説明

電気式脱イオン水製造装置

【課題】吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質を向上させる電気式脱イオン水製造装置を提供すること。
【解決手段】連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体を脱イオン室に充填した電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆方向に泳動するように行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、脱イオン水を用いる半導体製造工業、製薬工業、食品工業、発電所、研究所等の各種の工業あるいは糖液、ジュース、ワイン等の製造等で利用される電気式脱イオン液製造装置に好適に使用される電気式脱イオン水製造装置に関するものである。
【背景技術】
【0002】
脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られているが、この方法ではイオン交換樹脂がイオンで飽和されたときに薬剤によって再生を行う必要があり、このような処理操作上の不利な点を解消するため、薬剤による再生が全く不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。
【0003】
特開2003−334560号公報には、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1ml/g〜50ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上の有機多孔質イオン交換体を充填した脱イオン室を有し、該脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆向きに泳動するように行う電気式脱イオン水製造装置が開示されている。
【0004】
この電気式脱イオン水製造装置によれば、多孔質イオン交換体内におけるイオンの移動を速めて吸着イオンの排除を容易にすることができる。また、脱イオン室を多数に分割して並列配設する必要がなく、装置の構造を簡略化して、材料費、加工費、組み立て費を軽減させることができる。また、炭酸カルシウムや水酸化マグネシウム等のスケール発生が全くなく、一次脱塩や軟化などの前処理を必要としない。更に、低電圧で安定した水質の処理水を得ることができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−334560号公報
【特許文献2】特開2009−62512号公報
【特許文献3】特開2009−67982号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特開2003−334560号公報に記載の有機多孔質イオン交換体は、モノリスの共通の開口(メソポア)が1〜1,000μmと記載されているものの、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。このため、通水時の圧力損失が大きいという問題があった。また、開口の平均径を20μm近傍のものにすると、全細孔容積もそれに伴い大きくなるため、体積当たりのイオン交換容量が低下し、このため、処理水質が低下し、かつ消費電力も大きいという問題があった。また、電気式脱イオン水製造装置の脱イオン室に装填されるモノリスにおいて、連続気泡構造(連続マクロポア)とは異なる新たな構造のモノリスの登場も望まれていた。
【0007】
従って、本発明の目的は、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ない電気式脱イオン水製造装置を提供することにある。
【課題を解決するための手段】
【0008】
かかる実情において、本発明者らは、鋭意検討を行った結果、特開2003−334560号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下、特定の条件下、ビニルモノマーと架橋剤を有機溶媒中で静置重合すれば、有機多孔質体を構成する骨格表面上に直径2〜20μmの多数の粒子体が固着する又は突起体が形成された複合構造を有するモノリスが得られること、この複合モノリスにイオン交換基を導入した複合モノリスイオン交換体は、電気式脱イオン水製造装置のイオン交換体として用いれば、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ないことなどを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体を充填した脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆方向に泳動するように行うことを特徴とする電気式脱イオン水製造装置を提供するものである。
【0010】
また、本発明は、一側のイオン交換膜と他側の陽イオン交換膜で区画される脱イオン室に陽イオン交換体を充填してなる脱陽イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側の陽イオン交換膜の外側に配設される陰極と、該脱陽イオン室中の他側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部とを有する電気式脱陽イオン水製造装置と、一側の陰イオン交換膜と他側のイオン交換膜で区画される脱イオン室に陰イオン交換体を充填してなる脱陰イオン室と、該一側の陰イオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、前記電気式脱陽イオン水製造装置の第1処理水集水部と連通管で接続される該脱陰イオン室中の一側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを有する電気式脱陰イオン水製造装置と、を備えるものであって、該陽イオン交換体及び該陰イオン交換体の中、少なくともひとつが、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上のモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン水製造装置を提供するものである。
【0011】
また、本発明は、一側の陽イオン交換膜と、該一側の陽イオン交換膜と他側の陰イオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に陽イオン交換体を充填してなる脱陽イオン室と、該他側の陰イオン交換膜と該中間陽イオン交換膜で区画される第2脱イオン室に陰イオン交換体を充填してなる脱陰イオン室と、該一側の陽イオン交換膜の外側に配設される陰極と、該他側の陰イオン交換膜の外側に配設される陽極と、該脱陽イオン室中の一側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の他側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の中間陽イオン交換膜近傍に配設される第2処理水集水部と、を備えるものであって、該陽イオン交換体及び該陰イオン交換体のいずれか一方又は両方が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上のモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン水製造装置を提供するものである。
【0012】
また、本発明は、一側のイオン交換膜と、該一側のイオン交換膜と他側のイオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に陽イオン交換体を充填してなる脱陽イオン室と、該中間陽イオン交換膜と、該中間陽イオン交換膜と他側のイオン交換膜の間に形成される中間陰イオン交換膜とで区画される濃縮室と、該他側のイオン交換膜と該中間陰イオン交換膜で区画される第2脱イオン室に陰イオン交換体を充填してなる脱陰イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の中間陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを備えるものであって、該陽イオン交換体及び該陰イオン交換体のいずれか一方又は両方が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上のモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン水製造装置を提供するものである。
【発明の効果】
【0013】
本発明によれば、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ない。
【図面の簡単な説明】
【0014】
【図1】参考例1で得られたモノリスの倍率100のSEM画像である。
【図2】参考例1で得られたモノリスの倍率300のSEM画像である。
【図3】参考例1で得られたモノリスの倍率3000のSEM画像である。
【図4】参考例1で得られたモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。
【図5】参考例1で得られたモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。
【図6】参考例2で得られたモノリスの倍率100のSEM画像である。
【図7】参考例2で得られたモノリスの倍率600のSEM画像である。
【図8】参考例2で得られたモノリスの倍率3000のSEM画像である。
【図9】参考例3で得られたモノリスの倍率600のSEM画像である。
【図10】参考例3で得られたモノリスの倍率3000のSEM画像である。
【図11】参考例4で得られたモノリスの倍率3000のSEM画像である。
【図12】参考例5で得られたモノリスの倍率100のSEM画像である。
【図13】参考例5で得られたモノリスの倍率3000のSEM画像である。
【図14】参考例6で得られたモノリスの倍率100のSEM画像である。
【図15】参考例6で得られたモノリスの倍率600のSEM画像である。
【図16】参考例6で得られたモノリスの倍率3000のSEM画像である。
【図17】本発明の第1の実施の形態例の電気式脱イオン水製造装置の構造を示す模式図である。
【図18】本発明の第2の実施の形態例の電気式脱イオン水製造装置の構造を示す模式図である。
【図19】本発明の第3の実施の形態例の電気式脱イオン水製造装置の構造を示す模式図である。
【図20】被処理水導入分配部又は処理水集水部となる多孔質イオン交換体表面の溝部を例示した図である。
【図21】突起体の模式的な断面図である。
【発明を実施するための形態】
【0015】
本発明の電気式脱イオン水製造装置は、特定構造の有機多孔質イオン交換体を充填した脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆向きに泳動するように行うものである。すなわち、本発明の電気式脱イオン水製造装置の基本構造は、両側のイオン交換膜で区画される脱イオン室に有機多孔質イオン交換体を充填して脱イオン室を構成し、当該イオン交換膜の外側に直流電場を印加する電極を配置してなり、該直流電場の印加を前述のような特定の態様で行うものである。また、本発明において、有機多孔質イオン交換体内における通水方向とは、特定の連続空孔構造を有する有機多孔質イオン交換体内における通水方向、すなわち、特定の連続空孔構造を有する有機多孔質イオン交換体内の通水方向に由来するイオンの平均拡散方向を言うものであり、後述するような、有機多孔質イオン交換体内に別途に配設又は加工される第1、第2被処理水導入分配部内や第1、第2処理水集水部内における通水方向を言うものではない。
