説明

電源内蔵型小型液体処理システム

液体処理システム(2804)は、水力発電システムによって電力供給される電源内蔵型のシステムである。液体処理システムは、第1の流路に配置されたフィルタ(2972)、紫外線光源(2984)、水力発電機(2804)を含む。第1の通路によって、処理液体が該液体処理システム(2804)の第1出口(2816)に提供されるようにできる。液体処理システムに含まれた第2流路によって、未処理液体が該液体処理システム(2804)の第1出口(2818)に提供されるようにできる。第1と第2の流路は、ハウジング(2808)内に配設することができ、液体処理システム(2804)のユーザが切換機構によって選択するようにできる。ハウジング(2808)は、水栓(2802)の端部に取付けるようにできる。紫外線光源(2584)によって使用するための電力は水力発電機(2992)によって生成することができよう。プロセッサが、電力を監視し、水力発電機の回転速度が所定範囲に入ったときに、前記電力によって紫外線光源を励起するようにできる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は概略的に液体処理システムに関し、より詳細には、当該液体処理システムに含まれている小型水力発電システムによって自己電力供給(self-powered)される小型液体処理システムに関する。
【背景技術】
【0002】
流動する加圧水(pressurized water)から運動エネルギを抽出して、該エネルギを電力を発生するための発電機を回転すべく使用する水力発電は公知である。これに加え、気体、蒸気などの他の加圧流体を用いて発電機を回転させることは公知である。河川またはダムなどの大規模な水源により動作する大規模な水力発電によれば、数百万ガロンの流水を用いて数千メガワットの発電が可能である。故に、流水の運動エネルギから電力への変換は、相当の非効率さを伴うのではあるが、依然として経済的に容認可能なレベルの性能を提供可能である。
【0003】
然しながら、水力発電機器の規模が小さくなるにつれ発電規模も小さくなる。これに加え、運動エネルギが抽出され得る流水の量も少なくなる。故に、水の流れにおける運動エネルギから電力への変換の効率が重要となる。効率が低すぎると、加圧流水からは少量の運動エネルギしか抽出されない。結果として、水力発電機器のサイズが小さくなるにつれ発電量は減少する。
【0004】
流動する加圧液体を含み、作動のためには電力を要するという多くの小規模なシステムが在る。一定の例としては、住居用の水処理システム、自動衛生器具(automatic plumbing fixture)、流速モニタ、水試験器などが挙げられる。
【0005】
また、消費のために供与される前に水を濾過して浄化すべく炭素系フィルタユニットおよび紫外線(UV)光ユニットを含むという幾つかの異なる形式の水処理システムが在る。前記炭素系フィルタユニットは、微粒子および有機汚染物質を濾過して除去すべく不活性物質を用いる。前記紫外線光ユニットから発せられる紫外線は、水の中に存在する有害な微生物を無力化すべく用いられる。
【0006】
前記水処理システム内に存在し得る前記紫外線光ユニットおよび他の一切の電力消費システムを起動するためには電源が必要となる。習用の水処理システムは、前記紫外線光ユニットなどの該水処理システム内の全ての構成要素を駆動するために必要なエネルギを提供すべく、標準的な電気コンセントまたはバッテリー電源からの電力を使用する。電気コンセントにより電力供給される水処理システムの場合、該システムの携帯性は限られ、かつ、電気コンセントの電力供給が中断すると作動が停止する。
【0007】
また、バッテリー電源により作動する水処理システムは、該水処理システムの作動もしくは保管により消費されるという有限供給量のエネルギのみを含んでいる。これに加え、前記水処理システムを作動可能に維持するには、交換用バッテリーが容易に利用可能とされねばならない。もし長期のバッテリー電源が所望されるなら更に大型のバッテリーが必要とされるが、これは水処理システムに相当の重量および寸法を加え得る。
【0008】
既存の一定の水処理システムは、バッテリー電源が電気コンセントの電源により充電され得るという、標準的な電気コンセントまたはバッテリー電源のいずれかを使用可能である。これらの水処理システムは交換用バッテリーを必要としないが、バッテリー電源で作動する前記水処理システムの作動の長さはバッテリーの容量およびサイズにより左右される。電気コンセントによる電源もまた、バッテリーを充電すべく定期的に利用されねばならない。これに加え、これらの水処理システムは前記の2種類の異なる電源で作動する付加的な電気回路および構成要素を必要とする。
【0009】
化粧室のバルブおよび流しの水栓などの自動衛生器具は、電気作動式バルブおよびセンサを含むことができる。前記センサは、自動衛生器具のユーザの存在を検知し、前記電気作動式バルブを作動させて水の流れで応答する。前記電気作動式バルブおよびセンサは両者ともに、作動するために電力を必要とする。電力は、配電盤からの電気ケーブルを前記自動衛生器具まで設置することで得られる。而して、自動衛生器具が既存の建築物に設置される場合、配電盤および/または電気ケーブルの設置は不経済であり、時間が掛かり、かつ、困難でもあり得る。
【0010】
以上の理由により、水処理システム、自動衛生器具などのシステムに適合するに十分なほど小寸であり、かつ、斯かるシステムを作動させるに十分な電力を発生すべく十分な効率で作動し得る小型水力発電機器に対する要望が存在する。
【発明の開示】
【0011】
本発明は、従来技術に関連した問題を解決する小型の液体処理システムを開示する。小型の液体処理システムの実施形態は、水力発電システムによって電力供給される電源内蔵型のシステムである。液体処理システムは、フィルタ、紫外線照射システムおよび水力発電機を含む。該水処理システムは、水栓の端部に取付けられるように形成されたハウジング内に配設することができる。前記ハウジングは、処理液体を提供する第1の流路と、未処理液体を提供する第2の流路とを含むことができる。第1と第2の流路は、独立の流路であって、該液体処理システムのユーザが切換機構を用いて選択可能となっている。前記切換機構はハウジングに結合することができ、また、水栓の端部に着脱自在に結合するようにしてもよい。
【0012】
液体処理システムは、また、プロセッサを含むことができる。プロセッサは水力発電機またはバッテリーやコンデンサのようなエネルギ貯蔵装置によって電力の供給を受けるようにでき、該エネルギ貯蔵装置は前記水力発電機によって充電するようにできる。更に、紫外線照射システムに含まれる紫外線光源は、水力発電機および/またはバッテリーやコンデンサのようなエネルギ貯蔵装置によって電力の供給を受けるようにでき、該エネルギ貯蔵装置は前記水力発電機によって充電するようにできる。液体処理システムは、また、紫外線スイッチを含んでいてもよい。紫外線スイッチは、水力発電機によって生成された電力を紫外線光源へ選択的に供給するためにプロセッサにより制御することができる。プロセッサは、また、液体処理システムを監視し、データを格納し、アラームを発し、液体処理システムの作動に関連した表示をする。
【0013】
ユーザは、処理液体または未処理液体を選択し、そして液体処理システムに液体の流れを供給する。電力は、水力発電機を回転させることにより生成される。この電力によりプロセッサを付勢して、水力発電機により生成された電力を監視する。交流電力に基づき、プロセッサが、水力発電機の1分当りの回転数を検知するようにできる。水力発電機の回転速度が所定範囲に入ると、プロセッサは水力発電機により生成された電力を紫外線光源へ供給すべく、紫外線スイッチをエネーブルするようにできる。励起されると、紫外線光源は、第1の流路を流通する液体を殺菌するために紫外線エネルギを放射するようにできる。或いは、水力発電機の回転開始に際して、エネルギ貯蔵装置を用いて紫外線光源を励起するようにしてもよい。水力発電機の回転速度が所定範囲まで増加すると、プロセッサは、水力発電機により生成した電力を紫外線光源へ供給し、かつ/またはエネルギ貯蔵装置を充電するために、紫外線スイッチをエネーブルするようにできる。
【0014】
前記ハウジングは、概ね円筒状の部分と、概ね螺旋状の部分とを含むことができる。フィルタおよび紫外線照射システムは、円筒状部分内に配設され、水力発電システムは、螺旋状部分内に配設することができる。ハウジングは、また、複数の構成要素から形成することできる。第1の構成要素は、フィルタを含むことができ、第1の流路沿いに流通する液体の流れと連通するようにできる。第2の構成要素は、紫外線照射システムを含むことができ、実質的に乾燥状態に維持することができる。第3の構成要素は、発電モジュールであり、前記第1の流路沿いに流通する液体の流れと、第2の流路沿いに流通する液体の流れとに独立に連通するようにできる。発電モジュールは、第1の流路に配設された水力発電機およびノズルを含む水力発電システムを具備する。
【0015】
第1の流路沿いに流通する液体の流れは、前記ハウジング内に配設されたマニフォールドによって、フィルタ、紫外線照射システムおよび水力発電システムの間に導かれるようにできる。マニフォールドは、一体材料から構成され、複数の通路を含むようにできる。マニフォールド内に形成された第1の通路は、液体の流れをフィルタに導くようにできる。第2の通路は、フィルタにより既に濾過されている液体の流れを紫外線照射システムへ導くようにできる。マニフォールドは、該マニフォールドに取付けられるであろうノズルと係合するように形成されたノズル保持部を含むことができる。紫外線照射システムによって、紫外線エネルギの照射を既に受けている液体の流れはノズルへ導くことができる。ノズルは、この液体の流れを比較的高速の噴流として押出すことができる。押出された噴流は、水力発電機に接触し回転を引き起こすようにできる。
【0016】
本発明のこれらのおよび他の特徴および利点は、添付図面に関して示されると共に現在において好適である実施形態に関する以下の詳細な説明を考慮すれば明らかとなろう。前記の説明は、序論としてのみ提供されている。本項における如何なる処も、発明の有効範囲を定義する添付の各請求項を制限するものと解釈されるべきでない。
【発明を実施するための最良の形態】
【0017】
以下、本発明の好適実施形態を特定形態に関して示すが、当業者であれば、各請求項の有効範囲内で該特定形態を種々変更および改変が可能であることを理解し得よう。現在において好適な実施形態は、電源を必要とし、かつ、水流を含む任意のシステムと共に使用可能であるが、各実施形態は、住居用もしくは携帯用の水処理システム、衛生器具などのシステムに対して設計される。当業者であれば、各実施形態は水以外の液体と共に使用可能であり、かつ、「水」および「水力」との語の使用は限定的と解釈されるべきでないことも理解し得よう。
【0018】
図1は、好適な水力発電システム12に接続された水処理システム10の側面図である。この実施形態において水力発電システム12は、ノズル14、ハウジング16、インペラ18およびハウジング吐出口20を含む。ノズル14は、管路22により水処理システム10に連結される。管路22はPVCプラスチックもしくは同様の材料から形成され得ると共に、螺着接続、摩擦嵌合または他の一定の同様の接続機構によりノズル14に結合可能である。
【0019】
作動の間に加圧水は、矢印24により示すように、水処理システム10からノズル14を介して水力発電システム12に流入する。ノズル14は、水が該ノズル14を通り流れてハウジング16を通りハウジング吐出口20に至るべく付勢される様に、ハウジング16に結合される。代替実施形態において水力発電システム12は、水処理システム10内に配置されるか、または、加圧水が水処理システム10に進入する前に該加圧水の供給を受容すべく位置決めされ得る。
【0020】
