されているように、センサ50の長手方向57に沿ってその距離の殆どに渡って延設されていてもよい。導電トレース52の配置は、分析物モニタ装置の特定の構造(例えば、制御装置のコンタクトの配置、および/またはサンプル室のセンサ42との関係)によって決められる。埋め込み可能なセンサ、特に皮下に埋め込み可能なセンサでは、導電トレースは一般に、センサの埋め込まれなければならない量を最小にするためセンサ42の先端近くまで延設されている。
【0061】
導電トレース52は、例えば、フォトリソグラフィ、スクリーン印刷、または他のインパクトまたはノンインパクト印刷技術を含む様々な技術により、基板50上に形成される。導電トレース52は、レーザーを用いて、有機質(例えば、ポリマまたはプラスチック)基板50に、導電トレース52を炭化させることにより形成してもよい。センサ42を形成する方法のいくつかの例は、「電気化学バイオセンサの製造方法(Process for the Manufacture of an Electrochemical Biosensor)」と題する1998年3月4日出願、米国特許出願第 号、代理人書類番号M&G12008.16US01に説明されている。
【0062】
基板50上に導電トレース52を配する別の方法は、図3Aに示しているように、基板50の一以上の表面に凹状溝54を形成することと、引き続き、導電材料56でこれら凹状溝54を充填することとを含む。凹状溝54は、インデンティング、型押し、または別の方法で、基板50の表面に凹部を作ることにより形成できる。基板の表面に溝および電極を形成する方法の例が、「電気化学バイオセンサの製造方法(Process for the Manufacture of an Electrochemical Biosensor)」と題する1998年3月4日出願、米国特許出願第 号、代理人書類番号M&G12008.16US01に見出すことができる。溝の深さは、一般的に、基板50の厚さと関連性を有する。一実施形態において、溝の深さは、約12.5〜75μm(0.5〜3ミル)、好ましくは約25〜50μm(1〜2ミル)の範囲内である。
【0063】
導電トレースは、一般に、炭素(例えば、グラファイト)、導電性ポリマ、金属または合金(例えば、金または金合金)、或いは、金属化合物(例えば、二酸化ルテニウムまたは二酸化チタン)のような導電材料56を用いて形成される。炭素、導電性ポリマ、金属、合金、または金属化合物からなるフィルムの形成は周知となっており、例えば、化学蒸着(CVD)、物理蒸着、スパッタリング、反応スパッタリング、印刷、コーティング、およびペインティングが挙げられる。溝54を充填する導電材料56は、しばしば、導電性インクまたはペーストのような前駆物質を使用して形成される。これらの実施形態において、導電材料56は、コーティング、ペインティング、またはコーティング用ブレードのような塗布器具を使用して材料を塗布するといった方法を用いて基板50上に堆積される。そして、溝54間の過剰導電材料は、例えば、基板表面にそってブレードを動かすことにより除去される。
【0064】
一実施形態において、導電材料56は、導電性インクのような前駆物質の一要素である。これは、例えば、エルコン インコーポレーション(Ercon、Inc.)(ウェアハム、エムエー(Wareham,MA))、メテク インコーポレーション(Metech,Inc.)(エルバーソン、ピーエー(Elverson,PA))、イー.アイ.デュポンドヌムール アンド カンパニー(E.I.du Pont de Nemours and Co.)(ウィルミントン、ディーイー(Wilmington,DE))、エムカ−リメックス プロダクツ(Emca−Remex Products)(モントゴメリーヴィレ、ピーエー(Montgomeryville,PA))、またはエムシーエー サービスィーズ(MCA Services)(メルボルン、グレートブリテン(Melbourn,Great Britain))から入手可能である。導電性インクは、一般に炭素、金属、合金、または金属化合物の粒子と、溶剤または分散剤とを含む半流動体またはペーストとして塗布される。基板50上(例えば、溝54内)に導電性インクを塗布した後、溶剤または分散剤は蒸発し、導電材料56の固体の塊(solid mass)が残る。
【0065】
炭素、金属、合金、または金属化合物の粒子に加えて、導電性インクはまた、結合剤を含有していてもよい。結合剤は、溝54内および/または基板50上に導電材料56を更に結合させるため、選択的に硬化させてもよい。結合剤を硬化することにより、導電材料56の導電性が高まる。しかしながら、これは一般に必要とされない。というのも、導電トレース52内の導電材料56により搬送される電流は、比較的弱い場合がよくあるからである(通常1μA未満であり、100nA未満であることが多い)。一般的な結合剤としては、例えば、ポリウレタン樹脂、セルロース誘導体、エラストマー、および高度ふっ素化ポリマが挙げられる。エラストマーの例としては、シリコーン、ポリマ性ジエン、およびアクリロニトリルブタジエンスチレン(ABS)樹脂が挙げられる。ふっ素化ポリマ結合剤の一例は、テフロン(Teflon)(登録商標)(デュポン(DuPont)、ウィルミントン、ディーイー(Wilmington,DE))である。これらの結合剤は、例えば、熱、または紫外線(UV)光を含む光を用いて硬化される。適切な硬化方法は、一般に、使用される特定の結合剤によって決められる。
【0066】
しばしば、導電材料56の液体または半流動体前駆物質(例えば、導電性インク)を溝54内に堆積させると、前駆物質が溝54を埋める。しかしながら、溶剤または分散剤が蒸発すると、導電材料56は継続的に溝54を充填したままの状態であったりなかったりするため、残った導電材料56の体積が減少する場合がある。好ましい導電材料56は、体積が減少するにつれて基板50から剥がれることはなく、むしろ溝54内の高さが低くなる。これらの導電材料56は、一般に、基板によく付着するため、溶剤または分散剤の蒸発中に基板50から剥がれることはない。また、他の適切な導電材料56は、基板50の少なくとも一部に付着し、および/または、導電材料56を基板50に付着させる結合剤のような別の添加剤を含む。溝54内の導電材料56は、浸出不可能であるのが好ましく、基板50上に固定されているのが更に好ましい。幾つかの実施形態において、導電材料56は、溶剤または分散剤の除去により散在する、液体または半流動体前駆物質を複数回塗布することにより形成してもよい。
【0067】
別の実施形態では、溝54はレーザを使用して形成される。レーザは、ポリマまたはプラスチック材料を炭化させる。この工程において形成される炭素が、導電材料56として使用される。レーザにより形成される炭素を補うために、導電性カーボンインクのような、更なる導電材料56を使用してもよい。
【0068】
更なる実施形態において、導電トレース52は、パッド印刷技術により形成される。例えば、導電材料からなるフィルムは、連続したフィルム、または担体フィルムに堆積させたコーティング層のいずれかとして形成される。この導電材料から成るフィルムは、印刷ヘッドと基板50の間に配置される。基板50表面上のパターンは、印刷ヘッドを使用して導電トレース52の所望のパターンに従って作られる。導電材料は、圧力および/または熱により導電材料からなるフィルムから基板50に転写される。この技術は、しばしば、基板50に溝(例えば、印刷ヘッドにより生じる凹部)を作り出す。別の場合には、導電材料は、実質的な凹部を形成することなく、基板50の表面上に堆積される。
【0069】
他の実施の形態では、導電トレース52は、ノンインパクト印刷技法により形成される。そのような技法としては、電子写真および磁力記録が挙げられる。これらの方法においては、導電トレース52の像がドラム上に電気的または磁気的に形成される。像を電気的に形成するために、レーザまたはLEDを使用することができる。像を磁気的に形成するためには、磁気記録ヘッドを使用することができる。そして、トナー物質(例えば、導電性インクのような導電材料)が、ドラムの像に対応する部分に引きつけられる。その後、トナー物質は、ドラムと基板の接触により、基板に塗布される。例えば、基板は、ドラム上を回転させることができる。その後、トナー物質を乾燥させ、および/または、トナー物質中の結合剤を硬化させ、トナー物質を基板に付着させることができる。
【0070】
別のノンインパクト印刷技法としては、基板上に、所望のパターンに導電材料の液滴を射出するものが挙げられる。この技法の例としては、インクジェット印刷およびピエゾジェット印刷が挙げられる。像がプリンタに送られると、プリンタは、パターンに応じて導電材料(例えば、導電性インク)を射出する。プリンタは連続した流れの導電材料を供給するか、または所望のポイントで、個別の量の導電材料を射出してもよい。