【0016】
脱イオン室に充填される有機多孔質イオン交換体は、複合構造のモノリス状有機多孔質イオン交換体である。本明細書中、「モノリス状有機多孔質体」を単に「複合モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「複合モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。
【0017】
<複合モノリスイオン交換体の説明>
複合モノリスイオン交換体は、複合モノリスにイオン交換基を導入することで得られるものであり、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体との複合構造体であるか、又は連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であり、イオン交換基が該複合構造体中に均一に分布している。なお、本明細書中、「粒子体」及び「突起体」を併せて「粒子体等」と言うことがある。
【0018】
有機多孔質体の連続骨格相と連続空孔相(乾燥体)は、SEM画像により観察することができる。有機多孔質体の基本構造としては、連続マクロポア構造及び共連続構造が挙げられる。有機多孔質体の骨格相は、柱状の連続体、凹状の壁面の連続体あるいはこれらの複合体として表れるもので、粒子状や突起状とは明らかに相違する形状のものである。
【0019】
有機多孔質体の好ましい構造としては、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口となる連続マクロポア構造体(以下、「第1の有機多孔質イオン交換体」とも言う。)及び水湿潤状態で平均の太さが1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体(以下、「第2の有機多孔質イオン交換体」とも言う。)が挙げられる。
【0020】
第1の有機多孔質イオン交換体の場合、有機多孔質体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜150μmの開口(メソポア)となる連続マクロポア構造体である。複合モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、複合モノリス全体が膨潤するため、乾燥状態の複合モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。
【0021】
なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態の複合モノリスの空孔又は開口の平均直径及び乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、水銀圧入法により測定される値である。また、本発明では、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径は、乾燥状態の複合モノリスイオン交換体の空孔又は開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx1(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy1(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔又は開口の平均直径がz1(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の空孔又は開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔又は開口の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔又は開口の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。
【0022】
第2の有機多孔質体イオン交換体の場合、有機多孔質体は、水湿潤状態で平均直径が1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔を有する共連続構造である。三次元的に連続した空孔の直径が10μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と有機多孔質イオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一となるため好ましくない。
【0023】
上記共連続構造の空孔の水湿潤状態での平均直径は、公知の水銀圧入法で測定した乾燥状態の複合モノリスイオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx2(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy2(mm)であり、この乾燥状態の複合モノリスイオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、複合モノリスイオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「複合モノリスイオン交換体の空孔の水湿潤状態の平均直径(μm)=z2×(x2/y2)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの空孔の平均直径、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの空孔の平均直径に、膨潤率を乗じて、複合モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。また、上記共連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx3(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy3(mm)であり、この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態での平均太さ(μm)は、次式「複合モノリスイオン交換体の連続構造体の骨格の水湿潤状態の平均太さ(μm)=z3×(x3/y3)」で算出される。また、イオン交換基導入前の乾燥状態の複合モノリスの骨格の平均太さ、及びその乾燥状態の複合モノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率がわかる場合は、乾燥状態の複合モノリスの骨格の平均太さに、膨潤率を乗じて、複合モノリスイオン交換体の骨格の水湿潤状態の平均太さを算出することもできる。なお、共連続構造を形成する骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。
【0024】
また、三次元的に連続した骨格の平均直径が1μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、60μmを超えると、脱イオン特性の均一性が失われるため好ましくない。
【0025】
複合モノリスイオン交換体の水湿潤状態での孔の平均直径の好ましい値は10〜120μmである。複合モノリスイオン交換体を構成する有機多孔質体が第1の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は30〜120μm、複合モノリスイオン交換体を構成する有機多孔質体が第2の有機多孔質体の場合、複合モノリスイオン交換体の孔径の好ましい値は10〜90μmである。
【0026】
本発明に係る複合モノリスイオン交換体において、水湿潤状態での粒子体の直径及び突起体の大きさは、4〜40μm、好ましくは4〜30μm、特に好ましくは4〜20μmである。なお、本発明において、粒子体及び突起体は、共に骨格表面に突起状に観察されるものであり、粒状に観察されるものを粒子体と称し、粒状とは言えない突起状のものを突起体と称する。図21に、突起体の模式的な断面図を示す。図21中の(A)〜(E)に示すように、骨格表面61から突き出している突起状のものが突起体62であり、突起体62には、(A)に示す突起体62aのように粒状に近い形状のもの、(B)に示す突起体62bのように半球状のもの、(C)に示す突起体62cのように骨格表面の盛り上がりのようなもの等が挙げられる。また、他には、突起体61には、(D)に示す突起体62dのように、骨格表面61の平面方向よりも、骨格表面61に対して垂直方向の方が長い形状のものや、(E)に示す突起体62eのように、複数の方向に突起した形状のものもある。また、突起体の大きさは、SEM観察したときのSEM画像で判断され、個々の突起体のSEM画像での幅が最も大きくなる部分の長さを指す。
【0027】
本発明に係る複合モノリスイオン交換体において、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上、好ましくは80%以上である。なお、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合は、全粒子体等の個数に占める水湿潤状態で4〜40μmの粒子体等の個数割合を指す。また、骨格相の表面は全粒子体等により40%以上、好ましくは50%以上被覆されている。なお、粒子体等による骨格層の表面の被覆割合は、SEMにより表面観察にしたときのSEM画像上の面積割合、つまり、表面を平面視したときの面積割合を指す。壁面や骨格を被覆している粒子の大きさが上記範囲を逸脱すると、流体と複合モノリスイオン交換体の骨格表面及び骨格内部との接触効率を改善する効果が小さくなってしまうため好ましくない。なお、全粒子体等とは、水湿潤状態で4〜40μmの粒子体等以外の大きさの範囲の粒子体及び突起体も全て含めた、骨格層の表面に形成されている全ての粒子体及び突起体を指す。
【0028】