図2は、ノズル14の一実施形態の断面を示している。好適なノズル14は、自身を貫通して流れる加圧水の速度を増大する音波ノズルである。この実施形態においてノズル14は、水の速度を亜音速まで増大し得る。ノズル14はステンレス鋼もしくは他の一定の同様の剛性材料で形成されると共に、ノズル取入口26およびノズル吐出口28を含む。ノズル取入口26は、前述されたように水処理システム10に連結される。ノズル吐出口28はハウジング16に対し、摩擦嵌合、弾性嵌合、螺着接続、または、それらの間に水密な接続を形成し得る他の一定の同様の機構により連結される。ノズル14は、後述するようにインペラ18に対する該ノズル14の適切な整列を提供する任意の箇所においてハウジング16を貫通し得る。
【0021】
ノズル14は、自身を貫通する水の流れを提供する通路30を含む。通路30は、ノズル取入口26にては第1所定直径32であり、かつ、ノズル吐出口28にては第2所定直径34である様に形成される。この実施形態において第2所定直径34は、第1所定直径32の約26%である。通路30は、ノズル14の所定長さに対して第1所定直径32のままである。通路30の残存部分は、第2所定直径34まで該通路30を均一にテーパ付けすることで円錐形状とされる。この実施形態においてノズル14の通路30は、第1所定直径32と第2所定直径34との間で約18°の角度でテーパ付けされる。
【0022】
通路30の形態は、ノズル14から出射する水の速度を決定する。これに加え、ノズル吐出口28における水の速度は、水源の圧力とノズル14の下流の背圧とに依存する。ノズル吐出口28における前記速度の望ましい所定範囲は、ノズル取入口26において(図1に示された)水処理システム10により提供される圧力の期待範囲を用いて決定され得る。たとえば家庭用水道において水の供給圧力は約20〜60ポンド/平方インチ(PSI)の範囲である。通路30はまた、ノズル吐出口28にて連続的で均一な水の流れも提供する。作動の間にノズル14を流通する水は、所定範囲内の速度および所定軌跡にてハウジング16に流入する。
【0023】
図1に戻るとハウジング16は、プラスチック、または、水に対する堅固な通路を形成し得る他の一定の同様の耐水材料から構成され得る管路を形成する。この実施形態においてハウジング16は、該ハウジング16の内部の視認を許容すべく図1に示された透光部分を含む。ハウジング16は、水がノズル吐出口28を出射した後で該ハウジング16を流通するときにその水と流体連通するインペラ18を包囲すべく形成される。
【0024】
インペラ18は、ハブ44に堅固に取着された複数のブレード42を含む。各ブレード42は、ノズル14から流れる水が所定角度でインペラ18の該ブレード42に衝当するようにハウジング16内で位置決めされる。前記所定角度は、ノズル取入口26における水の期待圧力、ノズル吐出口28における背圧、および、インペラ18の所望の毎分回転数(RPM)に基づいて決定される。作動する間、流水はインペラ18に作用し、ハウジング16内で該インペラを単一方向に回転させる。以下において詳細に論じられるようにインペラ18が回転するにつれ、この実施形態の水力発電システム12は流水におけるエネルギを回転エネルギへと変換し、それは次に電気に変換される。この実施形態においてインペラ18は、ハウジング16を流通する水に浸漬される。
【0025】
図3は、図1に示されると共に90°回転され、かつ、ハウジング16が破断された前記実施形態を示している。図示するように、インペラ18は、長手延在シャフト48により発電機46に対して共軸的に取着される。シャフト48は、ステンレス鋼、または、インペラ18に固定的に結合される他の一定の同様の剛性材料とすることができる。インペラ18のハブ44はシャフト48の一端に対して共軸的に結合され、かつ、発電機46の一部である発電機シャフト50は他端に共軸的に結合される。インペラ18および発電機46に対するシャフト48の堅固な結合は、溶接、圧力嵌めまたは他の同様の堅固接続とすることができる。
【0026】
回転可能シャフト48は長手方向に延在することで、ゴムもしくは他の同様の材料で作成された水密シール52を通りハウジング16を貫通する。水密シール52はハウジング16に結合されると共に、ハウジング16から水が離脱せずにシャフト48が自由に回転するのを許容すべく形成される。シャフト48は、ハウジング16の近傍に配置された発電機46まで長手方向に延在する。不図示ではあるが発電機46の外面は、ナットおよびボルト、リベット、または、ハウジング16と該発電機46とを固定的に結合し得る他の同様の機構により、ハウジング16に結合可能である。
【0027】
作動する間、水がハウジング16を通り流れ、かつ、インペラ18が回転するにつれてシャフト48、50は対応して回転し、発電機46から電気が生成される。代替実施形態においてはハウジング16に対する貫通の必要性を排除すべく、シャフト48の代わりに、磁的連結器(図示せず)が用いられる。この実施形態においてインペラ18は、ハウジング16の外側で発電機シャフト50上に配置された同様の磁石に対して堅固に結合するに十分な磁的強度を備えた磁石を含む。作動する間、インペラ18が回転するとき、該インペラ上で配向された磁石および発電機シャフト50上で配向された磁石の磁的吸引力により発電機シャフト50が回転されることで、発電機46から電気が生成される。
【0028】
この実施形態において発電機46は、交流(AC)を生成し得る永久磁石発電機とすることができる。交流(AC)は、直流(DC)を生成すべく整流され得る。代替実施形態において発電機46は、ACおよびDC電流の両方を生成し得る。電気は発電機46から、ワイヤ、バス、または、電気を導通し得る他の同様の材料とされ得る複数本の導体54により伝達される。生成された電気の電圧レベルは、インペラ18の毎分回転数の関数である。上述したように、ノズル14から流れる水の速度は所定範囲内に設計されることで、発電機46により生成される電気の電圧出力を制御し得る。
【0029】
この実施形態により生成された交流もしくは整流された直流は、水処理システム10に対して電力供給すべく使用され得ると共に、たとえばバッテリーもしくはコンデンサなどのエネルギ貯蔵装置(図示せず)を充電するためにも使用可能である。インペラ18の回転または生成されつつある電気の持続時間は、水処理システム10を流通する水の流速もしくは量などの流量式測定に対するメカニズムも提供可能である。インペラ18の回転または生成されつつある電気の持続時間は発電機46の逆起電力(EMF)と組み合わされることで、流量式測定を提供可能である。当業者であれば、水力発電システム12は水処理システム10の他のシステムでも使用され得ることを理解し得よう。
【0030】
図4は、水力発電システム12の別実施形態の断面図を示している。この実施形態は図1に示された実施形態と同様に水処理システム10に連結されると共に、ノズル14、ハウジング16,インペラ18およびハウジング吐出口20を含む。既述した実施形態と同様に、ノズル14はインペラ18に向けて導向される水を高速にて提供する。但しこの実施形態においてインペラ18は、作動する間、ハウジング16内の水に浸漬されない。故にノズル14からの水は、インペラ18に向けて導向される噴流を形成する。
【0031】
ノズル14は、図2に示されて既述したノズル14と同様の音波ノズルとすることができる。ノズル14はハウジング16を貫通すると共に、取付プレート56により該ハウジングに結合される。取付プレート56は、ハウジング16の外面に対して密接して接触すべく位置決めされる。当業者であれば、ノズル14をハウジング16に結合すべく使用され得る他の方法が存在することを理解し得よう。
【0032】
図5は、この実施形態の取付プレート56に取付けられたノズル14の断面図を示している。取付プレート56は、インペラ18に関する最適位置へとノズル14の調節を許容する長手スロット58および一対の突起部60を含む。この実施形態においてノズル14は、最適位置が達成されたときに突起部60に螺条付きネジを挿入することでハウジング16に対して固定的に取付けることができる。代替実施形態において取付プレート56は、たとえば螺条付きネジ、リベットもしくはピンなどの締結具が該取付プレート56をハウジング16に対して固定的に取付けたときに、ノズル14の所定の単一の所望位置を提供する。
【0033】
図4を再び参照するとノズル14の所望位置は、該ノズル14がハウジング16内へと直立的に延在する如きである。この実施形態のハウジング16は、図4に示すように、該ハウジング16の内壁により画成されたハウジングキャビティ62を含む。ハウジングキャビティ62は、インペラ18が内部に配置された空気空間である。作動する間、水はノズル14から所定軌跡によりハウジングキャビティ62内へと放出され、所定角度にてインペラ18に衝当する。前記所定角度は、インペラ18の所望のRPMと、水処理システム10からノズル14に供給される水の圧力の範囲とに基づく。ノズル14とインペラ18との協働的作動は加圧水に限定されず、たとえば空気などの他の流体が同様に利用され得る。
【0034】
図4に更に示すように、インペラ18は複数のブレード64を含む。この実施形態のブレード64の各々は、一端にてはインペラハブ66に固定的に結合されると共に、逆端に形成されたパドル68を含む。インペラハブ66は、既述した実施形態と同様にシャフト48に固定的に結合される。当業者であれば、ブレード64の個数およびインペラ18のサイズは用途に依存して変更され得ることを理解し得よう。
【0035】
図6は、図5に示されると共に90°回転され、かつ、図示目的でハウジング16の一部が破断された前記実施形態の水力発電システム12を示している。図示するように、水力発電システム12は、既述した実施形態と同様に、シャフト48により発電機46に結合されたハウジング16を含む。これに加え、回転可能であるシャフト48は、インペラ18から水密シール52を貫通して発電機46内へと長手方向に延在する。代替実施形態においてシャフト48は、先に記述されたように磁的連結器により改変されることで、ハウジング16および水密シール52の貫通が排除される。図示するように、シャフト48はハウジングキャビティ62内の前記空気空間内にインペラ18を回転可能に位置させることから、パドル68はシャフト48の回りを回転する。
【0036】
図6に示すように、この実施形態のパドル68の各々は、スロット70を含む放物線形状に形成される。パドル68の放物線形状によれば、(図5に示された)ノズル14から放出された水に存在するエネルギの均一な受容体が提供される。スロット70によれば、放出された水のエネルギはインペラ18が回転するにつれて次のパドル68へと受け渡され得る。放出された水におけるエネルギが次のパドル68へと遷移的に受け渡さると、水からインペラ18へのエネルギ伝達の効率が最大化される。代替実施形態においてブレード64は、ノズル14から放出された他の流体のエネルギの効率的な伝達を助長する他の形状および構成にて形成することができる。たとえば流体が空気である場合にブレード64は、翼板、フィン、または、流動する空気からインペラ18に対してエネルギを伝達し得る他の同様の構造として形成することができる。
【0037】
作動する間、水の噴流が所定角度にてインペラ18に衝当した後、矢印72により示すように、水は重力によりハウジング吐出口20に向けて落下する。故に、水はハウジング吐出口20に集まることでハウジング16から排出される。インペラ18は水に浸漬されないことから、水流からインペラ18に対して伝達されるエネルギの大部分はシャフト48に対して回転力として提供される。
【0038】
シャフト48の回転によれば、発電機46の一部が回転される。発電機46の一実施形態は、発電機ハウジング82内に配置されたローター76、第1ステーター78および第2ステーター80を含む。ローター76は、シャフト48に固定的に結合され、それと共に回転する。第1および第2ステーター78、80は、発電機ハウジング82に固定的に結合されてシャフト48を環状的に囲繞する。ローター76は、第1および第2ステーター78、80の間に配置されることで、発電機46を形成する。
【0039】