【0071】
導電トレースを形成する、更に別のノンインパクト印刷の実施形態は、粒子線写真法である。この方法では、光重合の可能なアクリル樹脂(例えば、クビタル(Cubital)社のゾリマー(Solimer)7501、バッドクロイツナハ(Bad Kreuznach)、ドイツ(Germany))のような可硬化性液体前駆物質を基板50の表面上に堆積させる。そして、導電トレース52のポジまたはネガの像を有するフォトマスクを使用して液体前駆物質を硬化させる。フォトマスクを通して光(例えば、可視または紫外光線)を向け、液体前駆物質を硬化し、フォトマスク上の像に応じて基板上に固体層を形成する。硬化されていない液体前駆物質を除去することにより、固体層中に溝54が残る。その後、導電材料56でこれらの溝54を充填し、導電トレース52を形成することができる。
【0072】
導電トレース52(および、溝54が使用される場合、溝54)は、例えば、25〜250μmの範囲内で、また、上記方法により、例えば、250μm、150μm、100μm、75μm、50μm、25μm、またはそれ以下の幅を含む比較的狭い幅に形成することができる。基板50の同一面上に二つ以上の導電トレース52を有する実施形態において、導電トレース52は、導電トレース52間の電導を防ぐのに十分な距離を置いて離れている。導電トレース間のエッジ−エッジ間距離は、25〜250μmの範囲が好ましく、例えば、150μm、100μm、75μm、50μm、またはそれ以下であってもよい。基板50上の導電トレース52の密度は、約150〜700μmに1トレースの範囲であるのが好ましく、667μm以下に1トレース、333μm以下に1トレース、または、更に167μm以下に1トレースといった低密度であってもよい。
【0073】
作動電極58および対向電極60(別個の基準電極が使用される場合)は、しばしば、炭素のような導電材料56を用いて作製される。適した導電性カーボンインクは、エルコン インコーポレーション(Ercon、Inc.)(ウェアハム、エムエー(Wareham,MA))、メテク インコーポレーション(Metech,Inc.)(エルバーソン、ピーエー(Elverson,PA))、イー.アイ.デュポンドヌムール アンド カンパニー(E.I.du Pont de Nemours and Co.)(ウィルミントン、ディーイー(Wilmington,DE))、エムカ−リメックス プロダクツ(Emca−Remex Products)(モントゴメリーヴィレ、ピーエー(Montgomeryville,PA))、またはエムシーエー サービスィーズ(MCA Services)(メルボルン、グレートブリテン(Melbourn,Great Britain))から入手可能である。一般に、作用電極58の作用面51は、分析物含有流体と接触している(例えば、患者または生体外分析物モニタのサンプル室に埋め込まれている)導電トレース52の少なくとも一部である。
【0074】
基準電極62および/または対向/基準電極は、一般に、適切な参照材料、例えば、銀/塩化銀または導電材料に結合された浸出不可レドックス対、例えば炭素が結合したレドックス対といった、導電材料56を用いて形成される。適した銀/塩化銀導電性インクは、エルコン インコーポレーション(Ercon、Inc.)(ウェアハム、エムエー(Wareham,MA))、メテク インコーポレーション(Metech,Inc.)(エルバーソン、ピーエー(Elverson,PA))、イー.アイ.デュポンドヌムール アンド カンパニー(E.I.du Pont de Nemours and Co.)(ウィルミントン、ディーイー(Wilmington,DE))、エムカ−リメックス プロダクツ(Emca−Remex Products)(モントゴメリーヴィレ、ピーエー(Montgomeryville,PA))、またはエムシーエー サービスィーズ(MCA Services)(メルボルン、グレートブリテン(Melbourn,Great Britain))から入手可能である。銀/塩化銀電極は、サンプルまたは体液の構成成分、この場合Cl-を用いた金属電極の反応を伴う、一種の基準電極の例である。
【0075】
基準電極の導電材料に結合するのに適したレドックス対としては、例えば、レドックスポリマ(例えば、多数のレドックス中心(multiple redox centers)を有するポリマ)が挙げられる。基準電極表面は、誤った電位が測定されないように非腐食性であるのが好ましい。好ましい導電材料としては、金やパラジウムといった低腐食性金属が挙げられる。最も好ましいのは、炭素や導電性ポリマといった、非金属導電体を含む非腐食性材料である。レドックスポリマは、導電トレース52の炭素表面のような、基準電極の導電材料に吸着されるかまたは共有結合される。非重合性レドックス対も、同様に炭素または金の表面に結合され得る。
【0076】
電極表面にレドックスポリマを固定するために、様々な方法が使用できる。一方法は、吸着による固定化である。この方法は、比較的高分子量を有するレドックスポリマに対し特に有用である。ポリマの分子量は、例えば、架橋により増加さることができる。
【0077】
レドックスポリマを固定するための別の方法は、電極表面の機能化、そして、レドックスポリマの電極表面上の官能基への化学結合を含み、これはしばしば共有結合である。このタイプの固定化の一例は、ポリ4−ビニルピリジンで始まる。ポリマのピリジン環は、部分的に、[Os(bby)2Cl]+/2+のような可還元/可酸化種と結合してキレートを作る。但し、前記式中bpyは2,2‘−ビピリジンである。ピリジン環の一部は、2−ブロモエチルアミンとの反応により四級化される。そして、ポリマは、例えば、ポリエチレングリコールジグリシジルエーテルのようなジエポキシドを用いて架橋される。
【0078】
炭素表面は、例えば、ジアゾニウム塩の電気還元により、レドックス種またはポリマを付着させるため修飾することができる。一説明として、p−アミノ安息香酸のジアゾ化により形成されたジアゾニウム塩の還元により、フェニルカルボン酸官能基を有する炭素表面が修飾される。そして、これらの官能基は、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩のような、カルボジイミドにより活性化され得る。その後、活性化された官能基は、上述の四級化されたオスミウム含有レドックスポリマ、または2−アミノエチルフェロセンのようなアミン官能化レドックス対と結合され、レドックス対を形成する。
【0079】
同様に、金もシスタミンのようなアミンにより官能化できる。[Os(bpy)2(ピリジン−4−カルボキシレート)Cl]0/+のようなレドックス対は、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩により活性化され、金結合アミンと反応してアミドを形成する反応性O−アシルイソ尿素を形成する。
【0080】
一実施形態においては、電極またはプローブリードとして導電トレース52を使用することに加え、例えば、分析物レベルが閾値を超えた場合に、患者に軽い電気ショックを与えるため、基板50上の二以上の導電トレース52が使用される。このショックは、分析物を適切なレベルに戻すために何らかの行動を起こすようにという患者への警告または警報としての役割を果たすことができる。
【0081】
軽い電気ショックは、別途導電路で接続されてはいない、いずれか二つの導電トレース52間に電位を印可することにより発生させる。例えば、電極58、60、62の内の二つ、または、一つの電極58、60、62と温度プローブ66とを使用して軽いショックを与えることもできる。作用電極58と基準電極62とは、この用途には使用しないほうが好ましい。なぜならば、特定の電極上または近傍の化学構成要素(例えば、作用電極上の感知層または基準電極上のレドックス対)に何らかのダメージを与える可能性があるからである。
【0082】
軽いショックを発生させるために使用する電流は、一般に0.1〜1mAである。患者への弊害を避けるように注意しなければならないが、これより高いかまたは低い電流を使用することもできる。一般に、導電トレース間の電位は、1〜10ボルトである。しかしながら、例えば、導電トレース52の抵抗、導電トレース52間の距離、および所望の電流量によって、より高いまたはより低い電圧を使用することもできる。軽いショックが伝えられると、作用電極58における電位および温度プローブ66全体に渡っての電位を除去して、軽いショックを供給する導電トレース52と作用電極58(および/または、使用されている場合、温度プローブ66)との間の望ましくない電導により生じるそれら構成要素への弊害を防ぐこともできる。