上記複合モノリスイオン交換体の骨格表面に付着した粒子体等の水湿潤状態での直径又は大きさは、乾燥状態の複合モノリスイオン交換体のSEM画像の観察により得られる粒子体等の直径又は大きさに、乾燥状態から湿潤状態となった際の膨潤率を乗じて算出した値、又はイオン交換基導入前の乾燥状態の複合モノリスのSEM画像の観察により得られる粒子体等の直径又は大きさに、イオン交換基導入前後の膨潤率を乗じて算出した値である。具体的には、水湿潤状態の複合モノリスイオン交換体の直径がx4(mm)であり、その水湿潤状態の複合モノリスイオン交換体を乾燥させ、得られる乾燥状態の複合モノリスイオン交換体の直径がy4(mm)であり、この乾燥状態の複合モノリスイオン交換体をSEM観察したときのSEM画像中の粒子体等の直径又は大きさがz4(μm)であったとすると、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)は、次式「水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ(μm)=z4×(x4/y4)」で算出される。そして、乾燥状態の複合モノリスイオン交換体のSEM画像中に観察される全ての粒子体等の直径又は大きさを測定して、その値を基に、1視野のSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出する。この乾燥状態の複合モノリスイオン交換体のSEM観察を少なくとも3回行い、全視野において、SEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出して、直径又は大きさが4〜40μmにある粒子体等が観察されるか否かを確認し、全視野において確認された場合、複合モノリスイオン交換体の骨格表面上に、直径又は大きさが水湿潤状態で4〜40μmにある粒子体が形成されていると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等の水湿潤状態での直径又は大きさを算出し、各視野毎に、全粒子体等に占める水湿潤状態で4〜40μmの粒子体等の割合を求め、全視野において、全粒子体等中の水湿潤状態で4〜40μmの粒子体等が占める割合が70%以上であった場合には、複合モノリスイオン交換体の骨格表面に形成されている全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合は70%以上であると判断する。また、上記に従って1視野毎にSEM画像中の全粒子体等による骨格層の表面の被覆割合を求め、全視野において、全粒子体等による骨格層の表面の被覆割合が40%以上であった場合には、複合モノリスイオン交換体の骨格層の表面が全粒子体等により被覆されている割合が40%以上であると判断する。また、イオン交換基導入前の乾燥状態の複合モノリスの粒子体等の直径又は大きさと、その乾燥状態のモノリスにイオン交換基導入したときの乾燥状態の複合モノリスに対する水湿潤状態の複合モノリスイオン交換体の膨潤率とがわかる場合は、乾燥状態の複合モノリスの粒子体等の直径又は大きさに、膨潤率を乗じて、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさを算出して、上記と同様にして、水湿潤状態の複合モノリスイオン交換体の粒子体等の直径又は大きさ、全粒子体等中、水湿潤状態で4〜40μmの粒子体等が占める割合、粒子体等による骨格層の表面の被覆割合を求めることもできる。
【0029】
粒子体等による骨格相表面の被覆率が40%未満であると、流体と複合モノリスイオン交換体の骨格内部及び骨格表面との接触効率を改善する効果が小さくなり、イオン交換挙動の均一性が損なわれてしまうため好ましくない。上記粒子体等による被覆率の測定方法としては、モノリス(乾燥体)のSEM画像による画像解析方法が挙げられる。
【0030】
また、複合モノリスイオン交換体の全細孔容積は、複合モノリスの全細孔容積と同様である。すなわち、複合モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格相が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。なお、複合モノリス(モノリス中間体、複合モノリス、複合モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。
【0031】
なお、複合モノリスイオン交換体に水を透過させた際の圧力損失は、複合モノリスに水を透過させた際の圧力損失と同様である。
【0032】
本発明の複合モノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.2mg当量/ml以上、好ましくは0.3〜1.8mg当量/mlのイオン交換容量を有する。体積当りのイオン交換容量が0.2mg当量/ml未満であると、脱塩効率が低下してしまうため好ましくない。なお、本発明の複合モノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が複合モノリスの骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格の表面のみに導入された有機多孔質体のイオン交換容量は、有機多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
【0033】
本発明の複合モノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。
【0034】
本発明の複合モノリスイオン交換体において、導入されたイオン交換基は、複合モノリスの骨格の表面のみならず、骨格相内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格相の表面および骨格相の内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、複合モノリスの表面のみならず、骨格相の内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
【0035】
本発明の複合モノリスイオン交換体は、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りのイオン交換容量が極端に低下してしまうため好ましくない。該複合モノリスイオン交換体の厚みは、好適には3mm〜1000mmである。また、本発明の複合モノリスイオン交換体は、骨格の基本構造が連続空孔構造であるため、機械的強度が高い。
【0036】
本発明の複合モノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下で重合を行うIII工程、III工程で得られたモノリス状有機多孔質体にイオン交換基を導入するIV工程、を行い、モノリス状有機多孔質体を製造する際に、下記(1)〜(5):
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である;
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である;
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである;
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである;
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である;の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程を行うことにより得られる。
【0037】
(モノリス中間体の製造方法)
本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、一分子中に少なくとも2個以上のビニル基を有する第1架橋剤、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜30ml/gの連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。
【0038】
イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。
【0039】
一分子中に少なくとも2個以上のビニル基を有する第1架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第1架橋剤は、機械的強度の高さから、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第1架橋剤の使用量は、ビニルモノマーと第1架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%、更に0.3〜3モル%であることが好ましい。第1架橋剤の使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。
【0040】
界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。
【0041】
また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。
【0042】
イオン交換基を含まない油溶性モノマー、第1架橋剤、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、第1架橋剤、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。
【0043】
I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、そのモノリス中間体の構造を鋳型として連続マクロポア構造の骨格相の表面に粒子体等が形成したり、共連続構造の骨格相の表面に粒子体等が形成したりする。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、10モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。
【0044】
モノリス中間体の全細孔容積は、5〜30ml/g、好適には6〜28ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が不均一になりやすく、場合によっては構造崩壊を引き起こすため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比(重量)を、概ね1:5〜1:35とすればよい。
【0045】
このモノマーと水との比を、概ね1:5〜1:20とすれば、モノリス中間体の全細孔容積が5〜16ml/gの連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第1の有機多孔質体のものが得られる。また、該配合比率を、概ね1:20〜1:35とすれば、モノリス中間体の全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のものが得られ、III工程を経て得られる複合モノリスの有機多孔質体が第2の有機多孔質体のものが得られる。
【0046】
また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜100μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、水の流路が均一に形成されにくくなるため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。
【0047】
(複合モノリスの製造方法)
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する第2架橋剤、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
【0048】
II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。
【0049】
これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格に粒子体を形成できず、イオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。
【0050】
II工程で用いられる第2架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。第2架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら第2架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい第2架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。第2架橋剤の使用量は、ビニルモノマーと第2架橋剤の合計量に対して0.3〜20モル%、特に0.3〜10モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、20モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。