この実施形態のローター76は、複数の永久磁石84を含むディスクの形態とすることができる。永久磁石84はローター76において所定位置に等間隔で載置されることで、第1および第2ステーター78、80と作用的に協働する。この実施形態における第1および第2ステーター78、80の各々は、複数のコイル86を含むディスクを形成しても良い。各コイル86は第1および第2ステーター78、80内で等間隔に配置されることで、永久磁石84と作用的に協働する。各コイル86は電気的に接続されることで、電気を生成すべく作用可能な一本以上の巻線を形成することができる。第1および第2ステーター78、80の磁極の個数および設計態様は、多数の要因に依存する。斯かる要因としては、永久磁石84により形成されるガウス場の強度、逆EMF、ならびに、発電機46の所望RPMおよび所望電力出力が挙げられる。
【0040】
この実施形態においてローター76が回転すると同様に回転する永久磁石84により磁束が生成されることから、第1および第2ステーター78、80に電気が生成される。ローター76および第1および第2ステーター78、80は作用的に協働することで、交流(AC)を生成する。このACは発電機46により整流かつ安定化されることで、ACおよび直流(DC)の両方が供給される。代替実施形態において永久磁石84は、発電機46が直流(DC)を生成すべく作動する様に、第1および第2ステーター78、80上に配置可能である。別の代替実施形態において発電機46は、図3に関して論じられた発電機46と同様である。
【0041】
作動する間、加圧水は、(図1に示された)水処理システム10から水力発電システム12へと供給され得る。先行実施形態と同様に、水力発電システム12の代替実施形態は、水処理システム10に対して水を供給するか、または、水処理システム10内に配置可能である。この実施形態において水は、上述したように水処理システム10からノズル14に供給される。
【0042】
加圧水はノズル14を流通し、高速でハウジングキャビティ62内へと放出されることで、所定の入射角にてインペラ18上のパドル68に衝当する。水がパドル68に衝当するとき、吐出された水噴流のエネルギはインペラ18に伝達されて単一方向への回転を引き起こす。インペラ18が回転するにつれ、吐出された水噴流の一部はスロット70を通り流れてインペラ18上の別のパドル68に衝当する。各パドル68に対する水の衝突およびこれに伴うエネルギの伝達に続き、水は重力によりハウジング吐出口20へと落下してハウジング16から流出する。故に作動する間、ハウジングキャビティ62は空気空間を維持し、作動する間、水により完全に充填されることはない。
【0043】
インペラ18の回転によりシャフト48の回転が引き起こされることから、発電機46のローター76が回転される。この実施形態においてローター76は、約2,400回転/分(RPM)で回転する。ローター76の回転により、水処理システム10に供給される電気の生成が誘起される。上述したように発電機46により生成される電圧レベルの範囲は、ノズル14を流通する水の速度の範囲に基づく。故に前記発電機の電圧範囲は、ノズル14を流通する水の速度の所定範囲を選択することで選択され得る。
【0044】
図7は、水処理システム10に対して好適に連結された水力発電システム12の別実施形態の断面図を示している。図示するように、水力発電システム12は、ローターハウジング102およびステーターハウジング104を含む。ローターハウジング102は、プラスチックもしくは他の同様の剛性材料から構成され得る管路を形成し、かつ、取入口106および吐出口108を含む。作動する間、取入口106は矢印110により示すように、流水を受容し、かつ、吐出口108は流水を水処理システム10へと導く。代替実施形態において水力発電システム12は、水処理システム10内に配置され、または、水処理システム10から流出する水を受容すべく配置可能である。上述したように、水力発電システム12を通る水の流れは水処理システム10により制御され得る。
【0045】
図7に示すように、ローターハウジング102はローター112を収容し、かつ、ステーターハウジング104はステーター114を収容する。この実施形態のローター112は、6組のN/S極を有する12極式の永久磁石ローターとすることができる。以下において詳細に示されるように、この実施形態のステーター114は8組のN/S極を以て設計された環状リングとすることができる。ローター112およびノズル14は協働して作用することで、作動の間に電気を生成する。業界公知のように、ステーターは、出力にて必要とされる電圧の大きさに依存する任意数の磁極を含むべく構成され得る静止的巻線を含む。本実施形態において開示された巻線における磁極の個数は、本発明を限定するものと解釈されるべきでない。
【0046】
図8は、図7に示された実施形態の平面図を示しており、ステーターハウジング104の頂部は、図示する目的で破断されている。ステーター114はステーターハウジング104内に対して固定的に配置されることで、ローターハウジング102を環状的に囲繞する。ステーター114は、コア116、複数の突出極118および複数のコイル120を含む。コア116は、鉄、鋼鉄もしくは他の同様の材料で構成され得ると共に、突出極118を含むべく形成される。この実施形態においては、各々がコイル120により囲繞された8個の突出極118が在り得る。
【0047】
突出極118は、それらがローターハウジング102を環状的に囲繞するようにステーター114上に形成される。突出極118の各々は、業界公知の磁極片(pole shoe)122として形成された端部を含む。磁極片122は、ローターハウジング102に隣接して配置される。磁極片122は、ローター112により形成された一定の磁束をコイル120を通して導通する。コイル120は、ワイヤ、または、電気を導通し得ると共に突出極118の回りに巻回され得る他の一定の同様の材料とすることができる。不図示ではあるが、各コイル120は電気的に接続されて巻線を形成する。業界公知のように、各コイル120に対して使用されるワイヤの巻き数は、電圧および電力の要件、ローター112の最小および最大の回転数、許容可能な最大の背圧、必要なインダクタンスおよび磁気ガウスにより決定される。
【0048】
再び図7を参照すると、ステーター114はローターハウジング102の中心軸線に直交して横方向に配置される。ステーター114はローターハウジング102の外側に配置されることから、それはローターハウジング102内を流れる水との流体連通から遮断される。ステーターハウジング104はローターハウジング102に固定的に結合されることで、ローターハウジング102上における所定位置をステーター114に提供する。この実施形態においてステーターハウジング104は、ローターハウジング102の外側表面に対して摩擦嵌合により結合される。当業者であれば、ローターハウジング102およびステーターハウジング104を結合する他の種々の様式が存在することを理解し得よう。
【0049】
水力発電システム12のこの実施形態においてローター112は、金属、焼結金属、押出し成形金属、プラスチック射出成形材料もしくはセラミック材料で形成され得る永久磁石124を含む。永久磁石124は、一定の磁束を形成すると共に、ローターシャフト126に結合される。回転可能であるローターシャフト126は、永久磁石124の各端部から長手方向に延在すると共に、ステンレス鋼、または、他の堅固な耐食性材料により構成することができる。永久磁石124は、ローターシャフト126と同軸的な中心軸線を以て形成される。永久磁石124の外面は、少なくとも一個のローターブレード128を含むべく流線形状に形成することができる。この実施形態の永久磁石124は、ローターブレード128を形成する単一の螺旋隆起部を備えた筒体形状に形成される。代替実施形態においてローターブレード128は、タービンブレード、または、流水に委ねられたときにローター112の回転を誘起し得る他の同様の装置とすることができる。
【0050】
図7に示すように、ローター112は、ローターハウジング102の中心軸線と同軸に該ローターハウジング102内に配置される。ローター112のローターシャフト126の一端は第1カラー130に挿入され、かつ、ローターシャフト126の他端は第2カラー132に挿入される。この実施形態においてローターシャフト126の各端部は、直径を大きくすることで、第1カラー130および第2カラー132への取着を容易にする中実球体を形成する。第1カラー130および第2カラー132はプラスチックまたは他の同様の材料により形成されると共に、ローターハウジング102の中心軸線に直交する横方向ストラットを形成する。第1カラー130および第2カラー132は各々、ローターシャフト126を回転可能にする軸受134または他の同様の装置を包含する。更に、第1カラー130および第2カラー132は、両者間にローター112が浮動、支持されるように、所定距離にてローターハウジング102に結合されている。
【0051】
ローター112は、ローターハウジング102を流通する水が、該ローター112の一部を形成するローターブレード128に衝当するように、ローターハウジング102内に配置される。ローターブレード128はパドルとして作用することから、流水はローター112に作用する。流水によればローター112は、ローターハウジング102の中心軸線の回りにおいて単一方向に回転される。ローター112は、該ローター112の中心軸がステーター114のそれと同心的であるように該ステーター114内に位置決めされる。ローター112はステーター144と作用的に協働して前記発電機を形成する。
【0052】
作動する間、水が流れてローター112が回転するにつれ、ローター112により生成される一定の磁束も回転してステーター114を貫通することから、本来的に電力が生成される。ローター112からの前記一定の磁束がステーター114からの電気生成を誘起するのを許容するために、ローター112とステーター114との間には特定距離のエアギャップが維持されねばならない。これらの実施形態において、ローター112の永久磁石124とステーター114の磁極片122との間の「エアギャップ」は、流水およびローターハウジング102から成る。流体の流れおよびローターハウジング102は、前記一定の磁束に影響しない。故に、回転するローター112からの回転する一定の磁束は、ステーター114のコイル120からの電気の生成を誘起する。
【0053】
水がローターハウジング102を通り流れてローター112を回転させるにつれ、回転する一定の磁束はステーター114の巻線に与えられて電気が生成される。この電気は導体54を流通することで、この実施形態においては水処理システム10である装置に電力供給を行う。図7、8に示されたこの実施形態の水力発電システム12は、水処理システム10へ電力供給を行うべく使用され得る交流(AC)を生成する。代替実施形態において水力発電システム12は、交流(AC)を整流して直流(DC)を生成しても良い。別の代替実施形態において水力発電システム12は、交流(AC)を整流かつ安定化することにより、ACおよびDC電流の両方を水処理システム10に供給する。DC電流は、エネルギ貯蔵装置(図示せず)を充電するためにも使用可能である。ローター112の回転または生成される電気の持続時間は、水処理システム10を流通する水の流速もしくは量などの流量式測定を提供するためにも使用可能である。
【0054】
図9は、図7、8に関して開示された先行実施形態と概念が類似した水力発電システム12の更に別の実施形態の断面図を示している。この実施形態は、ハウジング142内に配置されたローター112、ステーター114およびタービンノズル140を含む。ハウジング142は、取入口144および吐出口146を含む管路を形成する。矢印148により示すように、水または他の流体は取入口144に流入し、水はハウジング142を通り流れて吐出口146によりハウジング142から排出される。一実施形態において水力発電システム12は、(図1に示された)水処理システム10内に配置され、水処理システム10に追随し、または、水処理システム10に水を供給しても良い。
【0055】