【0083】
コンタクトパッド
一般に、各導電トレース52はコンタクトパッド49を有する。コンタクトパッド49は、制御装置(例えば、図1のセンサ制御装置)の導電コンタクトと接触させられる以外は、トレース52の残りの部分と区別できない、単に導電トレース52の一部であってもよい。しかしながら、より一般的には、コンタクトパッド49は、制御装置のコンタクトとの接続を容易にするため、導電トレース52の他の部分よりも幅の広いトレース52の一部分である。導電トレース52の幅と比べて、コンタクトパッド49を比較的大きくすることにより、小さなコンタクトパッドを用いた場合よりも、コンタクトパッド49と制御装置のコンタクトとの間の精密な位置合わせの必要性における重要性が低下する。
【0084】
コンタクトパッド49は、一般的に、導電トレース52の導電材料56と同様の材料を使用して作製される。しかしながら、これは必須ではない。コンタクトパッド49を形成するために金属、合金、および金属化合物を使用してもよいが、幾つかの実施形態においては、炭素または、導電性ポリマのような他の非金属材料からコンタクトパッド49を作製するのが望ましい。金属または合金コンタクトパッドとは対照的に、コンタクトパッド49が濡れ(wet)環境、含水(moist)環境、または、湿気(humid)環境にある場合、炭素および他の非金属コンタクトパッドは容易に腐食しない。金属および合金は、特に、コンタクトパッド49と制御装置のコンタクトとが異なる金属または合金で作られている場合、これらの条件下で腐食することがある。しかし、制御装置のコンタクトが金属または合金であったとしても、炭素および非金属コンタクトパッド49が著しく腐食することはない。
【0085】
本発明の一実施形態は、コンタクトパッド49を有するセンサ42と導電コンタクトを有する制御装置44とを備えている(図示なし)。センサ42の作動中、コンタクトパッド49と導電コンタクトは、互いに接触している。この実施形態では、コンタクトパッド49、または導電コンタクトのいずれかが非腐食性導電材料を用いて作製されている。このような材料としては、例えば、炭素や導電性ポリマが挙げられる。好ましい非腐食性材料には、グラファイトやガラス質炭素(vitreous carbon)が含まれる。向かい合ったコンタクトパッドまたは導電コンタクトは、炭素、導電性ポリマ、または、金、パラジウム、白金族金属のような金属、或いは、二酸化ルテニウムのような金属化合物を使用して作製される。コンタクトパッドおよび導電コンタクトのこの構成は、一般に、腐食を減らす。センサが3mM、より好ましくは100mMのNaCl溶液中に配置された場合、コンタクトパッドおよび/または導電コンタクトの腐食により生じる信号は、通常の生理学的範囲内の分析物濃度に晒された場合センサが発生させる信号の3%未満であるのが好ましい。少なくとも幾つかの皮下グルコースセンサでは、通常の生理学的範囲内の分析物によって発生する電流は、3〜500nAの範囲にある。
【0086】
温度プローブ66(下記に説明)の二つのプローブリード68、70と同様に、各電極58、60、62も、図10および図11に示されているようにコンタクトパッド49に接続されている。一実施形態(図示なし)では、コンタクトパッド49は、基板50の、コンタクトパッド49が設けられている各電極または温度プローブリードと同一側にある。
【0087】
他の実施形態では、図10および図11に示されているように、少なくとも一方の面の導電トレース52は、基板のバイアを介して、基板50の反対側の表面上のコンタクトパッド49aに接続されている。この構造の利点は、制御装置のコンタクトと電極58、60、62および温度プローブ66の各プローブリード68、70とを、基板50の単一の面で接触させることができることである。
【0088】
更に他の実施形態(図示なし)においては、各導電トレース52に対して、基板50の両面にコンタクトパッドを設けるために、基板を貫通したバイアが使用される。コンタクトパッド49aと導電トレース52とを接続するバイアは、適切な位置に基板50を貫通する孔を開けて、その孔に導電材料56を充填することにより形成することができる。
【0089】
典型的電極構造
以下、多くの典型的な電極構造を説明するが、他の構造も同様に使用できることは言うまでもない。図3Aに示されている一実施形態において、センサ42は、二つの作用電極58a、58bと、基準電極としても機能する一つの対向電極60とを備えている。別の実施形態において、センサは、図3Bに示されているように、一つの作用電極58aと、一つの対向電極60と、一つの基準電極62とを備えている。これらの各実施形態は、基板50の同一面上に全ての電極が形成された状態で図解されている。
【0090】
その代わりとして、電極の一つ以上を、基板50の反対側に形成してもよい。これは、電極が二つの異なった種類の導電材料56(例えば、炭素と銀/塩化銀)を使用して形成される場合、好都合なことがある。そして、少なくとも幾つかの実施形態においては、一種類のみの導電材料56を基板50の各面に塗布するだけでよく、これにより、製造方法の工程数が減り、および/または、その方法における位置合わせの制約が緩和される。例えば、作用電極58が炭素系導電材料56を使用して形成され、基準電極または対向/基準電極が銀/塩化銀導電材料56を使用して形成される場合には、製造を容易にするために、基板50の向き合った面に作用電極と、基準または対向/基準電極とを形成してもよい。
【0091】
別の実施形態においては、図6に示しているように、二つの作用電極58と一つの対向電極60とが基板50の一方の面に形成されており、一つの基準電極62と温度プローブ66とが基板50の反対側に形成されている。図7および図8に、センサ42のこの実施形態の先端部の向かい合った面が示されている。
【0092】
感知層
酸素のような幾つかの分析物は、作用電極58上で直接電気酸化または電気還元される。グルコースや、ラクテートなどの他の分析物は、分析物の電気酸化または電気還元を容易にするため、少なくとも一つの電子移動剤および/または少なくとも一つの触媒の存在を必要とする。触媒は、作用電極58上で直接電気酸化または電気還元される、酸素などのそれら分析物に使用してもよい。これらの分析物に対して、各作用電極58は、作用電極58の作用面上または近傍に形成された感知層64を有する。一般に、感知層64は、作用電極58の小さな部分のみにまたはその近傍、しばしば、センサ42の先端部近傍に形成される。これにより、センサ42を形成するために必要とされる物質量が制限され、また分析物含有流体(例えば、体液、サンプル液、または担体液)との接触に最適な位置に感知層64が配置される。
【0093】
感知層64は、分析物の電解を容易にするように設計された一以上の構成要素を含む。感知層64は、例えば、分析物の反応に触媒作用を及ぼし、作用電極58での反応を生じさせるための触媒、または、分析物と作用電極58間で間接的または直接的に電子を移動させるための電子移動剤、或いはその両方を含んでいてもよい。
【0094】
感知層64は、所望の構成要素(例えば、電子移動剤および/または触媒)の固体組成物として形成してもよい。これらの構成要素は、センサ42から浸出不可能なものであるのが好ましく、センサ42上に固定されているのがより好ましい。例えば、構成要素は作用電極58上に固定されてもよい。その代わりとして、感知層64の構成要素は、作用電極58上に設けられた一以上の膜またはフィルム内または間に固定されるか、或いは、前記構成要素は、ポリマまたはゾル−ゲルマトリックス中に固定されてもよい。固定された感知層の例は、米国特許第5,262,035号、第5,264,104号、第5,264,105号、第5,320,725号、第5,593,852号、および第5,665,222号明細書、米国特許出願第08/540,789号明細書および1998年2月11日に出願された「ダイズペルオキシダーゼ電気化学センサ(Soybean Peroxidase Electrochemical Sensor)」と題するPCT特許出願第 号、代理人書類番号12008.8WOI2に記載されており、それらを参照し本明細書において援用する。
【0095】