【0051】
II工程で用いられる有機溶媒は、ビニルモノマーや第2架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が5〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が5重量%未満となると、重合速度が低下してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。
【0052】
重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと第2架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。
【0053】
III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下、重合を行い、複合モノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと第2架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の特定の骨格構造を有するモノリスが得られる。
【0054】
反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。
【0055】
III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、特定の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配しされ、モノリス中間体の骨格内で重合が進行する。
【0056】
重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等を用いたときには、不活性雰囲気下の密封容器内において、20〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該特定の骨格構造を形成させる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して特定骨格構造のモノリスを得る。
【0057】
上述の複合モノリスを製造する際に、下記(1)〜(5)の条件のうち、少なくとも一つを満たす条件下でII工程又はIII工程行うと、本発明の特徴的な構造である、骨格表面に粒子体等が形成された複合モノリスを製造することができる。
【0058】
(1)III工程における重合温度が、重合開始剤の10時間半減温度より、少なくとも5℃低い温度である。
(2)II工程で用いる第2架橋剤のモル%が、I工程で用いる第1架橋剤のモル%の2倍以上である。
(3)II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーである。
(4)II工程で用いる有機溶媒が、分子量200以上のポリエーテルである。
(5)II工程で用いるビニルモノマーの濃度が、II工程の混合物中、30重量%以下である。
【0059】
(上記(1)の説明)
10時間半減温度は重合開始剤の特性値であり、使用する重合開始剤が決まれば10時間半減温度を知ることができる。また、所望の10時間半減温度があれば、それに該当する重合開始剤を選択することができる。III工程において、重合温度を低下させることで、重合速度が低下し、骨格相の表面に粒子体等を形成させることができる。その理由は、モノリス中間体の骨格相の内部でのモノマー濃度低下が緩やかとなり、液相部からモノリス中間体へのモノマー分配速度が低下するため、余剰のモノマーがモノリス中間体の骨格層の表面近傍で濃縮され、その場で重合したためと考えられる。
【0060】
重合温度の好ましいものは、用いる重合開始剤の10時間半減温度より少なくとも10℃低い温度である。重合温度の下限値は特に限定されないが、温度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、重合温度を10時間半減温度に対して5〜20℃低い範囲に設定することが好ましい。
【0061】
((2)の説明)
II工程で用いる第2架橋剤のモル%を、I工程で用いる第1架橋剤のモル%の2倍以上に設定して重合すると、本発明の複合モノリスが得られる。その理由は、モノリス中間体と含浸重合によって生成したポリマーとの相溶性が低下し相分離が進行するため、含浸重合によって生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相表面に粒子体等の凹凸を形成したものと考えられる。なお、架橋剤のモル%は、架橋密度モル%であって、ビニルモノマーと架橋剤の合計量に対する架橋剤量(モル%)を言う。
【0062】
II工程で用いる第2架橋剤モル%の上限は特に制限されないが、第2架橋剤モル%が著しく大きくなると、重合後のモノリスにクラックが発生する、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。好ましい第2架橋剤モル%の倍数は2倍〜10倍である。一方、I工程で用いる第1架橋剤モル%をII工程で用いられる第2架橋剤モル%に対して2倍以上に設定しても、骨格相表面への粒子体等の形成は起こらず、本発明の複合モノリスは得られない。
【0063】
((3)の説明)
II工程で用いるビニルモノマーが、I工程で用いた油溶性モノマーとは異なる構造のビニルモノマーであると、本発明の複合モノリスが得られる。例えば、スチレンとビニルベンジルクロライドのように、ビニルモノマーの構造が僅かでも異なると、骨格相表面に粒子体等が形成された複合モノリスが生成する。一般に、僅かでも構造が異なる二種類のモノマーから得られる二種類のホモポリマーは互いに相溶しない。したがって、I工程で用いたモノリス中間体形成に用いたモノマーとは異なる構造のモノマー、すなわち、I工程で用いたモノリス中間体形成に用いたモノマー以外のモノマーをII工程で用いてIII工程で重合を行うと、II工程で用いたモノマーはモノリス中間体に均一に分配や含浸がされるものの、重合が進行してポリマーが生成すると、生成したポリマーはモノリス中間体とは相溶しないため、相分離が進行し、生成したポリマーはモノリス中間体の骨格相の表面近傍に排除され、骨格相の表面に粒子体等の凹凸を形成したものと考えられる。
【0064】
((4)の説明)
II工程で用いる有機溶媒が、分子量200以上のポリエーテルであると、本発明の複合モノリスが得られる。ポリエーテルはモノリス中間体との親和性が比較的高く、特に低分子量の環状ポリエーテルはポリスチレンの良溶媒、低分子量の鎖状ポリエーテルは良溶媒ではないがかなりの親和性を有している。しかし、ポリエーテルの分子量が大きくなると、モノリス中間体との親和性は劇的に低下し、モノリス中間体とほとんど親和性を示さなくなる。このような親和性に乏しい溶媒を有機溶媒に用いると、モノマーのモノリス中間体の骨格内部への拡散が阻害され、その結果、モノマーはモノリス中間体の骨格の表面近傍のみで重合するため、骨格相表面に粒子体等が形成され骨格表面に凹凸を形成したものと考えられる。
【0065】
ポリエーテルの分子量は、200以上であれば上限に特に制約はないが、あまりに高分子量であると、II工程で調製される混合物の粘度が高くなり、モノリス中間体内部への含浸が困難になるため好ましくない。好ましいポリエーテルの分子量は200〜100000、特に好ましくは200〜10000である。また、ポリエーテルの末端構造は、未修飾の水酸基であっても、メチル基やエチル基等のアルキル基でエーテル化されていてもよいし、酢酸、オレイン酸、ラウリン酸、ステアリン酸等でエステル化されていてもよい。
【0066】
((5)の説明)
II工程で用いるビニルモノマーの濃度が、II工程中の混合物中、30重量%以下であると、本発明の複合モノリスが得られる。II工程でモノマー濃度を低下させることで、重合速度が低下し、前記(1)と同様の理由で、骨格相表面に粒子体等が形成でき、骨格相表面に凹凸を形成されることができる。モノマー濃度の下限値は特に限定されないが、モノマー濃度が低下するほど重合速度が低下し、重合時間が実用上許容できないほど長くなってしまうため、モノマー濃度は10〜30重量%に設定することが好ましい。
【0067】
III工程で得られた複合モノリスは、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する多数の粒子体又は該有機多孔質体の骨格表面上に形成される多数の突起体との複合構造体である。有機多孔質体の連続骨格相と連続空孔相は、SEM画像により観察することができる。有機多孔質体の基本構造は、連続マクロポア構造か、共連続構造である。
【0068】
複合モノリスにおける連続マクロポア構造は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態での平均直径20〜100μmの開口となるものであり、複合モノリスにおける共連続構造体は、平均の太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に乾燥で平均直径が8〜80μmの三次元的に連続した空孔とからなるものである。
【0069】
IV工程は、III工程で得られた複合モノリスにイオン交換基を導入する工程である。この導入方法によれば、得られる複合モノリスイオン交換体の多孔構造を厳密にコントロールできる。
【0070】
上記複合モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;複合モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、複合モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;複合モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。
【0071】
本発明において、被処理水としては、脱イオン処理を目的とするものであり、濁質を含まないものであれば特に限定されないが、例えば、濁度1度程度以下の工業用水や市水などを挙げることができる。
【0072】
次に、本発明の第1の実施の形態における電気式脱イオン水製造装置を図17を参照して説明する。図17は本例の電気式脱イオン水製造装置の構造を示す模式図である。図17の電気式脱イオン水製造装置20Aは、被処理水から陽イオン性不純物を除去する電気式脱陽イオン水製造装置20aと、電気式脱陽イオン水製造装置20aの処理水から陰イオン性不純物を除去する電気式脱陰イオン水製造装置20bとからなるものである。電気式脱陽イオン水製造装置20aは、一側のイオン交換膜17と他側の陽イオン交換膜1で区画される脱イオン室に有機多孔質陽イオン交換体15を充填してなる脱陽イオン室6と、一側のイオン交換膜17の外側に配設される陽極10と、他側の陽イオン交換膜1の外側に配設される陰極9と、脱陽イオン室6中の他側の陽イオン交換膜1近傍に配設される第1被処理水導入分配部3aと、該脱陽イオン室6中の一側のイオン交換膜17近傍に配設される第1処理水集水部4aとを有するものである。すなわち、電気式脱陽イオン水製造装置20aの多孔質陽イオン交換体15内における通水方向は図17中の実線の矢印方向である下から上である。
【0073】