ハウジング142は、プラスチック、または、水を導き得る同様の剛性材料で形成することができる。この実施形態のハウジング142は第1部152および第2部154を含むことで、組立ておよび保守が促進される。第1および第2部152、154は、接着、摩擦嵌合、螺着接続、超音波溶接、または、同様の堅固な接続を提供する他の一定の手段により固定的に結合可能である。ハウジング142は、自身を貫通する水の流れに対する通路156を形成する。通路156内には、タービンノズル140が固定的に配置される。
【0056】
この実施形態のタービンノズル140は、略円錐形状とされ得ると共に、プラスチック、または、他の一定の同様の剛性材料で形成することができる。タービンノズル140は、1個の先端158および複数個のストラット160を含むべく形成することができる。先端158は、通路156内で中央に配置され得ると共に、ハウジング142の内壁に対して流水を外方に導向する役割を果たす。各ストラット160は、たとえば摩擦嵌合、弾性嵌合、螺着接続、または、他の同様の堅固接続によりハウジング142の内壁に固定的に結合される。
【0057】
各ストラット160は、通路156内でタービンノズル140を固定的に保持し、かつ、水がハウジング142を流通するのを許容する複数のチャネル162を含む。チャネル162のサイズは、流水の速度を制御すべく調節され得る。図2に関して既述したノズル14におけるのと同様に、所定範囲の速度が決定され得る。前記所定範囲の速度は、取入口144において流れる水の期待圧力範囲、並びに、水力発電システム12の背圧に基づく。これに加えて各ストラット160は、流水を導向する翼板として作用すべく所定形態で配向され得る。流水は導向されることで、たとえば、所定様式でローター112に作用し、乱流を排除し、圧力低下を調節し、または、作動の効率を高め得る。
【0058】
図10は、ハウジング142の第1部152内におけるノズル140およびストラット160を示す図9の水力発電システム12の一部の破断平面図である。各ストラット160はノズル140の外側部の回りにて、相互から4.42ミリメートル(0.174インチ)などの所定距離1002に配置可能である。ストラット160の各々は、前端部1004および後端部1006を含む。隣接して配置された各ストラット160の前端部1004は入口ダクトを形成し得ると共に、隣接して配置された各ストラット160の後端部1006は出口ダクトを形成することができる。矢印148により示すように、液体の流れは、まず前端部1004に到達して前記入口ダクトに進入する。チャネル162内において前記液体は、ストラット160の後端部1006に到達する前に速度が増大される。
【0059】
図示するように、チャネル162の幅は後端部1006に向けて漸進的に狭幅となり得る。故に各チャネル間の断面積は、約10%〜20%などの所定量だけ減少される。加圧液体は、次第に狭幅となるチャネル162内へと付勢されることから、速度は高まる。各チャネル162間の断面積が漸進的に減少することから、流動液体の速度は増大するが背圧は最小化される。これに加え、漸進的に狭幅となるチャネル162により、チャネル162内における液体の非層流は最小限とされる。
【0060】
ストラット160は、複数の整流器1008も含むことができる。整流器1008はチャネル162内に含まれることで、非層流を更に最小限とし得る。ストラット160と同様に整流器1008は、第1部152の内壁に固定的に結合されてチャネル162内へと延在し得る。整流器1008の例は、本体1012に結合されたブレード1010を含むことができる。ブレード1010は、ストラット160の各々の前端部1004の近傍から後端部1006に向けて延在するという整流器1008の実質的に直線状の部とすることができる。本体1012は、隣接して配置されたストラット160の後端部1006により形成された前記出口ダクトの所定距離だけ上流に配置された球形状体とすることができる。他の例において整流器1008は、液体の流れを規定し、かつ、チャネル162を通る等流を最大化する他の任意の流体力学的形状とすることができる。
【0061】
図10に更に示すように、ノズル140は、確立領域1018が追随する圧縮領域1016へと分割され得る。圧縮領域1016内では、液体の流れの方向における急激な遷移が生じ得る。この急激な遷移により、液体の流れにおける乱流が増加され得る。乱流は、第1部152内の液体の体積容量が減少するにつれて増加し得る。前記体積は減少するので、液体の圧縮度および速度は増大する。圧縮領域1016における体積の減少は事前設定されることで、流動液体の期待圧力範囲に基づく所望流速が達成され得る。圧縮領域1016内において流動液体はハウジング142の内壁に向けて外方に付勢されることから、乱流および/または非層流が増大され得る。
【0062】
確立領域1018は、流動液体における乱流が鎮まり、かつ、液体が更に層的な流れを有するのを許容するという、液体の均一な体積容量を有する領域を提供する。確立領域1018は、流動液体における乱流の予測量に基づく所定長さとすることができる。液体の非層流は、チャネル162に進入する前に減少され得る。チャネル162内において流動液体の速度は更に増大され、次に液体はローター112へと導向される。
【0063】
再び図9を参照すると、この実施形態のローター112は、タービンローター164、ローターシャフト166および永久磁石168を含む。ローター112は、通路156内を流れる水により該ローター112がハウジング142の中心軸線170の回りで回転するように、通路156内に回転可能に配置される。ローター112の回転は、流水がタービンローター164に作用するときに生ずる。タービンローター164は、ステンレス鋼、アルミニウム、プラスチック、または、前記回転力および流水の力に耐え得る他の同様の剛性材料で形成することができる。タービンローター164は、少なくとも一枚のタービンブレード172および本体174を含む。
【0064】
タービンブレード172は、各ストラット160を流通する水からのエネルギを受容すべく配置される。タービンブレード172は、複数の翼板、螺旋隆起部、または、流水のエネルギを回転エネルギに変換し得るべく本体174上に形成された他の機構とすることができる。この実施形態のタービンブレード172は本体174と一体的に形成され、かつ、ハウジング142の内壁の近傍に配置されるまで延在する。本体174は、ローターシャフト166の一部を環状的に囲繞するキャビティ176を画成すべく形成することができる。
【0065】
尚、ハウジング142の内壁に関してチャネル162の深度はタービンブレード172の深度よりも浅いことを銘記すべきである。前記差分深度によれば、後述するように流水の循環が行われる。これに加え、ステーター114を通る水の流路は実質的に直線状である。前記流路の体積もまたチャネル162に続いて更に大きくなることで、流水の所定の圧力低下が提供される。故に流水は、該流水がタービンブレード172を流通するときに、運動エネルギの相当の量を回転するタービンブレード172に放出する。流水における運動エネルギはそれほどの損失および非効率さ無しでタービンブレード172により効率的に抽出される。と言うのは、流水の高速流内にはタービンブレード172のみが直接的に存在するからである。
【0066】
ローターシャフト166は回転可能であり、かつ、タービンローター164と一体的に形成され得るか、または、それに対して該ローターシャフト166が圧力嵌め、螺着接続または同様の連結機構により固定的に結合可能である。ローターシャフト166は、ステンレス鋼、または、永久磁石168を貫通して長手方向に延在し得る他の同様の剛性材料とすることができる。永久磁石168は、押出し成形磁石またはプラスチック射出成形磁石とすることができる。代替的に前記永久磁石は、金属、焼結金属、セラミック材料、または、磁気的特性を備えた他の一定の同様の材料で形成することができる。永久磁石168は、摩擦嵌合、型成形または他の同様の機構によりローターシャフト166に固定的に結合可能である。ローター112は、複数の軸受178により所定位置にて回転可能に保持される。
【0067】
各軸受178は、永久磁石168の夫々の端部にてローターシャフト166の一部を環状的に囲繞する。軸受178は、炭素グラファイト、テフロン(登録商標)、ボールベアリング、セラミック、超高分子(UHMW)ポリエチレン、または、ローターシャフト166の回転に耐え得る他の同様の軸受とすることができる。この実施形態において軸受178は、通路156内に存在する水により潤滑される。これに加え、後述するように流水は軸受178を冷却すべく作用可能である。軸受178はステーター114に固定的に結合されて所定位置に保持される。
【0068】
この実施形態のステーター114は、複数の出口案内翼板180、フィン182、複数のコイル184、および、キャップ186を含む。図9に示すように、ステーター114は、通路156内において出口案内翼板180により固定的に配置される。出口案内翼板180はハウジング142の内壁に対し、たとえ接着剤、摩擦嵌合、弾性嵌合または同様の堅固な接続機構により固定的に結合される。出口案内翼板180はハウジング142の内壁と平行に長手方向に延在すると共に、自身を貫通する水の流れに対するチャネルを提供する。出口案内翼板180は、流水を吐出口146へと導くことで、乱流、気泡、背圧、および、効率的な作動に影響し得る流水の他の同様の挙動を低減すべく形成される。フィン182は、流水を吐出口146へと導くように同様に形成される。
【0069】
不図示ではあるが出口案内翼板180は、中心軸線170と同心的な螺旋形状コイル(または旋条)を擬態する旋回パターンで形成することができる。各出口案内翼板180はフィン182の方向において漸進的に巻き戻されることで、最終的には中心軸線170と実質的に平行となり得る。この形態において出口案内翼板180は、乱流を減少して層流を生成し得る。
【0070】
作動する間、出口案内翼板180により受容された液体は、タービンブレード172の回転の故に旋回傾向を有し得る。この液体における旋回傾向は、出口案内翼板180の前記旋回パターンに対して実質的に整合し得る。故に液体は、乱流を引き起こし得る急激な方向変化無しで出口案内翼板180に進入する。出口案内翼板180により導かれ、液体の旋回傾向は、出口案内翼板180の漸進的な巻き戻しにより漸進的に最小化することができる。故に液体は、実質的に層流により出口案内翼板180を出射することで、効率的な作動を最大化し得る。
【0071】
コイル184はコア(図示せず)上に形成されることで、ローター112を環状的に囲繞して巻線を形成する。各コイル184は、エアギャップ188によりローター112から離間される。コイル184は、出口案内翼板180に固定的に結合される。これに加えてコイル184は、軸受178およびフィン182に固定的に結合可能である。コイル184は、出口案内翼板180、軸受178およびフィン182に対し、たとえば接着剤により固定的に結合され得るか、または、それらと一体成形され得る。この実施形態においてコイル184は通路156内に配置されるが、流水に対する流体連通を回避すべく耐水性である。コイル184は、たとえばエポキシにより充填され、ゴムもしくはプラスチックにより射出成形され、超音波シールされ、または、同様の耐水機構により水から別様に遮断されることで、耐水性とすることができる。代替実施形態においては、図7、8に関して既述した実施形態と同様に、コイル184はハウジング142の外側に配置可能である。
【0072】
コイル184はまた、キャップ186によっても耐水性とされる。図9に示すように、キャップ186は、タービンローター164の近傍であるコイル184の端部をシールすべく位置決めされる。キャップ186は、螺着接続によりコイル184に着脱自在に連結され得るか、または、接着剤もしくは一体成形によりコイル184に固定的に結合可能である。キャップ186は、軸受178を部分的に囲繞すべく、かつ、ステーター114の半径に等しい所定距離だけ径方向に延在すべく形成される。キャップ186の前記所定距離は、ハウジング142の内壁に対し、タービンローター164の本体174よりも接近して延在する。後述するように、ハウジング142の内壁からキャップ186および本体174までの距離の差により、流水の循環が行われる。