幾つかの実施形態において、感知層64の構成要素の内一以上の構成要素は、固体組成物を形成する代わりに、感知層64内の流体中に溶媒和、分散、または懸濁していてもよい。前記流体中に、センサ42を供給しても、センサ42が分析物含有流体から前記流体を吸収してもよい。このタイプの感知層64に溶媒和、分散、または懸濁している構成要素は、感知層から浸出不可能であるのが好ましい。例えば、感知層の周囲に、感知層64の構成要素の浸出を防ぐバリヤ(例えば、電極、基板、膜、および/またはフィルム)を設けることにより浸出不可能な状態にすることができる。そのようなバリヤの一例は、分析物を感知層64内に拡散させ、感知層64の構成要素と接触させるが、感知層64からの感知層構成要素(例えば、電子移動剤および/または触媒)の拡散は減少させるかまたは排除する微細孔膜またはフィルムである。
【0096】
各種の異なった感知層構造が使用できる。一実施形態において、感知層64は、図3Aおよび図3Bに示されているように、作用電極58aの導電材料56上に堆積させる。感知層64は、作用電極58aの導電材料56からはみ出して広がっていてもよい。場合によって、感知層64はまた、グルコースセンサの性能を低下させることなく、対向電極60または基準電極62上に広がっていてもよい。内部に導電材料56が堆積された溝54を利用するそれらのセンサ42では、導電材料56が溝54を満たしていない場合、感知層64の一部が溝54内に形成されていてもよい。
【0097】
作用電極58aと直接接触している感知層64は、分析物の反応を促進するための触媒と同様に、分析物と作用電極間で直接的または間接的に電子を移動させるための電子移動剤を含んでいてもよい。例えば、それぞれグルコースオキシダーゼ、乳酸オキシダーゼ、またはラッカーゼのような触媒と、それぞれグルコース、ラクテート、または酸素の電気酸化を促進する電子移動剤とを含む感知層を有するグルコース、ラクテート、または酸素電極を形成することができる。
【0098】
別の実施形態においては、作用電極58a上に感知層64を直接堆積させない。その代わりに、感知層64は、図4Aに示されているように、作用電極58aから間隔をおいて配置され、分離層61により作用電極58aから隔てられる。分離層61は、一般に、一以上の膜またはフィルムを有する。感知層64から作用電極58aを隔てることに加えて、下記で説明するように、分離層61は、物質移動制限層または妨害物質排除層としての役割を果たすこともできる。
【0099】
一般に、作用電極58と直接的には接触していない感知層64は、分析物の反応を促進する触媒を含む。しかしながら、この感知層64は、一般に、作用電極58aから分析物に直接電子を移動させる電子移動剤を含まない。これは、感知層64が作用電極58aから間隔をおいて配置されているからである。このタイプのセンサの一例は、感知層64中に酵素(例えば、それぞれ、グルコースオキシダーゼまたは乳酸オキシダーゼ)を含むグルコースまたはラクテートセンサである。グルコースまたはラクテートは、酵素の存在の下、第二の化合物(例えば、酸素)と反応する。そして、第二の化合物は、電極で電気酸化または電気還元される。電極での信号の変化は、流体中の第二の化合物のレベルの変化を示し、グルコースまたはラクテートレベルの変化に比例し、引いては分析物レベルと相関関係を有する。
【0100】
別の実施形態では、図4Bに示されているように、二つの感知層63、64が使用される。その二つの感知層63、64のそれぞれが、作用電極58a上または作用電極58a近傍に個別に形成されていてもよい。一方の感知層64は一般に、必須ではないが、作用電極58aから間隔をおいて配置さる。例えば、この感知層64は、生成化合物を形成するため、分析物の反応に触媒作用を及ぼす触媒を含んでいてもよい。そして、生成化合物は、作用電極58aと生成化合物との間で電子を移動させるため電子移動剤、および/または、作用電極58aで信号を発生させるよう生成化合物の反応に触媒作用を及ぼすための第二の触媒を含むことのできる第二の感知層63で電解される。
【0101】
例えば、グルコースまたはラクテートセンサは、作用電極から間隔をおいて配置される、酵素、例えば、グルコースオキシダーゼまたは乳酸オキシダーゼを有する第一の感知層64を備えていてもよい。適切な酵素の存在の下、グルコースまたはラクテートの反応により、過酸化水素が生じる。第二の感知層63は、直接作用電極58a上に設けられ、過酸化水素に対する反応で電極において信号を発生させるため、ペルオキシダーゼ酵素と、電子移動剤とを含む。センサが示す過酸化水素のレベルは、グルコースまたはラクテートのレベルと相関関係を有する。同様に機能する別のセンサは、単一感知層を用いて作製することができる。単一感知層中には、ペルオキシダーゼと、グルコースまたは乳酸オキシダーゼの両方が堆積している。このようなセンサの例は、米国特許第5,593,852号明細書、米国特許出願第08/540,789号明細書、および1998年2月11日に出願された「ダイズペルオキシダーゼ電気化学センサ(Soybean Peroxidase Electrochemical Sensor)」と題するPCT特許出願第 号、代理人書類番号12008.8WOI2に記載されており、それらを参照し本明細書において援用する。
【0102】
幾つかの実施形態では、作用電極58bの一つ以上が、図3Aおよび図4Aに示されているように、対応する感知層64を備えていないか、または、分析物の電解に必要とされる一以上の構成要素(例えば、電子移動剤または触媒)を含んでいない感知層(図示なし)を有する。この作用電極58bで発生する信号は、一般に、流体中の、妨害物質(interferents)およびイオンのような他の供与源により発生するのであって、分析物に対する反応により発生するのではない(なぜならば、分析物が電気酸化または電気還元されないからである)。よって、この作用電極58bの信号は、バックグラウンド信号に対応する。バックグラウンド信号は、例えば、作用電極58aの信号から、作用電極58bの信号を差し引くことにより、十分に機能的な感知層64に関連した他の作用電極58aから得られる分析物信号から除去することができる。
【0103】
複数の作用電極58aを有するセンサを使用して、これらの作用電極58aで発生する信号または測定値を平均することにより、更に正確な結果を得ることもできる。また、更に正確なデータを得るために、単一作用電極58aまたは複数の作用電極での、複数の読取値を平均してもよい。
【0104】
電子移動剤
図3Aおよび図3Bに示されているように、多くの実施形態において、感知層64は、作用電極58の導電材料56と接触している一以上の電子移動剤を含んでいる。幾つかの実施形態において、電子移動剤が拡散することまたは作用電極から浸出してしまうことは、特に一度しか使用されない生体外センサ42では許容される。他の生体外センサでは、電子移動剤を含む担体流体を利用することもできる。分析物は、例えば、微細孔膜等を通る浸透流により、オリジナルのサンプル流体から担体流体に移される。
【0105】
本発明に係る更に他の実施形態においては、センサ42が患者に埋め込まれている期間、または、生体外分析物含有サンプルを測定している期間の間、作用電極58からの電子移動剤の浸出は殆どまたは全く生じない。拡散するまたは浸出可能な(つまり、放出可能な)電子移動剤は、しばしば、分析物含有流体中に拡散して、時間の経過とともにセンサの感度を低下させ、電極の有効性を低下させる。更に、埋め込み可能なセンサ42における、拡散または浸出する電子移動剤は、患者に害をなすこともある。これらの実施形態においては、分析物含有流体に24時間、更に好ましくは、72時間浸漬した後、電子移動剤の好ましくは少なくとも90%、更に好ましくは、少なくとも95%、最も好ましくは、少なくとも99%がセンサ上に残る。特に、埋め込み可能なセンサでは、37℃の体液中に24時間、更に好ましくは、72時間浸漬した後、電子移動剤の好ましくは少なくとも90%、更に好ましくは、少なくとも95%、最も好ましくは、少なくとも99%がセンサ上に残る。
【0106】
本発明に係る幾つかの実施形態においては、浸出を防ぐために、作用電極58上或いは、作用電極58上に配された一以上の膜またはフィルム間または内に電子移動剤を結合させるかまたは別の方法で固定する。電子移動剤は、例えば、ポリマまたはゾル−ゲル固定化技法を用いて作用電極58上に固定することができる。また、電子移動剤は、ポリマーのような別の分子を介して直接的または間接的に作用電極58に化学(例えば、イオン、共有、配位)結合させることもでき、その結果、前記分子が作用電極58に結合される。
【0107】
図3Aおよび図3Bに示されているように、作用電極58a上への感知層64の適用は、作用電極58aの作用面を作成するための一方法である。電子移動剤は、分析物を電気酸化または電気還元するため電子の移動を媒介することにより、分析物を介して、作用電極58と対向電極60との間で電流が流れることを可能にする。電子移動剤の媒介により、電極上での直接的電気化学反応に適していない分析物の電気化学分析が容易になる。
【0108】