一方、電気式脱陰イオン水製造装置20bは、一側の陰イオン交換膜2と他側のイオン交換膜17で区画される脱イオン室に有機多孔質陰イオン交換体16を充填してなる脱陰イオン室7と、一側の陰イオン交換膜2の外側に配設される陽極10と、他側のイオン交換膜17の外側に配設される陰極9と、電気式脱陽イオン水製造装置20aの第1処理水集水部4aと連通管5aで接続される脱陰イオン室7中の一側の陰イオン交換膜2近傍に配設される第2被処理水導入分配部3bと、脱陰イオン室7中の他側のイオン交換膜17近傍に配設される第2処理水集水部4bとを有するものである。すなわち、電気式脱陽イオン水製造装置20bの多孔質陰イオン交換体16内における通水方向は図17中の実線の矢印方向である上から下である。
【0074】
本例の電気式脱陽イオン水製造装置20aの脱陽イオン室6に充填される有機多孔質陽イオン交換体15は、前述の複合構造の有機多孔質陽イオン交換体であり、電気式脱陰イオン水製造装置20bの脱陰イオン室7に充填される有機多孔質陰イオン交換体16は、前述の複合構造の有機多孔質陰イオン交換体である。また、脱陽イオン室6及び脱陰イオン室7の形状としては、排除されるイオンが、多孔質イオン交換体内の通水方向に対して逆方向に泳動するように電場を印加することができれば、特に制限されないが、例えば円柱状又は直方体状とすることが構成部材の製造のし易さ等の点から好適である。また、被処理水が移動する距離、即ち脱陽イオン室6及び脱陰イオン室7を構成する多孔質イオン交換体充填層の有効厚みは、20〜600mm、好ましくは30〜300mmとすることが、電気抵抗値や通水差圧を低い値に抑えつつ脱イオン処理を確実に行うことができる点で好適である。両側のイオン交換膜で区画される脱イオン室への有機多孔質イオン交換体の充填方法としては、特に制限されず、例えば脱イオン室に合わせた形状の多孔質イオン交換体を製造してそのまま充填してもよいし、また、複数に分割した層状の有機多孔質イオン交換体を積層して充填してもよい。
【0075】
電気式脱陽イオン水製造装置20Aにおいて、脱陽イオン室6に複合構造の有機多孔質陽イオン交換体15を充填した場合、脱陰イオン室7に公知の有機多孔質陰イオン交換体や粒状の陰イオン交換体樹脂を使用することができる。また、脱陰イオン室7に複合構造の有機多孔質陰イオン交換体16を充填した場合、脱陽イオン室6に公知の有機多孔質陽イオン交換体や粒状の陽イオン交換体樹脂を使用することができる。
【0076】
陽イオン交換膜としては、陽イオンのみを透過させ、その両側の水を隔離できるものであれば、特に限定されないが、例えばフッ素樹脂母体に-SO基を導入した強酸性陽イオン交換膜(例えばNafion 117やNafion 350(デュポン社製))及びスチレン−ジビニルベンゼン共重合体母体に-SO基を導入した強酸性陽イオン交換膜(例えばネオセプタ CMX(徳山曹達社製))等が挙げられる。陰イオン交換膜としては、陰イオンのみを透過させ、その両側の水を隔離できるものであれば、特に限定されないが、例えばフッ素樹脂母体に陰イオン交換基を導入した陰イオン交換膜(例えばTOSFLEX IE−SA、TOSFLEX IE−DF、TOSFLEX IE−SF(東ソー社製))及びスチレン−ジビニルベンゼン共重合体母体に陰イオン交換基を導入した陰イオン交換膜(例えばネオセプタ AMH(徳山曹達社製))等が挙げられる。また、本例の電気式脱イオン水製造装置20Aで用いるイオン交換膜17は、陽イオン交換膜又は陰イオン交換膜のいずれかを用いることができる。
【0077】
また、陰極9及び陽極10としては、金属、合金、金属酸化物、これらのいずれかを基板としてメッキまたはコーティングしたもの及び焼結炭素等の導電性材料を用いることができ、その形状としては、板状、パンチングメタル及びメッシュ状等のものを用いることができる。特に、陽極10の材質としては、例えばPt、Pd、Ir、β−PbO2、NiFe等が耐酸性に優れ、酸化され難い点で好適である。また、陰極9の材質としては、例えばPt、Pd、Au、炭素鋼、ステンレス、Ag、Cu、グラファイト、ガラス質カーボン等が耐アルカリ性に優れる点で好適である。
【0078】
電極とイオン交換膜の配置は、電極とイオン交換膜を直接接触させる配置とすることが、運転時の電圧を下げて消費電力を低減させることができる点で好適である。電極とイオン交換膜を直接接触させる場合、特に陽極側においては、フッ素樹脂母体のイオン交換膜を用いて、強い酸化作用によるイオン交換膜の劣化を防ぐ必要がある。フッ素樹脂母体以外のイオン交換膜を用いる場合は、ポリオレフィン製メッシュなどの不導体スペーサーを電極とイオン交換膜の間に挿入することが、電極とイオン交換膜の直接の接触を避け、イオン交換膜を劣化から保護することができる点で好適である。ただし、フッ素樹脂母体のイオン交換膜であっても、脱陰イオン室7の陽極側のように第4級アンモニウム基などの陰イオン交換基が導入された陰イオン交換膜2と陽極10が配設される場合は、ポリオレフィン製メッシュなどの不導体スペーサーを陽電極10と陰イオン交換膜2の間に挿入することが、陰イオン交換基の酸化を防止して、イオン交換膜を劣化から保護することができる点で好適である。
【0079】
電気式脱イオン水製造装置20Aにおいて、第1及び第2被処理水導入分配部3a、3b及び第1及び第2処理水集水部4a、4bとしては、例えば脱イオン室内に均等な被処理水の流れを形成せしめるように、脱イオン室形状に合わせて、配管に細孔を開けた分配管および集水管を同心円状や等間隔平行線状に多孔質イオン交換体内に埋設させる方法、及び多孔質イオン交換体の被処理水導入分配部と処理水集水部に溝を切り、多孔質イオン交換体そのものに被処理水分配及び処理水集水機能を持たせる方法が挙げられ、この中、多孔質イオン交換体そのものに被処理水分配及び処理水集水機能を持たせる方法が、別途の配管部材を用意することもなく簡単に作製することができる点で好適である。
【0080】
本例の電気式脱イオン水製造装置20Aにおいて、直流電流の配置形態としては、脱陽イオン室6と脱陰イオン室7の各室に個別の電源をおいて独立して通電する方法、又は単一の直流電源を用いて脱陽イオン室6と脱陰イオン室7を直列に接続して通電する方法が挙げられる。脱陽イオン室6と脱陰イオン室7を並列に接続して通電する方法は、一般に各脱イオン室の電気抵抗値が異なるため、脱イオン室間で通電電流値に差が生じ、吸着イオンの充分な排出を阻害する恐れがあるので好ましくない。
【0081】
本例の電気式脱イオン水製造装置20Aにおいて、直流電流の通電方法としては、イオン組成の変化などによって生じる多孔質イオン交換体の電気抵抗値の変動に合わせて自動的に電圧値を変動させる定電流運転が、流入するイオン負荷を電気的に効率的に排除することができる点で好ましい。必要電流値は、排除すべきイオン量、即ち被処理水の水質及び処理流量によって決定される。更に、断続運転の場合には、被処理水の水質や処理流量に加えて、通水時間と停止時間によっても必要電流値は異なる。このように、必要電流値は種々の条件によって変化するため、一概に決定することが困難であるが、電気式脱イオン水製造装置における電流効率に水質変動などを見越した安全率を加えた値と、次式で得られる必要最低電流値を乗じた値とすればよい。
【0082】
脱陽イオン室における必要最低電流値Imin(A)=McQF/(60×10);脱陰イオン室における必要最低電流値Imin(A)=MaQF/(60×10);式中、Mcは被処理水の全陽イオン(meq/l)、Maは全陰イオン(meq/l)、Qは処理流量(l/h)、Fはファラデー定数(C/mol)である。なお、電流効率とは電流がイオンの排除に使われる率であって、本発明の電気式脱イオン水製造装置では95〜100%である。
【0083】
また、本例の電気式脱イオン水製造装置20Aの運転方法としては、連続運転及び断続運転のいずれでもよく、例えば被処理水の装置への連続通水及び連続通電による連続運転方法及び被処理水の通水を一定時間停止し、その通水停止時間のみ又は通水停止時間と通水時間の双方で直流電流を通電する断続運転方法とすることもできる。
【0084】
電気式脱陽イオン水製造装置20aにおいて、被処理水は脱陽イオン室6の陰極9側から導入され、第1被処理水導入分配部3aによって多孔質陽イオン交換体15に均等に分配される。次いで、被処理水は多孔質陽イオン交換体15内において陽イオンX+を吸着除去されながら陽極10側へ移動し、酸性軟水となって第1処理水集水部4aによって集水され第1処理水として脱陽イオン室6から排出される。次いで、該酸性軟水は連通管5aによって脱陰イオン7室内の陽極10側に導入され、同様に第2被処理水導入分配部3bによって多孔質陰イオン交換体16に均等に分配される。次いで、被処理水である第1処理水は多孔質陰イオン交換体16内において陰イオンY-を吸着除去されながら陰極9側へ移動し、第2処理水集水部4bによって集水され第2処理水として脱陰イオン室7から排出される。
【0085】
一方、脱陽イオン室6で有機多孔質陽イオン交換体15に吸着された陽イオンXは、脱陽イオン室6の両端に配設された陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陰極9側の陽イオン交換膜1を通過して陰極室12へ排出される。同様に、脱陰イオン室7で有機多孔質陰イオン交換体16に吸着された陰イオンYは、脱陰イオン室7の両端に配設された陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陽極10側の陰イオン交換膜2を通過して陽極室13へ排出される。
【0086】
陰極室12に排出された不純物陽イオンは、電極室入口Cから流入し、電極室出口cから流出する電極水に取り込まれ系外に排出される。同様に陽極室13に排出された不純物陰イオンは、電極室入口Dから流入し、電極室出口dから流出する電極水に取り込まれ系外に排出される。電極水は被処理水の一部を分岐させて4つの電極室に独立に流してもよく、また、陽極水系及び陰極水系の2系統にそれぞれ流すようにしてもよい。また、電極水は常時流してもよく、断続的に適宜流してもよい。
【0087】
かかる操作により、多孔質イオン交換体内における吸着不純物イオンの濃度分布は、常に被処理水流入側において高く、流出側において低い。このため、処理水集水部4付近における多孔質イオン交換体はほぼ完全再生形が維持されるため、被処理水中の不純物イオンを低濃度まで吸着することが可能であり、高純度の脱イオン水を安定してユースポイント等に供給することができる。また、不純物陽イオンと不純物陰イオンは、それぞれ別個に装置外へ排出されるため、従来の電気式脱イオン水製造装置のように装置内において混合されることがなく、被処理水にカルシウムやマグネシウムなどの硬度成分が含まれた場合でも、装置内にスケールが発生することがない。
【0088】
なお、電気式脱イオン水製造装置20Aの通水方法として、上記以外に、例えば被処理水を電気式脱陰イオン水製造装置20bで処理し、次いで電気式脱陰イオン水製造装置20bの処理水を電気式脱陽イオン水製造装置20aで処理する方法を採ることができる。この方法は、軟水のようにカルシウム、マグネシウムなどの硬度成分を含まない被処理水に適用することができる。しかし、このような軟水以外の水を処理する場合は、被処理水の通水順序を脱陽イオン室6から脱陰イオン室7とすることが、通水順序を逆にした場合に起こりうる脱陰イオン室7内における硬度成分の析出を防止することができる点で好適である。
【0089】