【0073】
作動する間、取入口144を通り通路156内に流れる水は、該加圧水がチャネル162を流通するにつれて所定の速度増加に遭遇する。流水は各ストラット160により導向されることで、ローター112に回転を与えるべくタービンブレード172上における所定の入射角を達成する。チャネル162、タービンブレード172およびキャップ182の差分的深度の故に、流水はキャビティ176内へと循環される。キャビティ176を通る流水の循環によれば、隣接して配置された軸受178の冷却および潤滑が行われる。
【0074】
この実施形態においてローター112は、約5,000RPMから約10,000RPMの範囲、または、約4,000RPMから約12,000RPMの範囲などの、約5,000回転/分(RPM)以上で回転する。約5,000RPM以上での回転は、約415kPaから約690kPa(約60〜100ポンド/平方インチ)の液体圧力範囲における約3.78リットル/分〜約11.35リットル/分(約1〜3ガロン/分)の液体流速に基づき得る。5,000RPM以上の回転はまた、約103.4kPaから約415kPa(約15〜60PSI)の液体圧力範囲における約0.76リットル/分〜約3.78リットル/分(約0.2〜約1ガロン/分)の液体流速にも基づき得る。本明細書中で論じられた寸法、RPM、圧力および流速は、液体の物理的特性および/または製造許容差に依存して10%〜20%まで変更可能である。
【0075】
このRPM範囲内で作動するために前記水力発電システムは、流体の流体インピーダンス(または風損)による非効率さを減少すべく最小化することができる。本明細書中で用いられるように、「流体インピーダンス(fluid impedance)」との語は、運動エネルギから回転エネルギへの変換の最大化を阻害し得る流体摩擦および/または他の一切の流体効果として定義される。
【0076】
前記水力発電システムを小型化すると、ローター112が回転するときに流体を受ける表面積が最小化される。これに加え、前記水力発電システムの重量が最小化される。たとえば通路156の直径は、約6.35ミリメートルから約51ミリメートル(約0.25インチから約2インチ)の範囲とすることができる。これに加え、チャネル162の深度は約0.76ミリメートルから約2.54ミリメートル(約0.03インチから約0.1インチ)とされ得ると共に、タービンブレード172の深度は約0.89ミリメートルから約3.8ミリメートル(約0.035インチから約0.15インチ)とすることができる。
【0077】
前記の小型化および流体インピーダンスの減少により達成され得る更に大きなRPMにより、発電効率は最大化される。たとえば前記発電機は、約5,000から10,000RPMで回転するときに約0.27から30ワットを生成し得る。これに加え、永久磁石168のサイズ(および重量)は、水力発電システム12の電力生成を最適化すべく寸法設定され得る。
【0078】
ステーター114内におけるローター112の高RPMでの回転によれば、水力発電システム12が作動するときに電気が効率的に生成される。水力発電システム12は、交流(AC)を生成し得る。代替実施形態において水力発電システム12は(DC)電流を生成し得る。別の代替実施形態において水力発電システム12は、AC電流と、該AC電流の整流および安定化によるDC電流との両方を生成すべく設計され得る。上述したように、磁極の個数およびコイル184のサイズおよび形態は、水力発電システム12の背圧、必要なRPM、および、目標エネルギ出力に依存する。
【0079】
次に図3、図6、図7、図8、9を参照すると、これらの図の実施形態に関して論じられた水力発電システム12の別実施形態は、複数の電圧および電流レベルを供給すべく作用可能である。複数の電圧および電流レベルは、水力発電システム12の前記コイルを直列形態および並列形態の間で切換えることで供給される。不図示ではあるが、直列形態と並列形態との間で前記コイルを選択的に切換えるために、水力発電システム12の電圧および電流出力と水処理システム10の現在の電圧および電流の要求内容とを検知し得るマイクロプロセッサもしくは他の同様の制御ユニットが使用可能である。代替的に、前記コイルを選択的に切換えるべくRPMが使用可能である。前記コイルの選択的な切換えは、直流(DC)または交流(AC)を生成する実施形態に適用可能である。
【0080】
たとえば一定の紫外線(UV)光源は、初期励起に対する比較的に小さい所定交流と、比較的に高い電圧レベルとを必要とする。初期励起に続いて前記UV光源は、比較的に大きい交流を必要とするが、比較的に低い電圧レベルで励起され続けることが必要である。たとえば水処理システムにおいて前記UV光源は低圧の水銀ランプもしくは冷陰極ランプとされ得ると共に、始動電圧および作動状態電圧は安定器(ballast)により提供され得る。代替的に、以下に記述されるように水力発電システム12が安定器の機能を提供し得ると共に、安定器は排除され得る。水銀ランプおよび/または冷陰極ランプは、水からバクテリアおよび他の不純物を除去し得る。
【0081】
作動する間、水力発電システム12が電気を生成するとき、前記コイルは前記マイクロプロセッサにより選択的に直列形態に設定され得る。前記直列形態によれば、前記始動電圧により前記UV光源を最初に励起し得る所定電圧レベルにて所定の交流が生成される。前記UV光源の初期励起に続いて前記コイルは選択的に並列形態に再構成されることから、前記作動状態電圧により前記UV光源の励起を維持し得る所定電圧レベルにて所定交流が提供される。上述したように水力発電システム12のコイルが切換えられると、該水力発電システム12により電力が供給される任意のシステムにおける任意の電気装置の種々の電圧および電流要件が提供され得る。
【0082】
別実施形態において、既述した実施形態に関して論じられた水力発電システム12は、巻線へと形成された異なる群のコイルを表す複数のタップ(tap)を備え得る。これらのタップは、異なる本数のコイルを電気的に接続して巻線を形成することで、複数の異なる所定電圧レベルを供給すべく作用可能である。水処理システム10は、作動する間、マイクロプロセッサもしくは他の一定の同様の装置を用いて前記各タップ間で作用的に切換えを行うべく構成することができる。故に、既述したUV光源の例においては、始動電圧を提供すべく初期励起には1つのタップが使用され得ると共に、作動状態電圧を提供すべく連続作動には別のタップが使用可能である。これに加え、水処理システム10における種々の電気装置の電力要件に依存して、これらの電気装置を作動させるべく同時進行的に種々のタップが使用可能である。タップ切換えは、前記発電機のRPMを制御するためにも使用可能である。RPMが所望スレッショルド値より低ければ、たとえば各タップはコイルを間引くことでRPMを増大すべく調節され得る。水力発電システム12のタップ切換えによれば、該水力発電システム12により電力供給される任意のシステムに種々の電圧レベルも提供され得る。
【0083】
既述した実施形態に関して論じられた水力発電システム12の更に別の実施形態においては、存在する逆起電力(EMF)が好適に低減される。業界公知のように永久磁石発電機の逆EMFは、発電機のコア内における金属積層体により形成される磁束濃縮器(flux concentrator)により増大される。前記磁束濃縮器は前記発電機の発電効率を改善すべく作用可能であるが、ローターを回転するためには克服されるべき逆EMFを供給する。
【0084】
水処理システム10に水力発電システム12が適用される場合、一定のUV光源は始動および作動する間、電力要件が変化する。既述した水力発電システム12の実施形態を使用すると共に磁束濃縮器を含めないことで、前記UV光源の作動要件は満足され得る。
【0085】
作動する間、水処理システム10の励起に先立ち、水力発電システム12上の回転負荷(逆EMF)は、比較的に低いこともある。前記回転負荷が比較的に低くなり得るのは、この実施形態の水力発電システム12は磁束濃縮器を含まず、かつ、水処理システム10は電力を使用しないからである。磁束濃縮器を排除した結果、コギングトルク(cogging torque)が減少し、発電機の迅速な回転上昇が許容される。故に、水が水力発電システム12を流通するとき、前記ローターは、比較的に短時間内に所定の比較的に高いRPMへと加速すべく作用し得る。
【0086】
比較的に高いRPMは、たとえば水処理システム10におけるUV光源などを初期的に励起し得る所定の交流(AC)にて所定電圧(始動電圧)を供給する。前記UV光源の初期励起に続き、水力発電システム12上の回転負荷が増大されることで前記ローターのRPMが減速される。前記ローターの更に低速なRPMによれば、対応する所定交流(AC)による所定低電圧(作動状態電圧)が提供されることから、前記UV光源の連続的励起が許容される。尚、この実施形態の水力発電システム12により提供される「即時始動(instant-on)」機能によれば水処理システム10におけるUV光源にエネルギ貯蔵装置が電力供給を行う必要性が排除され得ることを理解すべきである。と言うのは、前記UV光源は水が流れ始めるのと殆ど同時に励起されるからである。
【0087】
図11は、部分的断面図で示された水力発電システム12の別実施形態である。先行実施形態と同様に、水力発電システム12は水処理システム10において使用可能である。これに加えて水力発電システム12は、流動する加圧液体と共に他の任意の形態のシステムに含まれ得る。水力発電システム12はまた、UV光源、フィルタ、電子機器などの水処理システムの特徴も含むことができる。
【0088】
図示された水力発電システム12は、側部カバーを除去して示された外側ハウジング1102を含む。これに加えて水力発電システム12は、内側ハウジング1104、センタリングロッド1106およびノズル1108を含む。外側ハウジング1102は、プラスチック、金属、炭素繊維または他の剛性材料とされ得ると共に、キャビティ1110を含む。該キャビティ1110は、外側ハウジング1102の内面1112に内側ハウジング1104を接触させずに該内側ハウジング1104を収容すべく寸法設定された空気空間である。外側ハウジング1102には、吐出口1114も含まれる。該吐出口1114は、外側ハウジング1102内に存在する液体が重力によりキャビティ1110から排出されることで、作動する間、前記空気空間が維持されるのを許容する開孔とすることができる。
【0089】
内側ハウジング1104は略円筒状であると共に、プラスチック、金属、炭素繊維または他の同様の材料で形成することができる。内側ハウジング1104は外側ハウジング1102内に取付けられことで、外側ハウジング1102のキャビティ1110内のセンタリングロッド1106の少なくとも一部を囲繞する。センタリングロッド1106は、外側ハウジング1102に固定的に結合されて内側ハウジング1104内に延在し得る。センタリングロッド1106は、ステンレス鋼などの、長手方向に延在する任意の堅固な材料とすることができる。
【0090】
内側ハウジング1104には、複数のブッシュ1116が結合されてセンタリングロッド1106を囲繞し得る。ブッシュ1116の各々は、プラスチック、金属または他の同様の材料で形成されたスリーブとすることができる。ブッシュ1116には、センタリングロッド1106を収容する開孔と、内側ハウジング1104の外面における開孔内に嵌合すべく形成された外面とが形成することができる。ブッシュ1116における前記開孔は十分に大型とされることで、センタリングロッド1106の回りにて、該センタリングロッド1106に接触しない外側ハウジング1102内で該ブッシュ1116が回転することが許容され得る。ブッシュ1116の前記外面は、内側ハウジング1104および該ブッシュ1116が一体的に回転するように、内側ハウジング1104の外面に固定的に結合可能である。代替的に、ブッシュ1116および内側ハウジング1104は、センタリングロッド1106の回りで独立して回転可能となっている。