一般に、好ましい電子移動剤は、標準カロメル電極(SCE)のレドックス電位より数百ミリボルト高いかまたは低いレドックス電位を有する電気還元可能および電気酸化可能なイオンまたは分子である。電子移動剤が、SCEに対して、約−150mVを超えて還元することはなく、また約+400mVを超えて酸化することのないものであるのが好ましい。
【0109】
電子移動剤は、有機、有機金属、または無機であってもよい。有機レドックス種の例としては、キノンと、酸化された状態で、ナイルブルーやインドフェノールのようなキノイド構造を有する種とがある。幾つかのキノンと、部分的に酸化された幾つかのキンヒドロンは、分析物含有流体中の妨害タンパク質の存在により、前記レドックス種を本発明に係る幾つかのセンサにとって不適当なものにすることのある、システインのチオール基、リシンとアルギニンのアミン基、およびチロシンのフェノール基のようなタンパク質の官能基と反応する。通常、置換キノンおよびキノイド構造を有する分子は、タンパク質に対する反応性が低く、好ましい。好ましい4位置換(tetrasubstituted)キノンは、通常、1、2、3、および4の位置に炭素原子を有する。
【0110】
一般に、本発明における用途に適した電子移動剤は、サンプルの分析期間中の電子移動剤の拡散によるロスを防ぐか、または実質的に減少させる構造または荷電を有する。好ましい電子移動剤としては、結果として作用電極上に固定されるポリマに結合されたレドックス種が挙げられる。レドックス種とポリマ間の結合は、共有、配位、またはイオン結合であってもよい。有用な電子移動剤およびそれらの製造方法は、米国特許第5,264,104号、第5,356,786号、第5,262,035号、および第5,320,725号明細書に記載されており、それらを参照し本明細書において援用する。あらゆる有機または有機金属レドックス種がポリマに結合され、電子移動剤として使用されるが、好ましいレドックス種は、遷移金属化合物または錯体である。好ましい遷移金属化合物または錯体としては、オスミウム、ルテニウム、鉄、およびコバルト化合物または錯体が挙げられる。最も好ましいのは、オスミウム化合物および錯体である。下記レドックス種の多くも、一般に、ポリマ成分を用いることなく、電子移動剤の浸出が許容されるセンサの感知層中または担体流体中の電子移動剤として使用してもよいことは言うまでもない。
【0111】
一タイプの放出不可ポリマ性電子移動剤としては、ポリマ組成物中に共有結合したレドックス種が挙げられる。このタイプの媒体(mediator)の一例が、ポリビニルフェロセンである。
【0112】
別タイプの放出不可電子移動剤としては、イオン結合されたレドックス種が挙げられる。一般に、このタイプの媒体は、逆荷電レドックス種に結合した荷電ポリマを含む。このタイプの媒体の例としては、オスミウムまたはルテニウムポリピリジルカチオンのような正荷電レドックス種に結合されたナフィオン(登録商標)(デュポン)などの負荷電ポリマが挙げられる。イオン結合された媒体の別の例は、フェリシアン化物またはフェロシアン化物のような負荷電レドックス種に結合された四級化ポリ4−ビニルピリジン、または、ポリ1−ビニルイミダゾールのような正荷電ポリマである。好ましいイオン結合されたレドックス種は、逆荷電レドックスポリマ内に結合された高荷電レドックス種である。
【0113】
本発明に係る別の実施形態における、適切な放出不可電子移動剤としては、ポリマに配位結合したレドックス種が挙げられる。例えば、媒体は、ポリ1−ビニルイミダゾール、または、ポリ4−ビニルピリジンに対するオスミウムまたはコバルト2,2’− ビピリジル錯体の配位により形成される。
【0114】
好ましい電子移動剤は、一以上のリガンドを有するオスミウム遷移金属錯体であリ、前記リガンドのそれぞれが、2,2’−ビピリジン、1,10−フェナントロリン、またはそれらの誘導体といった窒素含有複素環を有する。更に、好ましい電子移動剤は、ポリマ中で共有結合した一以上のリガンドを有し、前記リガンドのそれぞれが、ピリジン、イミダゾールまたはそれらの誘導体といった、少なくとも一つの窒素含有複素環を有するものである。これらの好ましい電子移動剤は、錯体が速やかに酸化および還元されるように、相互間および作用電極58間で速やかに電子を交換する。
【0115】
特に有用な電子移動剤の一例は、(a)ピリジンまたはイミダゾール官能基を有するポリマまたはコポリマと、(b)必ずしも同一でない二つのリガンドと複合体を形成したオスミウムカチオンとを含み、前記リガンドのそれぞれが、2,2’−ビピリジン、1,10−フェナントロリン、またはそれらの誘導体を含むものである。オスミウムカチオンとの錯形成反応用の2,2’−ビピリジンの好ましい誘導体は、4,4’− ジメトキシ− 2,2’−ビピリジンなどの、モノ−、ジ−、および、ポリアルコキシ−2,2’−ビピリジンおよび4,4’−ジメチル− 2,2’−ビピリジンである。オスミウムカチオンとの錯形成反応用の1,10−フェナントロリンの好ましい誘導体は、4,7’− ジメトキシ−1,10−フェナントロリンなどの、モノ−、ジ−、ポリアルコキシ−1,10−フェナントロリンおよび4,7’−ジメチル−1,10−フェナントロリンである。オスミウムカチオンとの錯形成反応用の好ましいポリマとしては、ポリ1−ビニルイミダゾール(「PVI」と称す)およびポリ4−ビニルピリジン(「PVP」と称す)のポリマおよびコポリマが挙げられる。ポリ1−ビニルイミダゾールの適切なコポリマ置換基としては、アクリロニトリル、アクリルアミド、および置換または四級化N−ビニルイミダゾールが挙げられる。最も好ましいのは、ポリ1−ビニルイミダゾールのポリマまたはコポリマに対し錯形成反応が生じたオスミウムを有する電子移動剤である。
【0116】
好ましい電子移動剤は、標準カロメル電極(SCE)に対し、−100mV〜約+150mVの範囲内のレドックス電位を有する。電子移動剤の電位は、−100mV〜+150mVの範囲内であるのが好ましく、前記電位は、−50mV〜+50mVの範囲内であるのが更に好ましい。最も好ましい電子移動剤は、オスミウムレドックスセンタ、およびSCEに対し、+50mV〜−150mVの範囲内のレドックス電位を有する。
【0117】
触媒
感知層64は、分析物の反応に触媒作用を及ぼすことのできる触媒を含んでいてもよい。触媒はまた、幾つかの実施形態では、電子移動剤として機能することもできる。適した触媒の一例は、分析物の反応に触媒作用を及ぼす酵素である。例えば、分析物がグルコースである場合、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ(例えば、ピロロキノリンキノングルコースデヒドロゲナーゼ(PQQ))、またはオリゴ糖デヒドロゲナーゼのような触媒が使用できる。分析物がラクテートである場合、乳酸オキシダーゼまたは乳酸デヒドロゲナーゼが使用できる。分析物が酸素である場合、または酸素が分析物の反応に応じて発生するかまたは消費される場合、ラッカーゼが使用できる。
【0118】
触媒が、センサの固体感知層の一部であるか否か、または感知層内の流体中に溶媒和されているか否かにかかわらず、触媒は浸出不可能な状態でセンサ上に配されているのが好ましい。作用電極58からの、および患者の体内への望ましくない触媒の浸出を防ぐため、触媒は、センサ内(例えば、電極上、および/または、膜かフィルム内または間)に固定されているのがより好ましい。これは、例えば、触媒をポリマに付着させること、別の電子移動剤(上述したように、ポリマ性であり得る)で触媒を架橋すること、および/または、触媒よりも小さい孔径の一以上のバリヤ膜またはフィルムを設けることにより達成できる。
【0119】
上述のように、第二の触媒も使用できる。この第二の触媒は、しばしば、分析物の触媒反応により生じた生成化合物の反応に触媒作用を及ぼすのに使用される。第二の触媒は、一般に、電子移動剤と共に作用して、生成化合物を電解し、作用電極で信号を発生させる。また、第二の触媒は、下記に説明するように、妨害物質を除去する反応に触媒作用を及ぼすために、妨害物質排除層中に提供してもよい。
【0120】
本発明の一実施形態は、作用電極58の導電トレース52を形成する導電材料56中に触媒が混合または分散された電気化学センサである。これは、例えば、カーボンインクに酵素のような触媒を混合し、基板50の表面の溝54にその混合物を塗布することにより実現できる。触媒は、作用電極58から浸出できないように、溝53内に固定されるのが好ましい。これは、例えば、カーボンインク内の結合剤を、その結合剤に適した硬化技法を用いて硬化させることにより達成できる。硬化技法としては、例えば、溶剤または分散剤の蒸発、紫外線光への露光、または熱に晒すことが挙げられる。一般に、前記混合物は、触媒を実質的に劣化させない条件下で塗布される。例えば、触媒は、熱過敏性酵素であってもよい。酵素と導電材料の混合物は、好ましくは、連続した時間加熱されることなく、塗布し硬化させるべきである。前記混合物は、蒸発または紫外線硬化技法を用いて、または、触媒が実質的に劣化しないように十分短い時間熱に晒すことにより硬化できる。