次に、本発明の第2の実施の形態における電気式脱イオン水製造装置を図18を参照して説明する。図18は本例の電気式脱イオン水製造装置の構造を示す模式図である。図18において、図17と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。図18の電気式脱イオン水製造装置20Bにおいて図17と異なる点は、電極1組を省略して、1組の電極間に脱陽イオン室と脱陰イオン室を併設した点にある。すなわち、本例の電気式脱イオン水製造装置20Bは、一側の陽イオン交換膜1と、一側の陽イオン交換膜1と他側の陰イオン交換膜2の間に形成される中間陽イオン交換膜1とで区画される第1脱イオン室に有機多孔質陽イオン交換体15を充填してなる脱陽イオン室6と、他側の陰イオン交換膜2と中間陽イオン交換膜1で区画される第2脱イオン室に有機多孔質陰イオン交換体16を充填してなる脱陰イオン室7と、一側の陽イオン交換膜1の外側に配設される陰極9と、他側の陰イオン交換膜2の外側に配設される陽極10と、脱陽イオン室6中の一側の陽イオン交換膜1近傍に配設される第1被処理水導入分配部3aと、脱陽イオン室6中の中間陽イオン交換膜1近傍に配設される第1処理水集水部4aと、第1処理水集水部4aと連通管5bで接続される脱陰イオン室7中の他側の陰イオン交換膜2近傍に配設される第2被処理水導入分配部3bと、脱陰イオン室7中の中間陽イオン交換膜1近傍に配設される第2処理水集水部4bと、を備えるものである。
【0090】
なお、電気式脱陽イオン水製造装置20Bにおいて、脱陽イオン室6に複合構造の有機多孔質陽イオン交換体15を充填した場合、脱陰イオン室7に公知の有機多孔質陰イオン交換体や粒状の陰イオン交換体樹脂を使用することができる。また、脱陰イオン室7に複合構造の有機多孔質陰イオン交換体16を充填した場合、脱陽イオン室6に公知の有機多孔質陽イオン交換体や粒状の陽イオン交換体樹脂を使用することができる。
【0091】
電気式脱イオン水製造装置20Bにおいては、電気式脱イオン水製造装置20Aと同様、被処理水は脱陽イオン室6の陰極9側から導入され、第1被処理水導入分配部3aによって多孔質陽イオン交換体15に均等に分配される。次いで、被処理水は多孔質陽イオン交換体15内において陽イオンXを吸着除去されながら中間陽イオン交換膜1側へ移動し、酸性軟水となって第1処理水集水部4aによって集水され第1処理水として脱陽イオン室6から排出される。次いで、第1処理水は連通管5bによって脱陰イオン室7内の陽極10側に導入され、同様に第2被処理水導入分配部3bによって多孔質陰イオン交換体16に均等に分配される。次いで、被処理水である第1処理水は多孔質陰イオン交換体16内において陰イオンYを吸着除去されながら中間陽イオン交換膜1側へ移動し、第2処理水集水部4bによって集水され第2処理水として脱陰イオン室7から排出される。
【0092】
一方、脱陽イオン室6で有機多孔質陽イオン交換体15に吸着された陽イオンXは、該装置20Bの両端に配設された陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陰極9側の陽イオン交換膜1を通過して陰極室12へ排出される。同様に、脱陰イオン室7で有機多孔質陰イオン交換体16に吸着された陰イオンYは、同様に陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陽極10側の陰イオン交換膜2を通過して陽極室13へ排出される。第2の実施の形態例の電気式脱イオン水製造装置20Bによれば、第1の実施の形態例の電気式脱イオン水製造装置20Aと同様の効果を奏する他、電極1組を省略して装置の小型化、簡素化を図ることができる。
【0093】
次に、本発明の第3の実施の形態における電気式脱イオン水製造装置を図19を参照して説明する。図19は本例の電気式脱イオン水製造装置の構造を示す模式図である。図19において、図17と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。図19の電気式脱イオン水製造装置20Cにおいて図17と異なる点は、電極1組を省略して、1組の電極間に脱陽イオン室と脱陰イオン室を併設すると共に、排除するイオンを中央に設けた濃縮室に集める構造とした点にある。すなわち、本例の電気式脱イオン水製造装置20Cは、一側のイオン交換膜17と、一側のイオン交換膜17と他側のイオン交換膜17の間に形成される中間陽イオン交換膜1とで区画される第1脱イオン室に有機多孔質陽イオン交換体15を充填してなる脱陽イオン室6と、中間陽イオン交換膜1と、中間陽イオン交換膜1と他側のイオン交換膜17の間に形成される中間陰イオン交換膜2とで区画される濃縮室11と、他側のイオン交換膜17と中間陰イオン交換膜2で区画される第2脱イオン室に有機多孔質陰イオン交換体16を充填してなる脱陰イオン室7と、一側のイオン交換膜17の外側に配設される陽極10と、他側のイオン交換膜17の外側に配設される陰極9と、脱陽イオン室6中の中間陽イオン交換膜1近傍に配設される第1被処理水導入分配部3aと、脱陽イオン室6中の一側のイオン交換膜17近傍に配設される第1処理水集水部4aと、第1処理水集水部4aと連通管5bで接続される脱陰イオン室7中の中間陰イオン交換膜2近傍に配設される第2被処理水導入分配部3bと、脱陰イオン室7中の他側のイオン交換膜17近傍に配設される第2処理水集水部4bとを備えるものである。
【0094】
なお、電気式脱陽イオン水製造装置20Cにおいて、脱陽イオン室6に複合構造の有機多孔質陽イオン交換体15を充填した場合、脱陰イオン室7に公知の有機多孔質陰イオン交換体や粒状の陰イオン交換体樹脂を使用することができる。また、脱陰イオン室7に複合構造の有機多孔質陰イオン交換体16を充填した場合、脱陽イオン室6に公知の有機多孔質陽イオン交換体や粒状の陽イオン交換体樹脂を使用することができる。
【0095】
本例の電気式脱イオン水製造装置20Cにおいて、脱陽イオン室6における被処理水の通水方向は中央の濃縮室11側から陽極10側に向かう方向であり、排除される陽イオンXはその逆方向である。また、脱陰イオン室7における被処理水の通水方向は中央の濃縮室11側から陰極9側に向かう方向であり、排除される陰イオンYはその逆方向である。濃縮室11に流入した不純物イオンは、濃縮室入口Bから流入し、濃縮室出口bから流出する濃縮水に取り込まれて系外に排出される。濃縮室11を流れる濃縮水は、例えば被処理水の一部が使用できる。電気式脱イオン水製造装置20Cによれば、電気式脱イオン水製造装置20Bと同様の効果を奏することができる。しかし、カルシウムイオンやマグネシウムイオン等の陽イオンと炭酸イオン等の陰イオンが濃縮室11内で混合されるため、濃縮室11内の陰イオン交換膜2面にスケールが発生する恐れがある。従って、電気式脱イオン水製造装置20Cの前段部分に、軟化や一次脱塩などを行う前処理手段を設置することが望ましい。
【0096】
本発明の電気式脱イオン水製造装置においては、電極反応によって、陽極において酸素及び塩素などのガスが少量生成し、陰極において水素などのガスが少量生成する。このため、各電極室又は電極水配管の途中には、気液分離手段と排ガス配管を設け、常時または断続的に生成ガスを排出し、更に、ガスの種類に応じた適正な処理を経て系外に放出する。また、同様に電極反応によって、特に陰極でカルシウム等の金属が析出することがある。この場合、一定運転時間毎に電極の極性を反転させる方法、電極水配管に1mol/l程度の硝酸などの酸を通液して酸洗浄を行う方法又はこれらを複合させた方法により、電極機能を維持することが好適である。
【0097】
本発明の電気式脱イオン水製造装置は、従来のイオン交換装置と同様の応用や組み合わせが可能であり、例えば、脱陽イオン室のみを用いて軟化装置としたり、後段に混床式イオン交換器を付けて、更に処理水質の高純度化を図ることなどができる。
【0098】
(実施例)
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって本発明を制限するものではない。
【0099】
参考例1
(I工程;モノリス中間体の製造)
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は15.8ml/gであった。
【0100】
(複合モノリスの製造)
次いで、スチレン36.0g、ジビニルベンゼン4.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は6.6モル%であり、架橋密度比は5.1倍であった。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、3.2g分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
【0101】
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1〜図3に示す。図1〜図3のSEM画像は、倍率が異なるものであり、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1〜図3から明らかなように、当該複合モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径4μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は80%であった。また、粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%であった。
【0102】
また、水銀圧入法により測定した当該複合モノリスの開口の平均直径は16μm、全細孔容積は2.3ml/gであった。その結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、有機溶媒、I工程で得られたモノリス中間体を示す。また、粒子体等は粒子で示した。
【0103】
(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は19.6gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸98.9gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して複合モノリスカチオン交換体を得た。
【0104】
得られたカチオン交換体の反応前後の膨潤率は1.3倍であり、体積当りのイオン交換容量は、水湿潤状態で1.11mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ21μmであり、同様の方法で求めた被覆粒子の平均粒径は5μmであった。なお、全粒子体等による骨格表面の粒子被覆率は80%、全細孔容積は2.3ml/gであった。また、粒径4〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.057MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、イオン交換帯長さは9mmであり、著しく短い値を示した。結果を表2にまとめて示す。
【0105】
次に、複合モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。
【0106】
参考例2〜5