【0091】
内側ハウジング1104は、該内側ハウジング1104の外面1120に固定的に結合されて該外面から外方に延在する複数のパドル1118も含むことができる。パドル1118は、プラスチック、炭素繊維、金属または他の同様の材料で形成することができる。パドル1118は、内側ハウジング1104が回転するときに該パドル1118の各々が一定の箇所でノズル1108の近傍に配置されるように、内側ハウジング1104の外面1120に対し直交して位置決めされ得る。
【0092】
図示するように、ノズル1108は、内側ハウジング1104と吐出口1114との間でキャビティ1110内に延在すべく取付けることができる。図1から図5に関して既述したノズル14と同様に、ノズル1108は加圧液体の速度を増大する。第1速度にてノズル取入口1122に供給された加圧液体は、ノズル1108を流通すると共に、前記第1速度よりも相当に大きな第2速度にてノズル吐出口1124から吐出される。ノズル1108により前記キャビティ内へと吐出された液体は、各パドル1118における前記空気空間を通り導向される。
【0093】
図12は、ノズル取入口1122(図11)から見たノズル1108の端面図である。ノズル1108は、ノズル吐出口1124(図11)に向けて直径が減少する軸方向ボアである通路1202を含む。通路1202内には、リブ1204が含まれる。リブ1204は、ノズル1108の内側面1206に結合されると共に、内側面1206からノズル1108の中心軸線1208に向けて延在する。
【0094】
図13は、図12に示されると共にリブ1204を含むノズル1108の破断底面図である。ノズル1108を貫通する通路1202は、ノズル取入口1122の近傍の第1角度的部1302を含み、これに対しては第1直線部分1304、テーパ部分1306、第2角度的部1308、および、ノズル吐出口1124を形成する第2直線部分1310が追随する。通路1202は、ノズル取入口1122にて約10.8ミリメートルなどの所定入口直径とすることができる。第1角度的部1302内において通路1202の直径は、約20°などの様に中心軸線1208に関して所定角度(θ)にてノズル吐出口1124に向けて直径が均一に減少し得る。
【0095】
第1直線部分1304において通路1202の直径は、約5.8ミリメートルなどの所定の第1ノズル直径とすることができる。通路1202の第1直線部分1304の全体に亙り、内側面1206は中心軸線1208に対して概ね平行とされ得ることから、前記第1ノズル直径に維持される。テーパ部分1306において通路1202は、曲率半径を有し得る。前記曲率半径は、約8.7ミリメートルなどの所定半径を有する円の一部を形成することができる。第2角度的部1308における通路1202の直径は、約20°などの様に、中心軸線1208に関して所定角度(θ)にてノズル吐出口1124に向けて均一割合で減少し得る。第2直線部分1310は、通路1202を約1.85ミリメートルなどの所定の第2ノズル直径に維持することで、ノズル吐出口1124を形成することができる。
【0096】
前記第1および第2ノズル直径は、ノズル1108に供給される液体の利用可能な圧力範囲に基づいて決定され得る。一例において、第1直線部分1304の直径は比較的に不変のままとされ得ると共に、第2直線部分1310の直径はノズル1108に導入される液体の圧力に基づいて変更可能である。たとえば第1直線状部分1304の直径は約5.8ミリメートルのままとされ得ると共に、第2直線状部分1310は約1.9ミリメートル以下に形成することができる。故に、ノズル1108の第2直線状部分1310(ノズル吐出口1124)の直径は、ノズル1108の第1直線状部分1304の直径の約33%以下である。
【0097】
別の例において第2直線状部分1310は、ノズル取入口1122にて約34kPaから850kPa(約5から125PSI)に加圧された液体と共に使用されるために約0.8ミリメートルから約1.9ミリメートル(約0.03から0.075インチ)の範囲に形成することができる。この例においてノズル1108は、ノズル1108の第1直線部分1304の直径の約14%から約33%とすることができる。この例に対するノズル1108の結果的な流速は、34kPaにおける約0.44リットル/分から約850kPaにおける約4.16リットル/分(約0.115ガロン/分から約1.1ガロン/分)の範囲とすることができる。
【0098】
リブ1204は、通路1102を流通する液体の旋回および他の非層流的な挙動を最小化する任意の構成とすることができる。示されたリブ1204は、ノズル取入口1122にて開始し、中心軸線1208に沿い所定距離だけ延在して、第1角度的部1302、第1直線部分1304を通りテーパ部分1306に至る。均一な幅を有するものとして示されるが、他の例においてリブ1204は、ノズル1108を通る液体の層流を促進する一個以上のテーパ幅部、球部(bulb)、湾曲部または他の任意の構成を含むことができる。これに加え、リブ1204の長さは、通路1202を流通する液体の旋回を最適に排除すべく、図示されたよりも短寸もしくは長寸とすることができる。
【0099】
図14は、図12に示されたリブ1204を含むノズル1108の破断側面図である。例示的なリブ1204は、通路1202のノズル取入口1122にて内側面1206から中心軸線1208に向けて外方に所定第1距離だけ延在する。リブ1204が内側面1206から延在する距離は、該リブ1204が中心軸線1208に沿いノズル吐出口1124に向けて延在するにつれて、ゼロまで漸進的に減少する。図示例においてリブ1204は、該リブ1204が中心軸線1208に沿いノズル吐出口1124に向けて延在するにつれて中心軸線1208から漸進的に更に離間する様に所定距離に亙り延在すべくテーパ付けされる。これに加え、内側面1206と中心軸線1208との間の距離はノズル吐出口1124に向かい更に小さくなるので、図示するように、リブ1204は更にテーパ付けられる。他の例においてリブ1204は、ノズル1108を通る液体の旋回効果を減少して層流を促進する他の任意の形状を形成することができる。
【0100】
図11を再び参照すると、作動する間、ノズル1108を流通する液体は層流として維持され得る一方、液体の速度はノズル1108内で加速される。前記液体は、高速噴流でノズル1108から吐出され得る。実質的な層流の故に、液体噴流は、吐出の後でもノズル吐出口1124と概ね同一の直径である良好に画成された流れのままとすることができる。故に、液体噴流れにより生成される液体の霧化は最小化され、かつ、流動液体の運動エネルギは比較的に小さな領域内に集中可能である。
【0101】
液体噴流は、パドル1118に向けて導向され得る。パドル1118に対する衝当時に、液体内に存在する運動エネルギは内側ハウジング1104の回転エネルギへと効率的に変換することができる。内側ハウジング1104が回転する間、パドル1118の各々はノズル1108から吐出された高速の液体噴流内に進入し、液体噴流内に存在する運動エネルギの実質的に全てを受け取れる。
【0102】
運動エネルギが前記液体から抽出されたなら、該液体は重力により吐出口1114へと落下し得ると共に、外側ハウジング1102から導かれ排出される。この排出により、外側ハウジング1102は実質的に液体が空のままとされる。ノズル1108から吐出される一定の液体の流れの故に一定の液体は存在するが、前記の排出によっても、外側ハウジング1102内の液体のレベルは、ノズル1108および内側ハウジング1104が液体に浸漬されないために十分に低位に維持可能である。故にノズル1108および内側ハウジング1104は、流体インピーダンスによる損失が最小化され乍ら、外側ハウジング1102内の空気空間内で作動する。
【0103】
液体の幾分かは、パドル1118上に一時的に残存し、かつ、内側ハウジング1104の回転力により外側ハウジング1102の内面1112上へと投じられる。これに加え、液体の幾分かはパドル1118を衝撃して内面1112上へと偏向され得る。
【0104】
内面1112には、キャビティ1110内における液体の霧化を最小化すべく案内構造が形成することができる。キャビティ1110内の液体の霧化を最小化すると、回転する内側ハウジング1104から過剰液体が離間維持されることで、回転する該内側ハウジング1104に関する流体インピーダンスによる損失が最小化される。内面1112上に含まれた前記案内構造はまた、液体の霧化を効率的に収集して液体を吐出口1114へと導くように設計された旋回パターンを以て形成することができる。故に、ノズル108のノズル吐出口1124が液体に浸漬されない様に、キャビティ1110は作動する間、実質的に液体が空のままであり、かつ、空気(または他の一定の気体)により実質的に充填されたままとされる。
【0105】
図15は、図11の外側ハウジング1102の断面図における内面1112の一例を示している。内面1112は、該内面1112から内側ハウジング1104(図11)に向かい外方に延在する複数の指部1502の形態の案内構造を含む。指部1502の各々は、個別の角錐形状部材として形成される。他の例において指部1502は、溝、リング、ストラット、軌道、または、外側ハウジング1102の内面1112における他の任意の形態の凹凸とすることができる。指部1502は、所定パターンで配置可能である。該パターンは、液体の霧化を最小化すべく、かつ、吐出口1114(図11)へ最大限液体が導かれるように、回転する内側ハウジング1104およびパドル1118から放出される液体のモデル化もしくは分析に基づく旋回パターンとすることができる。
【0106】
指部1502は、外側ハウジング1102の内面1112と接触する液体の液体霧化を最小化し得る。これに加えて指部1502は、外側ハウジング1102に含まれる中央チャネル1504および外側チャネル1506に水を導くように構成することができる。中央チャネル1504および外側チャネル1506は、V形状溝、または、吐出口1114(図11)に向けて液体を導く他の一定の管路の形態とすることができる。内面1112はまた、複数の分岐通路1508も含むことができる。該分岐通路1508は、中央チャネル1504または外側チャネル1506へと液体を導く内面1112における弧状系路とすることができる。前記各チャネルはまた、液体の霧化を最小化すべく、かつ、吐出口1114(図11)へ液体が最大限導かれるように、回転する内側ハウジング1104から放出される液体のモデル化もしくは分析に基づく旋回パターンにても配置可能である。
【0107】
指部1502は、分岐通路1508の各々に沿い配置可能である。指部1502を衝撃する液体は、該指部1502により「捕捉」され得る。前記液体は指部1502から分岐通路1508へと流れてから、中央チャネル1504もしくは外側チャネル1506へと流れ得る。
【0108】
図16は、図示目的で内側ハウジング1104およびセンタリングロッド1106が除去された、図11に示された外側ハウジング1102の側面図である。外側ハウジング1102の内面1112は、該内面1112における液体に対する弧状系路を形成する複数の分岐通路1602に沿い載置された指部1502を含む。指部1502により「捕捉」された液体は指部1502から分岐通路1602へと流れ、外側チャネル1506(図14)および/または吐出口1114へと導かれる。
【0109】
図17は、図11に示されると共に吐出口1114を含む外側ハウジング1102の底部の断面図である。ハウジング1102の底部も同様に、液体を吐出口1114に向けて導向する弧状通路である複数の分岐通路1702を含む。指部1502は、分岐通路1702の各々に沿い載置され得る。
【0110】