【0121】
生体内分析物センサに関して考慮すべき別の事項としては、触媒の耐熱性が挙げられる。多くの酵素は、生体温度での安定性が乏しい。そこで、大量の触媒を使用することおよび/または必要温度(例えば、37℃または正常体温より高い温度)で熱安定性を有する触媒を使用することが必要となり得る。熱安定触媒とは、少なくとも一時間、好ましくは、少なくとも一日、より好ましくは、少なくとも三日間37℃で保持した場合、その活性のロスが5%未満である触媒と定義することができる。熱安定触媒の一例は、ダイズペルオキシダーゼである。この特殊な熱安定触媒は、同一または別個の感知層において、グルコースまたは乳酸オキシダーゼ或いはデヒドロゲナーゼと組み合わせた場合、グルコースまたはラクテートセンサに使用できる。熱安定触媒および電気化学発明におけるそれらの使用に関する更なる説明は、米国特許第5,665,222号明細書、米国特許出願第08/540,789号明細書、および1998年2月11日に出願された、「ダイズペルオキシダーゼ電気化学センサ(Soybean Peroxidase Electrochemical Sensor)」と題するPCT出願第 号明細書、代理人書類番号M&G12008.8WOI2に見られる。
【0122】
分析物の電解
分析物を電解するため、作用および対向電極58、60に渡って電位(対基準電位)を印可する。印可する電位の最低限の大きさは、しばしば、特定の電子移動剤、分析物(分析物が電極で直接電解される場合)、または第二の化合物(分析物レベルによってレベルが決まる酸素または過酸化水素のような第二の化合物が電極で直接電解される場合)によって決められる。印可する電位は、通常、所望の電気化学反応によって、電極で直接電解される電子移動剤、分析物、または第二の化合物のいずれかのレドックス電位と等しく、或いは、より酸化または還元するものである。作用電極の電位は、一般に、電気化学反応を完了または略完了させられるほど十分に高い。
【0123】
電位の大きさは、場合によっては、尿酸塩、アスコルベート、およびアセトアミノフェノンのような、(分析物に応じて発生する電流によって測定されるため)妨害物質の著しい電気化学反応を防ぐため自由に制限してもよい。これらの妨害物質が、下記のように妨害物質規制バリヤ(interferent−limiting barrier)を設けるか、或いは、バックグラウンド信号が得られる作用電極58b(図3A参照)を備えるといった別の方法で除去されている場合、上記電位の制限は必要なくなる。
【0124】
作用電極58と対向電極60との間に電位が印可されると、電流が流れる。電流は、分析物、または分析物によりそのレベルが影響を受ける第二の化合物の電解の結果得られる。一実施形態では、電気化学反応は、電子移動剤および任意の触媒を介して生じる。多くの分析物Bは、適切な触媒(例えば、酵素)の存在の下、電子移動剤種Aにより生成物Cに酸化(または還元)される。そして、電子移動剤Aは、電極で酸化(または還元)される。電子は、電極によって集められ(または電極から排除され)、その結果生じた電流を測定する。この方法は、反応式(1)および(2)で示される(触媒の存在下での、レドックス媒体Aによる分析物Bの還元に関して同様の式が書ける):
【化1】

【化2】

【0125】
一例として、電気化学センサは、二つの浸出不可フェロシアニドアニオン、二つの水素イオン、およびグルコノラクトンを生成するための、グルコースオキシダーゼの存在下での、グルコース分子の二つの浸出不可フェリシアニドアニオンとの反応に基づくものであってもよい。存在するグルコースの量は、浸出不可フェロシアニドアニオンを浸出不可フェリシアニドアニオンに電気酸化し、電流を測定することにより検定される。
【0126】
別の実施形態では、分析物によりそのレベルが影響を受ける第二の化合物は、作用電極で電解される。場合によって、反応式(3)に示されているように、分析物Dと、この場合酸素のような反応化合物Eである第二の化合物は、触媒の存在の下で反応する。
【化3】

【0127】
その後、反応式(4)に示されているように、反応化合物Eは、作用電極で直接酸化(または還元)される。
【化4】

【0128】
或いは、反応式(5)および(6)に示されているように、反応化合物Eは電子移動剤Hを用いて(場合によっては、触媒の存在の下)間接的に酸化(または還元)され、引き続き電極で還元または酸化される。
【化5】

【化6】

【0129】
いずれの場合も、作用電極の信号によって示されるような、反応化合物の濃度の変化は、分析物の変化に反比例して対応する(つまり、分析物レベルが高くなるにつれ、反応化合物のレベルと電極の信号が低下する)。
【0130】
他の実施例では、関連した第二の化合物は、反応式(3)に示されているように、生成化合物Fである。生成化合物Fは、分析物Dの触媒反応により形成され、電極で直接電解されるか、または電子移動剤と、オプションとして触媒を用いて、間接的に電解される。これらの実施形態では、作用電極での生成化合物Fの直接または間接的電解により発生する信号は、(生成化合物の他の供給源があるのでなければ)分析物レベルに直接対応する。分析物レベルが高くなるにつれて、作用電極の生成化合物および信号のレベルが高くなる。
【0131】
当技術分野の当業者は、同様の結果を実現する多くの異なった反応があることを認識しているであろう。すなわち、分析物のレベルによってレベルの決まる化合物または分析物の電解がある。反応式(1)〜(6)は、そのような反応の非限定例を示す。
【0132】
温度プローブ
センサには、様々な選択自由なアイテムが含まれていてもよい。選択自由な一アイテムが温度プローブ66(図8および図11)である。温度プローブ66は、様々な公知のデザインおよび材料を用いて作製される。典型的な一温度プローブ66は、温度依存特性を有する材料を使用して形成される、温度依存要素72により互いに接続されている二つのプローブリード68、70を用いて形成される。適した温度依存特性の一例は、温度依存要素72の抵抗性である。
【0133】
二つのプローブリード68、70は、一般に、金属、合金、グラファイトなどの半金属、縮退型または高度ドープ処理半導体、またはスモールバンドギャップ半導体を用いて形成される。適切な材料の例としては、金、銀、酸化ルテニウム、窒化チタン、二酸化チタン、インジウムをドープした酸化すず、スズをドープした酸化インジウム、またはグラファイトが挙げられる。温度依存要素72は、一般に、プローブリードと同様の導電材料、或いは、電圧源が温度プローブ66の二つのプローブリード68、70に取り付けられている場合、温度依存信号を提供する、抵抗性のような温度依存特性を有するカーボンインク、炭素繊維、または白金のような別の材料から成る細かいトレース(例えば、プローブリード68、70よりも断面の小さい導電トレース)を使用して作製される。温度依存要素72の温度依存特性は、温度とともに向上または低下し得る。温度依存要素72の特性の温度依存性は、必須事項ではないが、生体温度(約25〜45度)の予想範囲全体に渡って、温度に対し略直線的に示されるのが好ましい。
【0134】
一般に、温度の関数である振幅または他の特性を有する信号(例えば、電流)は、温度プローブ66の二つのプローブリード68、70の両端に電位を供給することにより得られる。温度が変化するにつれて、温度依存要素72の温度依存特性は、信号振幅における相応の変化と共に向上または低下する。温度プローブ66からの信号(例えば、プローブを流れる電流量)は、例えば、温度プローブ信号を測定した後、作用電極58における信号と、測定された温度プローブ信号とを加算するか、または、作用電極58における信号から測定された温度プローブ信号を減算することにより、作用電極58から得られた信号と組合せることができる。このようにして、温度プローブ66は、作用電極58からの出力に対し温度調整をし、作用電極58の温度依存性を相殺することができる。
【0135】
温度プローブの一実施形態は、図8に示されているように、間隔をおいて配置された二つの溝を接続する連絡用溝として形成される温度依存要素72と共に、間隔をおいて配置された二つの溝として形成されるプローブリード68、70を備えている。間隔をおいて配置された二つの溝は、金属、合金、半金属、縮退型半導体、または金属化合物のような導電材料を含む。連絡用溝は、(連絡用溝の断面が間隔をおいて配置された二つの溝より小さい場合)プローブリード68、70と同様の材料を含んでいてもよい。他の実施形態では、連絡用溝内の材料はプローブリード68、70の材料と異なる。