(複合モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度と使用量及び重合温度を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図6〜図13に示す。図6〜図8は参考例2、図9及び図10は参考例3、図11は参考例4、図12及び図13は参考例5のものである。なお、参考例2については架橋密度比(2.5倍)、参考例3については有機溶媒の種類(PEG;分子量400)、参考例4についてはビニルモノマー濃度(28.0%)、参考例5については重合温度(40℃;重合開始剤の10時間半減温度より11℃低い)について、本発明の製造条件を満たす条件で製造した。図6〜図13から参考例3〜5の複合モノリスの骨格表面に付着しているものは粒子体というよりは突起体であった。突起体の「粒子平均径」は突起体の大きさ(最大径)の平均径である。図6〜図13及び表2から、参考例2〜6のモノリス骨格表面に付着している粒子の平均径は3〜8μm、全粒子体等による骨格表面の粒子被覆率は50〜95%であった。また、参考例2が粒径3〜6μmの粒子体が全体の粒子体に占める割合は80%、参考例3が粒径3〜10μmの突起体が全体の粒子体に占める割合は80%、参考例4が粒径3〜5μmの粒子体が全体の粒子体に占める割合は90%、参考例5が粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。
【0107】
(複合モノリスカチオン交換体の製造)
上記の方法で製造した複合モノリスを、それぞれ参考例1と同様の方法でクロロ硫酸と反応させ、複合モノリスカチオン交換体を製造した。その結果を表2に示す。参考例2〜5における複合モノリスカチオン交換体の連続細孔の平均直径は21〜52μmであり、骨格表面に付着している粒子体等の平均径は5〜13μm、全粒子体等による骨格表面の粒子被覆率も50〜95%と高く、差圧係数も0.010〜0.057MPa/m・LVと小さい上に、イオン交換帯長さも8〜12mmと著しく小さな値であった。また、粒径5〜10μmの粒子体が全体の粒子体に占める割合は90%であった。
【0108】
参考例6
(複合モノリスの製造)
ビニルモノマーの種類とその使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。また、複合モノリス(乾燥体)の内部構造を、SEMにより観察した結果を図14〜図16に示す。参考例6の複合モノリスの骨格表面に付着しているものは突起体であった。参考例6のモノリスは、表面に形成された突起体の最大径の平均径が10μmであり、全粒子体等による骨格表面の粒子被覆率は100%であった。また、粒径6〜12μmの粒子体が全体の粒子体に占める割合は80%であった。
【0109】
(複合モノリスアニオン交換体の製造)
上記の方法で製造した複合モノリスを、外径70mm、厚み約15mmの円盤状に切断した。複合モノリスの重量は17.9gであった。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液114.5gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、メタノールで洗浄してテトラヒドロフランを除き、更に純水で洗浄してモノリスアニオン交換体を得た。
【0110】
得られた複合アニオン交換体の反応前後の膨潤率は2.0倍であり、体積当りのイオン交換容量は、水湿潤状態で0.32mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の連続細孔の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ58μmであり、同様の方法で求めた突起体の平均径は20μm、全粒子体等による骨格表面の粒子被覆率は100%、全細孔容積は2.1ml/gであった。また、イオン交換帯長さは16mmと非常に短い値を示した。なお、水を透過させた際の圧力損失の指標である差圧係数は、0.041MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。また、粒径12〜24μmの粒子体が全体の粒子体に占める割合は80%であった。その結果を表2にまとめて示す。
【0111】
次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。
【0112】
参考例7
(モノリス中間体の製造)
参考例1と同様の方法で行いモノリス中間体を得た。
【0113】
(複合モノリスの製造)
スチレン38.0g、ジビニルベンゼン2.0g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた(II工程)。重合開始剤として用いた2,2’-アゾビス(2,4-ジメチルバレロニトリル)の10時間半減温度は、51℃であった。モノリス中間体の架橋密度1.3モル%に対して、II工程で用いたスチレンとジビニルベンゼンの合計量に対するジビニルベンゼンの使用量は3.3モル%であり、架橋密度比は2.5倍であった。次に上記モノリス中間体を直径70mm、厚さ約30mmの円盤状に切断して3.3gを分取した。分取したモノリス中間体を内径73mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
【0114】
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した。当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格相の表面は、平均粒子径5μmの粒子体で被覆され、全粒子体等による骨格表面の粒子被覆率は50%であった。また、粒径3〜7μmの粒子体が全体の粒子体に占める割合は90%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は35μm、全細孔容積は3.8ml/gであった。
【0115】
(複合モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
【0116】
得られたモノリスアニオン交換体の反応前後の膨潤率は1.5倍であり、体積当りのアニオン交換容量は水湿潤状態で0.72mg当量/mlであった。水湿潤状態でのモノリスアニオン交換体の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ53μmであり、同様の方法で求めた被覆粒子の平均粒径は8μmであった。なお、全粒子体等による骨格表面の粒子被覆率は50%、全細孔容積は3.8ml/gであった。また、粒径4〜8μmの粒子体が全体の粒子体に占める割合は90%であった。
【0117】
また、水を透過させた際の圧力損失の指標である差圧係数は、0.017MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは14mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短かった。
【0118】
次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。
【0119】
参考例8
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、不図示のSEM写真から骨格表面には粒子体や突起体の形成は全く認められなかった。表1及び表2から、本発明の特定の製造条件と逸脱する条件、すなわち、上記(1)〜(5)の要件から逸脱した条件下でモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
【0120】
(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、参考例1と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは26mmであり、参考例1〜7と比較して大きな値であった。
【0121】
参考例9〜11
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の種類と使用量、III工程で重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、参考例9については架橋密度比(0.2倍)、参考例10については有機溶媒の種類(2-(2-メトキシエトキシ)エタノール;分子量120)、参考例11については重合温度(50℃;重合開始剤の10時間半減温度より1℃低い)について、本発明の製造条件を満たさない条件で製造した。結果を表2に示す。参考例9、11のモノリスについては骨格表面での粒子生成はなかった。また、参考例10では単離した生成物は透明であり、多孔構造が崩壊、消失していた。
【0122】
(モノリスカチオン交換体の製造)
参考例10を除き、上記の方法で製造した有機多孔質体を、参考例8と同様の方法でクロロ硫酸と反応させ、モノリスカチオン交換体を製造した。その結果を表2に示す。得られたモノリスカチオン交換体のイオン交換帯長さは23〜26mmであり、参考例1〜7と比較して大きな値であった。
【0123】
参考例12
(モノリスの製造)
ビニルモノマーの使用量、架橋剤の使用量、有機溶媒の使用量、III工程で重合時に共存させるモノリス中間体の多孔構造および使用量を表1に示す配合量に変更した以外は、参考例8と同様の方法でモノリスを製造した。その結果を表1及び表2に示すが、本発明の特定の製造条件を逸脱してモノリスを製造すると、モノリス骨格表面での粒子生成が認められないことがわかる。
【0124】
(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。結果を表2に示が、得られたモノリスアニオン交換体のイオン交換帯長さは47mmであり、参考例1〜7と比較して大きな値であった。表1及び2中、メソポア直径及び細孔の値はそれぞれ平均値を示す。
【0125】
参考例13
(多孔質カチオン交換体(公知)の製造)
スチレン27.7g、ジビニルベンゼン6.9g、アゾビスイソブチロニトリル0.14g及びソルビタンモノオレエート3.8gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を450mlの純水に添加し、ホモジナイザーを用いて2万回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、油中水滴型エマルジョンをステンレス製のオートクレーブに移し、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した後、40℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を14モル%含有した多孔質体5gを分取し、テトラクロロエタン500gを加え、60℃で30分加熱した後、室温まで冷却し、クロロ硫酸25gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗、乾燥して多孔質カチオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.0mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、不図示のSEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm、全細孔容積は、10.1ml/gであった。また、上記多孔質体を10mmの厚みに切り出し、水透過速度を測定したところ、14,000l/分・m・MPaであった。
【0126】
参考例14
(多孔質アニオン交換体(公知)の製造)