図18は、図11に示されると共にセンタリングロッド1106を含む内側ハウジング1104の分解斜視図である。内側ハウジング1104には、ブッシュ1116、パドル1118、第1ハブ1802、第2ハブ1804、ローター1806およびステーター1808も含まれる。センタリングロッド1106は中心軸線1812に沿い内側ハウジング1104を貫通延在してブッシュ1116と協働して作用することで、ステーター1808に対する中心合わせ機能を提供可能である。各ブッシュ1116は、第1と第2のハブ1802、1804の各々の第1端部に形成されたブッシュ用開孔1816内に中心軸方向に嵌合すべく形成することができる。
【0111】
第1と第2のハブ1802、1804は、プラスチック、炭素繊維または他の任意の剛性材料で形成することができる。第1と第2のハブ1802、1804の各々は、略円筒状とされ、かつ、開放端部1818を有するキャビティを形成することができる。開放端部1818は、ブッシュ用開孔1816を含む第1端部の反対側の第2端部におけるものとすることができる。第1と第2のハブ1802、1804は、開放端部1818にて相互に連結されることで内側ハウジング1104の外面1120(図11)を形成することができる。
【0112】
第1と第2のハブ1802、1804の各々は、保持リング1820を含む。保持リング1820は、開放端部1818の縁部の回りにて中心軸線1812に平行に外方に延在する複数の突起部1822を含む。保持リング1820における突起部1822の各々の間には、複数のスロット1824が形成することができる。各突起部1822は、第1と第2のハブ1802、1804が開放端部1818にて連結されたときに相互に密接して接触すべく整列され得る。故に各スロット1824もまた、第1と第2のハブ1802、1804の間に整列されて開孔を形成することができる。
【0113】
第1と第2のハブ1802、1804はまた、内側ハウジング1104の外面の回りにて同心的に順次に配設され得る複数の通孔1826も含む。各通孔1826は、内側ハウジング1104の内側の前記キャビティと該内側ハウジング1104の外側との間の液体連通を許容する開孔を形成する。故に液体は、通孔1826を介して内側ハウジング1104に進入または退出し得る。
【0114】
内側ハウジング1104が回転するとき、該内側ハウジング1104内の液体は、生成される回転関連の遠心力により通孔1826を通り流出する。故に、内側ハウジング1104が高RPMで回転するときに該内側ハウジング1104の内側の液体に起因する流体インピーダンスによる損失は、通孔1826を通る液体の同時進行的な排出により最小化される。故に、回転する内側ハウジング1104は、液体が実質的に空となる様に前記キャビティを維持し得る。前記キャビティは、実質的に無水とされ得ると共に、空気(または他の一定の気体)により充填され得る。前記キャビティは湿潤されることもあるが、該キャビティは、効率的な作動に影響するに足る量の液体は不在のままとすることができる。通孔1826はまた、冷却のために内側ハウジング1104を通る空気流も提供可能である。
【0115】
第1と第2のハブ1802、1804の各々に形成された前記キャビティ内には、該第1と第2のハブ1802、1804から中心軸線1812に向けて外方に延在する複数の保持部1828が在る。各保持部1828は所定距離だけ離間して配置されることで、各保持部1828間に複数のノッチ1830を形成することができる。各保持部1828は、第1と第2のハブ1802、1804の一体的部分として形成することができる。代替的に各保持部1828は、プラスチック、金属、炭素繊維、または、夫々のキャビティ内で第1と第2のハブ1802、1804の各々の内面に結合され得る他の任意の剛性材料で別体的に形成することができる。
【0116】
ローター1806は、保持部用リング1834および磁石1836を含むことができる。保持部用リング1834は、鉄または他の同様の鉄系(または非鉄)材料で形成された円筒状スリーブとすることができる。第1と第2のハブ1802、1804が一体的に結合されたとき、保持部用リング1834の一部は第1と第2のハブ1802、1804の各々のキャビティ内に配置可能である。保持部用リング1834は、該保持部用リング1834が内側ハウジング1104と共に回転するように、第1と第2のハブ1802、1804の夫々の内部で保持部1828に結合可能である。保持部用リング1834は、磁石1836と共に作用して発電機効率を改善する磁束濃縮器として構成することができる。
【0117】
磁石1836は、保持部用リング1834に結合され、かつ、内側ハウジング1104と共に回転もし得る。磁石1836は、焼結もしくは接合されたネオジム鉄ホウ素(NdFeB)希土類磁石などの永久磁石とすることができる。磁石1836は、当該構造に沿い構成された所望数のNおよびS極を備えた連続的な単一構造として形成することができる。代替的に保持部用リング1834には、複数の個別の磁石が整列かつ結合可能である。
【0118】
前記発電機の逆EMFは、磁石1836を保持部1828に対して直接的に結合することで好適に減少され得る。故に、保持部用リング1834は排除され得る。上述したように、逆EMFが減少すると更に高速な加速が許容され、UV光源の「即時始動」機能を提供するなどして、一定の負荷に対して好適となり得る。
【0119】
ステーター1808には、上述したように、一本以上の静止的巻線(図示せず)が巻回された複数の磁極1840が形成することができる。磁極1840は、取付プレート1842に結合された金属積層体とすることができる。取付プレート1842は、金属、プラスチックもしくは他の任意の剛性材料とされ得ると共に、センタリングロッド1106に結合可能である。ステーター1808は、磁石1836が各磁極1840の近傍にてステーター1808の回りにエアギャップを介して配置されるように、第1と第2のハブ1802、1804により形成された前記キャビティ内に配置可能である。
【0120】
ステーター1808は湿潤もしくは無水にて作動可能である。と言うのは、巻線は、該巻線を形成すべく使用されるワイヤ上のエナメル被覆などの非導電材料によりシールされ得るからである。代替的に前記巻線は、プラスチック、ゴムまたは他の一定の耐水材料により重ね成形(over−mold)され得る。耐水性を提供することに加え、斯かる重ね成形はまた、ステーター1808の回りで内側ハウジング1104が高速で回転するときの流体インピーダンスによる損失に寄与し得るステーター1808の縁部もしくは他の特定形状も減少し得る。
【0121】
ローター1806およびステーター1808の組み合わせによれば、三相電力を発生する発電機が形成することができる。代替的に前記発電機は、単相発電可能である。前記発電機により生成された電力は、電源ライン1844に提供され得る。電源ライン1844は、ステーター1808の単一もしくは複数の巻線に電気的に接続電可能である。電源ライン1844は、中心軸線1812に沿いセンタリングロッド1106を貫通させて延設された通路を通して経路設定され得る。電力に加え、前記ローターの回転および/または生成された電力を監視することにより、流量式測定を行うことができる。
【0122】
ステーター1808と磁石1836との間の前記エアギャップは、センタリングロッド1106および周囲のブッシュ1116と組み合わされた磁石1836の磁界により維持することができる。ステーター1808は、センタリングロッド1106に結合することができる。故に、内側ハウジング1104が回転するが故にローター1806が回転すると同時に、回転する磁界はステーター1808の単一もしくは複数の巻線における電力の生成を誘起する。
【0123】
作動する間、内側ハウジング1104は、単一の高速液体流により5,000RPM以上などの比較的に高い毎分回転数(RPM)で回転することができる。前記比較的に高いRPMは、内側ハウジング1104のサイズが比較的に小寸であり、かつ、流体インピーダンスによる損失が最小化されるが故に達成され得る。略円筒状の内側ハウジング1104の直径は、約40ミリメートルから約10ミリメートルの範囲などの様に約40ミリメートル未満とすることができる。ノズル1108(図11)のノズル吐出口1124(図11)の直径が約1.9ミリメートルから約0.8ミリメートルの範囲であることから、ノズル吐出口1124の直径は内側ハウジング1104の直径の約4.75%から約8%である。
【0124】
内側ハウジング1104の回転速度、故に前記発電機により生成される電力の量は、ノズル1108(図11)により吐出される液体の速度および内側ハウジング1104の直径に基づき得る。故に、液体圧力および流速の所定範囲内では、ノズル1108(図11)のノズル吐出口1124(図11)の所定範囲の直径と、内側ハウジング1104の所定範囲の直径とに対し、所定範囲の電力が出力され得る。たとえば、ノズル1108のノズル吐出口1124の直径が約0.8ミリメートルから約1.9ミリメートルの範囲であれば、約0.44リットル/分から約4.16リットル/分(約0.115ガロン/分から約1.1ガロン/分)で吐出が為され得る。前記流速は、ノズル取入口1122(図11)における約34kPaから約413kPa(約5ポンド/平方インチから約60ポンド/平方インチ)の圧力範囲に基づき得る。結果的な内側ハウジング1104の回転により、約0.25ワットから約30ワットの電力が生成され得る。前記発電機からのこの例示的範囲の電力は、UVランプもしくは電子アセンブリを直接的に駆動し得るか、または、整流されることで、コンデンサ、スーパーコンデンサ(super capacitor)、ウルトラコンデンサ(ultra capacitor)および/またはバッテリーなどのエネルギ貯蔵装置を充電し得る。
【0125】
磁石1836は、内側ハウジング1104の平衡および整列も提供可能である。磁石1836の重量は、内側ハウジング1104の回転を旋回平衡化(spin balance)すべく構成することができる。故に内側ハウジング1104は、不平衡な回転に伴う振動または他の効果が最小化され乍ら高RPMで円滑に回転可能となっている。上述したように、磁石1836の重量は高RPMにおける効率的な電力生成によっても最小化することができる。
【0126】
これに加え、磁石1836の磁界は、ステーター1808に対するローター1806の整列、故に内側ハウジング1104の整列を維持し得る。実質的に等しく分布された磁石1836の磁界によれば、その中心軸が一致するようにローター1806およびステーター1808を配置可能である。故に内側ハウジング1104もまた、センタリングロッド1106に中心軸が一致させることが可能である。ブッシュ1116およびセンタリングロッド1106は、内側ハウジング1104を同軸に配置することを支援し得るが、内側ハウジング1104は磁石1836の磁界により、センタリングロッド1106に中心軸が一致するように浮動、支持され得る。故に、周囲のブッシュ1116と非回転のセンタリングロッド1106との間における摩擦損失は最小化することができる。これに加え、ステー、ラッチまたは相対位置決めを維持する他の任意の機構を使用せずに水力発電機12が垂直、水平などに取付けられたとき、前記磁界によればステーター1808に対する内側ハウジング1104の位置関係が維持可能である。
【0127】
図11、18に図示するように、各パドル1118は内側ハウジング1104を同心的に囲繞するリングを形成することができる。各パドル1118は、内側ハウジング1104の外面に結合されるべく個別に製造された部材とすることができる。第1と第2のハブ1802、1804が一体的に結合されたとき、パドル1118の各々はスロット1824の内の1つにおいて所定位置に維持されることで前記リングを形成する。代替的に各パドル1118は、接着、溶接、摩擦嵌合または他の任意の機構により、第1と第2のハブ1802、1804の双方または一方に個別にまたは群として結合可能である。
【0128】
各パドル1118は、個別に製造されてから組立てられてリングとされることで、コストが削減され、かつ、製造性が改善され得る。これに加え、内側ハウジング1104の直径、故に各パドル1118による前記リングの直径は、個々のパドル1118の形状寸法に対するそれほどの変更なしで変更可能である。個々のパドル1118の各々、および、第1と第2のハブ1802、1804の各々における保持リング1820の構成は協働して作用することで、スロット1824内におけるパドル1118の位置が維持される。