【0136】
この特殊な温度プローブを形成するための典型的な一方法は、間隔をおいて配置される二つの溝を形成した後、そこに金属または合金導電材料を充填することを含む。次に、連絡用溝を形成した後、望ましい材料を充填する。連絡用溝内の材料は、電気的接続を生じさせるため、間隔をおいて配置された二つの溝のそれぞれにおける導電材料と部分的に重なる。
【0137】
温度プローブ66を適切に作動させるには、二つのプローブリード68、70間に形成された導電材により、温度プローブ66の温度依存要素72を短絡させてはならない。更に、体内またはサンプル流体内のイオン種による二つのプローブリード68、70間の伝導を防ぐため、温度依存要素72と、好ましくは、プローブリード68、70の患者に埋め込まれる部分にカバーを設けてもよい。そのカバーは、例えば、イオン伝導を防ぐように、温度依存要素72およびプローブリード68、70上に配される非導電性フィルムであってもよい。適した非導電性フィルムとしては、例えば、カプトン(Kapton)(商標)ポリイミドフィルム(デュポン、ウィルミングトン、ディーイー)が挙げられる。
【0138】
体内またはサンプル流体中のイオン種による伝導を排除または減少させる別の方法は、プローブリード68、70に接続された交流電圧源を使用することである。この方法では、正および負のイオン種は、交流電圧の各半サイクル毎に交互に引き寄せられそして跳ね返される。これにより、温度プローブ66に対し、体内またはサンプル流体中のイオンの正味吸引は生じない。また、温度依存要素72を流れる交流電圧の最大振幅は、作用電極58からの測定値を補正するのに使用してもよい。
【0139】
温度プローブは、電極と同じ基板上に配置することができる。また、温度プローブは、別個の基板上に配置してもよい。更に、温度プローブは、それ自体で、または他の装置と共に使用してもよい。
【0140】
生体親和性層
図9に示されているように、任意のフィルム層75は、少なくともセンサ42の患者の皮下に挿入される部分上に形成される。この任意のフィルム層74は、一以上の機能を果たすことができる。フィルム層74は、大きな生体分子の電極への浸透を防ぐ。これは、排除されるべき生体分子よりも孔径の小さいフィルム層74を使用することにより実現される。そのような生体分子は、電極および/または感知層64を汚染することがあり、それによりセンサ42の有効性を低下させ、一定の分析物濃度に対し予想される信号振幅を変化させることがある。作用電極58の汚染により、センサ42の有効寿命が短縮されることもある。生体親和性層74は、タンパク質のセンサ42への付着、凝血塊の形成、およびセンサ42と身体間の他の望ましくない相互作用を防ぐこともできる。
【0141】
例えば、センサは、生体親和性コーティングでその外面を完全にまたは部分的に被覆されていてもよい。好ましい生体親和性コーティングは、分析物含有流体と平衡状態にある場合、少なくとも20重量%流体を含有するヒドロゲルである。適正なヒドロゲルの例は、米国特許第5,593,852号明細書に記載されており、これを参照し本明細書において援用する。適正なヒドロゲルの例としては、ポリエチレンオキシドテトラアクリレートのような架橋ポリエチレンオキシドが挙げられる。
【0142】
妨害物質排除層
センサ42には、妨害物質排除層(図示なし)が含まれていてもよい。妨害物質排除層は、生体親和性層75または物質移動制限層74(後述)に組入れても、別個の層であってもよい。妨害物質とは、直接、または電子移動剤を介して電極で電気還元または電気酸化され疑似信号を発生させる分子または他の種である。一実施形態では、フィルムまたは膜は、作用電極58の周辺領域への一以上の妨害物質の浸透を防ぐ。この種の妨害物質排除層は、分析物質に対するよりも妨害物質の一つ以上に対する透過性がかなり低いのが好ましい。
【0143】
妨害物質排除層は、イオン成分と同じ荷電を有するイオン性妨害物質に対する妨害物質排除層の透過性を低下させるため、ポリマ性マトリックスに組込まれたナフィオン(Nafion)(登録商標)のようなイオン成分を含んでいてもよい。例えば、負荷電化合物または負イオンを形成する化合物を妨害物質排除層に取り入れて、体内またはサンプル流体の負種の透過を減少させてもよい。
【0144】
妨害物質排除層の別の例は、妨害物質を除去する反応に触媒作用を及ぼす触媒を含む。そのような触媒の一例は、ペロキシダーゼである。過酸化水素は、アセトアミノフェン、尿酸塩、およびアスコルベートといった妨害物質と反応する。過酸化水素は、分析物含有流体に添加、または、例えば、それぞれグルコースオキシダーゼまたは乳酸オキシダーゼの存在の下、グルコースまたはラクテートの反応により原位置で生成され得る。妨害物質排除層の例としては、(a)架橋剤としてグルテルアルデヒド(gluteraldehyde)を用いて、(b)NaIO4でペルオキシダーゼ糖酵素のオリゴ糖基を酸化し、ポリアクリルアミドマトリックスのヒドラジド基に形成されたアルデヒドを結合させヒドラゾンを形成することにより架橋されたペルオキシダーゼ酵素が挙げられ、これは、米国特許第5,262,305号および第5,356,786号明細書に記載されており、それらを参照し本明細書において援用する。
【0145】
物質移動制限層
物質移動制限層74は、作用電極58周辺領域への、分析物、例えば、グルコースまたはラクテートの物質移動率を低下させるため、拡散制限バリヤとして機能するようにセンサに備えられていてもよい。分析物の拡散を制限することにより、作用電極58近傍での分析物の定常状態濃度(体内またはサンプル流体内の分析物濃度に比例する)を低下させることができる。これにより、正確に測定できる分析物濃度の上限が広がり、電流が分析物レベルと共に略直線的に増加する範囲も拡大される。
【0146】
フィルム層74を通る分析物の浸透性が、温度変化によって殆どまたは全く変化しないことにより、温度変化による電流の変化を減少させるかまたは排除するのが好ましい。このため、約25℃〜約40℃まで、また最も重要である、30℃〜40℃までの生体関連温度範囲において、フィルムの孔径もその水和性または膨張性も過度に変化しないことが好ましい。物質移動制限層は、24時間に吸収される流体が5重量%未満であるフィルムを用いて作製されるのが好ましい。これにより、温度プローブのあらゆる必要性を低下させるかまたは排除することが可能である。埋め込み可能なセンサにおいて、物質移動制限層は、37℃で24時間の間に吸収される流体が5重量%未満であるフィルムを使用して作製されるのが好ましい。
【0147】
フィルム層74に特に有用な材料は、センサがテストする分析物含有流体中で膨張しない膜である。適した膜は、直径3〜20,000nmの孔を有する。明確で均一な孔径と高アスペクト比を有する、直径5〜500nmの孔を備えた膜が好ましい。一実施形態では、孔のアスペクト比が2以上であるのが好ましく、より好ましくは5以上である。
【0148】
明確で均一な孔は、放射性核が放出する加速電子、イオン、または粒子を用いて、ポリマ膜を飛跡エッチングすることにより作製できる。最も好ましいのは、加熱時、孔の方向よりも孔に対して垂直な方向への膨張が少ない異方性で、ポリマ性の飛跡エッチングされた膜である。適したポリマー性膜としては、ポレティクス(Poretics)(リバーモア(Livermore)、シーエー(CA)、カタログ番号19401、0.01μm孔径ポリカーボネート膜)および、コーニンングコスター コーポレーション(Corning Costar Corp.)(ケンブリッジ(Cambridge)、エムエー(MA)、0.015μm孔径のヌークレオポア(Nucleopore)(商標)ブランド膜)のポリカーボネート膜が挙げられる。他のポリオレフィンおよびポリエステルフィルムを使用してもよい。物質移動制限膜の透過性の変化が、膜が皮下組織液中にある場合、30℃〜40℃の範囲内の1℃につき4%以下、好ましくは、3%以下、更に好ましくは2%以下であるのが好ましい。
【0149】
本発明に係る幾つかの実施形態において、物質移動制限層74は、センサ42内への酸素の流れを制限することもできる。これにより、酸素の分圧における変化が、センサの応答に非線形性を生じさせる状況において使用されるセンサ42の安定性を向上させることができる。これらの実施形態において、物質移動制限層74は、前記膜の分析物の移動制限と比較して、酸素の移動を少なくとも40%、好ましくは、少なくとも60%、および更に好ましくは、少なくとも80%制限する。一定のタイプのポリマでは、より高い密度(例えば、結晶性ポリマーに近い密度)を有するフィルムが好ましい。ポリエチレンテレフタレートのようなポリエステルの酸素に対する透過性は一般に低く、よって、ポリカーボネート膜よりも好ましい。