スチレン27.7gの代わりに、p- クロロメチルスチレン18.0gを用い、ジビニルベンゼン17.3g、アゾビスイソブチロニトリル0.26gとした以外、実施例1と同様の油中水滴型エマルジョンの重合を行い、p−クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋成分を50モル%含有した多孔質体を製造した。この多孔質体5gを分取し、ジオキサン500gを加え80℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液65gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して多孔質アニオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で2.5mg当量/gであり、SIMSにより、トリメチルアンモニウム基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は4μm、全細孔容積は9.9ml/gであった。また、上記多孔質体を10mmの厚みに切り出し、水透過速度を測定したところ、12,000l/分・m・MPaであった。
【実施例1】
【0127】
(電気式脱陽イオン水製造装置Aの作製)
図17に示すような電気式脱イオン水製造装置20Aを作製するため、先ず電気式脱陽イオン水製造装置20aを作製した。参考例2の多孔質陽イオン交換体から、純水湿潤状態で縦100mm、横100mm、厚さ10mmの直方体5個と、縦100mm、横100mm、厚さ5mmの直方体2個を切り出して脱イオン室に積層充填する充填材を得た。次いで、厚さ5mmの充填材2個と、厚さ10mmの充填材2個の片面に、図20に示したような間隔(w)10mm、幅(s)2mmの複数条の縦溝21、縦溝21の一端を繋げる横溝22、横溝22と不図示の外部配管に繋げる導入溝23を切削加工により形成した。次いで厚さ5mmの充填材を溝部24が装置内部を向くように配置して最上部及び最下部とし、その間に厚さ10mmの充填材5個を積層した。このとき、厚さ10mmの充填材の中、上部と下部の充填材はその溝部24が厚さ5mmの充填材の溝部24と向き合うように配置し、被処理水導入分配部3及び処理水集水部4を形成した。このように作製されたブロック状多孔質陽イオン交換体15は、縦100mm、横100mm、全充填層高60mmであり、被処理水導入分配部3の中心から処理水集水部4の中心までの高さ、即ち有効イオン交換体層高が50mmであった。次いで、ブロック状多孔質陽イオン交換体15の他側に陽イオン交換膜(Nafion 350;デュポン社製)を、一側に陽イオン交換膜(Nafion 350;デュポン社製)をそれぞれ密着させて配設した。更に、陽イオン交換膜の外側面に白金メッシュ状の陽極10を、陽イオン交換膜の外側面に白金メッシュ状の陰極9を配置した。得られた構造体を、適宜ノズルやリード線取り出し口を有するポリ塩化ビニル製のケース内に構築し、電気式脱陽イオン水製造装置20aを作製した。
【0128】
(電気式脱陰イオン水製造装置Aの作製)
参考例7の多孔質陰イオン交換体について、前記と同様の方法により充填材を得ると共に、被処理水導入分配部3及び処理水集水部4を形成してブロック状多孔質陰イオン交換体16を得た。次いで、ブロック状多孔質陰イオン交換体16の一側に陰イオン交換膜2(ネオセプタ AMH;徳山曹達社製)を、他側に陽イオン交換膜(Nafion 350;デュポン社製)をそれぞれ密着させて配設した。更に、陰イオン交換膜2の外側面に白金メッシュ状の陽極10を、陽イオン交換膜の外側面に白金メッシュ状の陰極9を配置した。なお、陽極10と陰イオン交換膜2の間にはポリテトラフロロエチレン製メッシュを介在させた。得られた構造体を、適宜ノズルやリード線取り出し口を有するポリ塩化ビニル製のケース内に構築し、電気式脱陰イオン水製造装置20bを作製した。
【0129】
(電気式脱イオン水製造装置Aの作製)
得られた電気式脱陽イオン水製造装置20aの処理水集水部4の開口と電気式脱陰イオン水製造装置20bの被処理水導入分配部3の開口を連通管5aで接続し、4つの電極室には被処理水の一部を独立して供給するようにした。また、電源として直流電源1個を用い、脱陽イオン室と脱陰イオン室が直列に接続されるように配線して、電気式脱イオン水製造装置20Aを得た。
【0130】
(電気式脱イオン水製造装置Aの運転)
得られた電気式脱イオン水製造装置A(図の符号では20A)に、導電率120μS/cmの市水を被処理水として流速100l/hで連続通水し、4.5Aの直流電流を通電したところ、操作電圧は26Vで、導電率0.055μS/cmの処理水が得られ、本発明の電気式脱イオン水製造装置によって純度の高い純水が生成されることが示された。また、通水差圧は16.0kPaであった。
【0131】
比較例1
(電気式脱陽イオン水製造装置Bの作製)
参考例2の多孔質陽イオン交換体に代えて、参考例13の多孔質陽イオン交換体を用いたこと以外は、電気式脱陽イオン水製造装置Aの作製方法と同様の方法により、電気式脱陽イオン水製造装置Bを作製した。
【0132】
(電気式脱陰イオン水製造装置Bの作製)
参考例7の多孔質陰イオン交換体に代えて、参考例14の多孔質陰イオン交換体を用いたこと以外は、電気式脱陰イオン水製造装置Aの作製方法と同様の方法で、電気式脱陰イオン水製造装置Bを作製した。
【0133】
(電気式脱イオン水製造装置Bの作製)
電気式脱陽イオン水製造装置20aとして、電気式脱陽イオン水製造装置Bを使用し、電気式脱陰イオン水製造装置20bとして、電気式脱陰イオン水製造装置Bを使用した以外は、電気式脱イオン水製造装置Aと同様の方法により、電気式脱イオン水製造装置Bを作製した。
【0134】
(電気式脱イオン水製造装置Bの運転)
得られた電気式脱イオン水製造装置B(図の符号では20A)に、導電率120μS/cmの市水を被処理水として流速100l/hで連続通水し、4.5Aの直流電流を通電したところ、操作電圧は36Vで、導電率0.1μS/cmの処理水が得られ、本発明の電気式脱イオン水製造装置によって純度の高い純水が生成されることが示された。また、通水差圧は120kPaであった。
【0135】
【表1】

【0136】
【表2】

【符号の説明】
【0137】
1、101 陽イオン交換膜
2、102 陰イオン交換膜
3a、3b 第1、第2被処理水導入分配部
4a、4b 第1、第2処理水集水部
5a、5b 連通管
6 脱陽イオン室
7 脱陰イオン室
9、109 陰極
10、110 陽極
11、105 濃縮室
12、112 陰極室
13、113 陽極室
15 多孔質陽イオン交換体
16 多孔質陰イオン交換体
17、117 陽イオン交換膜、または陰イオン交換膜
20A〜20C 電気式脱イオン水製造装置
24 溝部
104 脱イオン室
106 脱イオンモジュール
107 枠体
108 リブ
111 仕切膜
B 濃縮水流入口
b 濃縮水流出口
C、D 電極水流入口
c、d 電極水流出口

【特許請求の範囲】
【請求項1】
連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上であるモノリス状有機多孔質イオン交換体を充填した脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆方向に泳動するように行うことを特徴とする電気式脱イオン水製造装置。
【請求項2】
一側のイオン交換膜と他側の陽イオン交換膜で区画される脱イオン室に陽イオン交換体を充填してなる脱陽イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側の陽イオン交換膜の外側に配設される陰極と、該脱陽イオン室中の他側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部とを有する電気式脱陽イオン水製造装置と、一側の陰イオン交換膜と他側のイオン交換膜で区画される脱イオン室に陰イオン交換体を充填してなる脱陰イオン室と、該一側の陰イオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、前記電気式脱陽イオン水製造装置の第1処理水集水部と連通管で接続される該脱陰イオン室中の一側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを有する電気式脱陰イオン水製造装置と、を備えるものであって、
該陽イオン交換体及び該陰イオン交換体の中、少なくともひとつが、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上のモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン水製造装置。
【請求項3】
一側の陽イオン交換膜と、該一側の陽イオン交換膜と他側の陰イオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に陽イオン交換体を充填してなる脱陽イオン室と、該他側の陰イオン交換膜と該中間陽イオン交換膜で区画される第2脱イオン室に陰イオン交換体を充填してなる脱陰イオン室と、該一側の陽イオン交換膜の外側に配設される陰極と、該他側の陰イオン交換膜の外側に配設される陽極と、該脱陽イオン室中の一側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の他側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の中間陽イオン交換膜近傍に配設される第2処理水集水部と、を備えるものであって、
該陽イオン交換体及び該陰イオン交換体のいずれか一方又は両方が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上のモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン水製造装置。
【請求項4】
一側のイオン交換膜と、該一側のイオン交換膜と他側のイオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に陽イオン交換体を充填してなる脱陽イオン室と、該中間陽イオン交換膜と、該中間陽イオン交換膜と他側のイオン交換膜の間に形成される中間陰イオン交換膜とで区画される濃縮室と、該他側のイオン交換膜と該中間陰イオン交換膜で区画される第2脱イオン室に陰イオン交換体を充填してなる脱陰イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の中間陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを備えるものであって、
該陽イオン交換体及び該陰イオン交換体のいずれか一方又は両方が、連続骨格相と連続空孔相からなる有機多孔質体と、該有機多孔質体の骨格表面に固着する直径4〜40μmの多数の粒子体又は該有機多孔質体の骨格表面上に形成される大きさが4〜40μmの多数の突起体との複合構造体であって、水湿潤状態で孔の平均直径10〜150μm、全細孔容積0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.2mg当量/ml以上のモノリス状有機多孔質イオン交換体であることを特徴とする電気式脱イオン水製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図5】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図4】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2010−264361(P2010−264361A)
【公開日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2009−116470(P2009−116470)
【出願日】平成21年5月13日(2009.5.13)
【出願人】(000004400)オルガノ株式会社 (606)
【Fターム(参考)】