【0150】
抗凝固剤
埋め込み可能なセンサはまた、オプションとして、患者に埋め込まれる基板の部分に施された抗凝固剤を有していてもよい。この抗凝固剤は、特に、センサの挿入後、センサ周囲の血液または他の体液の凝固を減少させるか、または排除することができる。凝血塊は、センサを汚染したり、またはセンサ内に拡散する分析物の量を復元不可能に減少させる場合がある。有用な抗凝固剤の例としては、ヘパリンおよび組織プラスミノーゲン活性化因子(TPA)、および、他の公知の抗凝固剤が挙げられる。
【0151】
抗凝固剤は、センサ42の埋め込まれる部分の少なくとも一部に適用できる。抗凝固剤は、例えば、浴、スプレー、ブラッシング、または浸漬により適用できる。抗凝固剤は、センサ42上で乾燥させる。抗凝固剤は、センサの表面上に固定させるか、または、センサ表面から拡散させてもよい。一般に、センサ上に施される抗凝固剤の分量は、凝血を含む医学的症状の治療に一般に使用される量を遥かに下回り、よって、限定された局所的な効果しかもたない。
【0152】
センサの寿命
センサ42は、生体内または生体外分析物モニタ、および、特に埋め込み可能な分析物モニタの、交換可能な部品となるように設計することもできる。一般に、センサ42は数日間に渡って機能することができる。機能する期間は、少なくとも一日であるのが好ましく、更に好ましくは、少なくとも三日、最も好ましくは、少なくとも一週間である。また、センサ42は、取り除き、新しいセンサと交換することができる。センサ42の寿命は、電極の汚染、或いは、電子移動剤または触媒の浸出により短縮される場合がある。センサ42の耐用年数に関するこれらの制約は、上述したように、生体親和性層75、または浸出不可電子移動剤および触媒をそれぞれ使用することにより克服できる。
【0153】
センサ42の寿命に関する別の主な制約は、触媒の温度安定性である。多くの触媒は、環境温度に非常に敏感で、患者の体温(例えば、人体では約37℃)で品質が低下することのある酵素である。よって、入手可能な限りにおいて、丈夫な酵素を使用すべきである。センサ42は、十分な量の酵素が不活性化され、読取値に容認できない量のエラーが発生する場合、交換すべきである。
【0154】
本発明は、上述の具体例に限定されるものとみなされるべきではなく、むしろ、添付のクレームに適切に記載された発明の全態様をカバーするものと理解されるべきである。様々な改良体、同等の方法、また、本発明を適用できる多くの構造は、当明細書を見れば、本発明に関連する技術分野の当業者にとっては既に明白であろう。クレームはそのような改良体および装置をカバーすることを意図したものである。

【特許請求の範囲】
【請求項1】
柔軟なポリマ基板である柔軟な基板と、
作用電極を含むトレースを形成するために前記基板に配された導電性材料と、
前記作用電極の近傍に配された酵素とを含む皮下埋め込み可能電気化学センサであって、
作用電極と物質移動制限膜を含み、該物質移動制限膜が、30℃〜40℃の範囲の温度で1℃当たり3%未満の変化内に分析物の物質移動制限膜への浸透率を維持し、
前記膜の孔のサイズが直径3から20,000nmの範囲である、
ことを特徴とする電気化学センサ。
【請求項2】
柔軟な基板、ポリマ基板または柔軟なポリマ基板である基板と、
前記基板上に配された作用電極であって、導電性材料を含み、前記作用電極の少なくとも一部に沿った幅が150μm以下である作用電極と、
前記作用電極の近傍に配された酵素とを含む電気化学センサであって、
作用電極と物質移動制限膜を含み、該物質移動制限膜が、30℃〜40℃の範囲の温度で1℃当たり3%未満の変化内に分析物の物質移動制限膜への浸透率を維持し、
前記膜の孔のサイズが直径3から20,000nmの範囲である、
ことを特徴とする電気化学センサ。
【請求項3】
柔軟な基板、ポリマ基板または柔軟なポリマ基板基板である基板と、
複数のトレースを形成するために前記基板の表面に配され、前記トレースのうちの少なくとも1つが作用電極を形成している導電材料と、
前記作用電極の近傍に配された酵素とを含む電気化学センサであって、
前記複数の導電トレースが、
(a) 前記基板の表面上での間隔が、150μm以下であり、
(b) 前記基板の幅に沿って1つのトレースに667μmという密度以下で前記基板の
表面上に配されており、
作用電極と物質移動制限膜を含み、該物質移動制限膜が、30℃〜40℃の範囲の温度で1℃当たり3%未満の変化内に分析物の物質移動制限膜への浸透率を維持し、
前記膜の孔のサイズが直径3から20,000nmの範囲である、
ことを特徴とする電気化学センサ。
【請求項4】
少なくとも1つの対照電極をさらに含む請求項1〜3のいずれか一項に記載の電気化学
センサ。
【請求項5】
前記作用電極上に配され、浸出不可能な状態で前記作用電極上に配されている電子移動剤をさらに含む請求項1〜4のいずれか一項に記載の電気化学センサ。
【請求項6】
前記基板が平面である請求項1〜5のいずれか一項に記載の電気化学センサ。
【請求項7】
前記基板の表面が、広い部分と狭い部分とを含み、前記狭い部分は患者へ埋め込むように構成されており、幅が0.5mm以下である請求項1〜6のいずれか一項に記載の電気化学センサ。
【請求項8】
前記センサがグルコース濃度を決定するために構成され、前記酵素がオリゴ糖デヒドロゲナーゼ、PQQグルコースデヒドロゲナーゼまたはグルコースオキシダーゼである請求項1〜7のいずれか一項に記載の電気化学センサ。
【請求項9】
前記作用電極の少なくとも一部の上に配された物質移動制限層をさらに含む請求項1〜8のいずれか一項に記載の電気化学センサ。
【請求項10】
前記電気化学センサが、生体内操作用に構成されている請求項1〜9のいずれか一項に記載の電気化学センサ。
【請求項11】
前記電気化学センサが、生体外操作用に構成されている請求項1〜9のいずれか一項に記載の電気化学センサ。
【請求項12】
前記作用電極の少なくとも一部に沿った幅が、75μm以下である請求項1〜11のいずれか一項に記載の電気化学センサ。
【請求項13】
前記作用電極の隣に配された第2の電極をさらに含み、前記第2の電極と作用電極とが150μm以下の間隔で配されている請求項1〜12のいずれか一項に記載の電気化学センサ。
【請求項14】
流体中の分析物のレベルを測定する方法であって、
請求項1〜13いずれか一項に記載の電気化学センサと前記流体とを接触させる工程と、
前記分析物の存在に応じて前記センサに電気信号を生成する工程と、
前記電気信号から前記分析物のレベルを測定する工程とを含む方法。
【請求項15】
前記流体を電気化学センサに接触させる工程が、前記電気化学センサが動物の体液と接触するように、前記動物に前記電気化学センサの少なくとも一部を埋め込む工程を含む請求項14に記載の方法。
【請求項16】
前記動物に電気化学センサを埋め込む工程が、前記電気化学センサが前記動物の間質液と接触するように、前記動物に前記電気化学センサの少なくとも一部を皮下に埋め込む工程を含む請求項15に記載の方法。
【請求項17】
前記流体を電気化学センサに接触させる工程が、容積が1μL未満の体液のサンプルを接触させる工程を含む請求項14に記載の方法。
【請求項18】
動物の分析物のレベルを測定する方法であって、
請求項1〜3いずれか一項に記載のセンサの少なくとも一部を前記動物に埋め込む工程と、
前記分析物に応じて前記作用電極で信号を発生させる工程と、
前記信号を分析して前記分析物のレベルを測定する工程と、
前記分析物のレベルが、閾値を越えると、電流を生成し、前記動物の一部分に流すことによって前記動物に知らせる工程であって、前記電流は、前記導電トレースのうち2つの間に電位を加えることによって生成される工程とを含む方法。
【請求項19】
前記電流の範囲が、0.1〜1mAである請求項18に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−11208(P2012−11208A)
【公開日】平成24年1月19日(2012.1.19)
【国際特許分類】
【出願番号】特願2011−173021(P2011−173021)
【出願日】平成23年8月8日(2011.8.8)
【分割の表示】特願2000−534874(P2000−534874)の分割
【原出願日】平成11年1月21日(1999.1.21)
【出願人】(500211047)アボット ダイアベティス ケア インコーポレイテッド (43)
【氏名又は名称原語表記】ABBOTT DIABETES CARE INC.
【Fターム(参考)】