【0129】
図19は、図18に示されたパドル1118の一例の斜視図である。示されたパドル1118は概ね凹状とされ得ると共に、基部1902、第1パドル部1904、第2パドル部1906およびスロット1908を含む。基部1902は、第1と第2のハブ1802、1804(図18)の隣接スロット1824(図18)に嵌合すべく形成することができる。基部1902は、下側表面1912および脚部1914を含むことができる。下側表面1912は、第1と第2のハブ1802、1804(図18)の内面の曲率半径と同様に所定曲率半径にて湾曲され得る。脚部1914は略三角形状とされ得ると共に、第1斜面1916、第2斜面1918および前面1920を含む。
【0130】
次に図18、19を参照すると、パドル1118が内側ハウジング1104内に取付けられるとき、基部1902は、第1と第2のハブ1802、1804の各々において隣接配置されたノッチ1824内に配設され得る。各パドル1118の脚部1914は、第1と第2のハブ1802、1804上の突起部1822によりノッチ1824内に保持可能である。図示する例では、第1と第2の斜面1916、1918は、夫々、第1と第2のハブ1802、1804の各々の突起部1822の内の1つに密接させて接触可能である。これに加えて前面1920は、隣接して取付けられたパドル1118に密接させて接触可能である。
【0131】
図20は図19のパドル1118の平断面図であり、第1と第2のパドル部1904、1906および脚部1914を示している。また、パドル1118の後面2002も示される。パドル1118が内側ハウジング1104(図11)上に取付けられたとき、後面2002は、隣接して取付けられたパドル1118の脚部1914の前面1920(図19)に密接して接触可能である。故にパドル1118の基部1902(図19)は、各パドル1118によるリングにおいて隣接して配置された突起部1822(図18)と各パドル1118との組み合わせにより、効率的に所定位置に保持される。パドル1118の各々の基部1902は、内側ハウジング1104の外面の近傍における連続的同心リング(unbroken concentric ring)の一部を形成することができる。パドル1118は、摩擦嵌合、接着、溶接または他の任意の連結機構もしくは材料により所定位置に保持可能である。
【0132】
再び図19を参照すると、第1と第2のパドル部1904、1906は各々、高速液体流を受け入れ得る別体のカップもしくは凹所を提供可能である。図20に示すように、第1と第2のパドル部1904、1906の各々は楕円形とすることで、パドル部1904、1906に衝当する液体の流れを最適化し得る。スロット1918によれば、内側ハウジング1104(図11)が高RPMで回転するときに液体の流れはパドル1118の各々に効率的に衝当可能である。
【0133】
前述の水力発電システム12はまた、水処理システムの機能も含むことができる。一例において、前記水力発電システムは、水栓もしくは他の衛生器具に取付けることができる。水栓に取付けられた水力発電システム12の取入口は、その水栓の水吐出口端に連結可能である。水力発電システム12は、既述した発電機能に加え、炭素フィルタおよび紫外線(UV)ランプを含むことができる。これに加えて水力発電システム12は、処理水が所望されないときに該水力発電システム12をバイパスする液体分流器を含むことができる。水力発電システム12はまた、前記UVランプおよびフィルタの寿命を監視するマイクロプロセッサなどの処理装置も含むことができる。水力発電システム12は、フィルタ寿命の監視における使用に関して上述したように、液体流検出を行うことができる。これに加え、前記UVランプの寿命の終りは、前記マイクロプロセッサにより監視可能である。更に、タップとコイルの双方または一方の切換えは前記マイクロプロセッサにより動的に指示することで、上述したように、前記UVランプの初期励起に対する第1電圧および該UVランプに対する連続的励起が提供され得る。
【0134】
水力発電システム12によれば、加圧液体の流れを含むと共に電源を必要とする他の用途も提供され得る。たとえば、作動するために電力源を必要とする作動検出器、電動バルブまたは他の任意の装置を備えた衛生器具が、水力発電システム12の一部として包含され得る。
【0135】
図21は、前記水力発電システムの一部として含まれたスツール(stool)もしくは朝顔(urinal)などの、化粧室に対する例示的な衛生器具2100の斜視図である。衛生器具2100は、水を受容する水取入口2102および水を吐出する水吐出口2104を含む。衛生器具2100はまた、バルブモジュール2016、電子機器用ハウジング2108および発電モジュール2110も含む。他の例においては、制御弁、水取入口および水吐出口を有する水栓、シャワーまたは他の任意の衛生器具が前記水力発電システムに同様に含まれ得る。本明細書中で用いられるように、「衛生器具(plumbing fixture)」との語は、水栓、化粧室の洗流機構、霧化器およびシャワーなどの洗面所関連装置を包含すべく定義される。これに加え、衛生器具としては、スプリンクラー、噴水、および、約1034kPa(約150ポンド/平方インチ)未満の圧力で液体の流れを制御、かつ、/又は導く他の任意の装置および機構が挙げられる。
【0136】
図22は、図21に示した衛生器具2100の一例の破断側面図であり、該衛生器具は取入口2102、吐出口2104、バルブモジュール2016、電子機器用ハウジング2108および発電モジュール2110を含む。
【0137】
バルブモジュール2016は電動バルブ2202を含む。電動バルブ2202は、液体流の経路を開閉する電圧および電流により起動され得る任意の電気機械的なバルブ装置とすることができる。付勢されると電動バルブ2202は、バルブモジュール2016を介して液体流の経路を開成する位置へと移動し得る。前記液体流経路が開成されたとき、取入口2102に供給された加圧液体はバルブモジュール2016および発電モジュール2110を通り吐出口2104へと流れ得る。消勢されると、電動バルブ2202は前記液体流経路を閉成することで、バルブモジュール2016および発電モジュール2110を通る液体の流れを停止し得る。
【0138】
発電モジュール2110は、図11から図20について既述した実施形態と同様に、外側ハウジング1102、内側ハウジング1104、センタリングロッド1106およびノズル1108を含む。故に、これらの特徴の詳細な説明は省略する。他の例において、発電モジュール2110には、既述した他の実施形態の任意のものに類似した特徴および/または構成要素を具備することができる。外側ハウジング1102はまた、内側ハウジング1104に対する衝撃に続き液体を吐出口2104に導く水落し2204も含む。内側ハウジング1102は前記衛生器具から、保守および/または修理のためにユニットとして取り外され得る。取入口2102に提供された加圧液体はノズル1108により高速へと加速され、かつ、液体の流れとして、内側ハウジング1104の外面に配置されたパドル1118に向けて供給される。
【0139】
高速液体流における運動エネルギの大部分は回転エネルギに変換されて内側ハウジング1104を高RPMで回転させる。前記液体は重力により、衛生器具2100の水吐出口2104へと落下する。外側ハウジング1102のキャビティ内の液体の霧化もまた、外側ハウジング1102の内面1112と水落し2204との構成により水吐出口2104に向けて導かれ得る。内側ハウジング1104の高RPMの回転によれば、内側ハウジング1104内に含まれた永久磁石発電機により電力が生成される。電力は、前記発電機により電源ライン1844上に生成され得る。電源ライン1844は、センタリングロッド1106における通路および管路2206を通り電子機器用ハウジング2108へと経路設定され得る。
【0140】
電子モジュール2108は、衛生器具2100に対する一切の電気関連回路機構および構成要素を含むことができる。電子機器用ハウジング2108は、バルブ制御器2226、エネルギ貯蔵装置2228、電力制御器2230およびセンサ2232を含むことができる。バルブ制御器2226は電動バルブ2202の一部とされ得ると共に、電圧および電流を用いて電動バルブ2202を開閉すべく起動し得る任意の装置とすることができる。バルブ制御器2226は、電気モータ、回転アクチュエータ、ソレノイド、または、バルブ機構を移動させ得る他の任意の装置を含むことができる。これに加えてバルブ制御器2226は、リミットスィッチ、または、電動バルブ2202の位置を決定する他の任意の形態の位置検知装置を含むことができる。バルブ制御器2226へは、エネルギ貯蔵装置2228により電力を供給することができる。
【0141】
エネルギ貯蔵装置2228は、バッテリー、および/または、コンデンサ、および/または、電圧および電流の形態でエネルギを貯蔵し得る他の任意の回路もしくは装置とすることができる。電力制御器2230は、バルブ制御器2226およびエネルギ貯蔵装置2238に連結される。電力制御器2230は、エネルギ貯蔵装置2228における電圧の大きさを監視すると共に電動バルブ2202の動作を制御し得る任意の回路もしくは装置とすることができる。
【0142】
作動する間、エネルギ貯蔵装置2228における電圧の大きさは、電力制御器2230により監視される。前記電圧が所定スレッショルド値以下に低下したとき、電動バルブ2202は電力制御器2230により起動されて開成し得る。電力はエネルギ貯蔵装置2228からバルブ制御器2226に供給されて、電動バルブ2202を起動し得る。電動バルブ2202が開成されたとき、加圧液体はバルブモジュール2016を通りノズル1108へと流れる。高速の加圧液体流はノズル1108により内側ハウジング1104に向けて導向されて電力を発生する。電力は、エネルギ貯蔵装置2228を再充電すべく用いられる。
【0143】
センサ2232もまた電動バルブ2202を起動し得る。センサ2232は、作動センサ、温度センサ、または、衛生器具2100の回りの環境における一種類以上のパラメータを検知し得る他の任意の形態の検知装置とすることができる。この実施形態においてセンサ2232は、作動を検知し得る作動センサとすることができる。作動に応じてセンサ2232は、エネルギ貯蔵装置2228からの電力を用いて開成すべく電動バルブ2202を起動し得る。エネルギ貯蔵装置2228は引き続き、液体の流れから帰着する発電モジュール2110における発電機からの電力により再充電可能である。
【0144】
図23は、エネルギ貯蔵装置2228および電力制御器2230の一例の回路図である。図示されたエネルギ貯蔵装置2228は、第1エネルギ貯蔵装置2302、第2エネルギ貯蔵装置2304および第3エネルギ貯蔵装置2306を含む。電力制御器2230は、プロセッサ2308、第1充電スィッチ2310、第2充電スィッチ2312、第3充電スィッチ2314、直列/並列スィッチ2316および負荷制御スィッチ2318を含む。他の例においては、更に少ないもしくは更に多い個数のエネルギ貯蔵装置およびスィッチを利用することができる。
【0145】
第1、第2と第3のエネルギ貯蔵装置2302、2304、2306は、電力を貯蔵し得る任意の装置とすることができる。図示例において、第1エネルギ貯蔵装置2302はバッテリーであり、かつ、放電性能を最大化すべく第2と第3のエネルギ貯蔵装置2304、2306はコンデンサである。前記コンデンサは、スーパーコンデンサおよび/またはウルトラコンデンサなどの一個以上の電解質コンデンサまたは電気化学的コンデンサとすることができる。他の例においては、バッテリー、コンデンサ、または、任意の構成のバッテリーおよびコンデンサが使用可能である。第1と第2のエネルギ貯蔵装置2302、2304の各々は、アース接続部2320に電気的に接続される。第3エネルギ貯蔵装置2306は、直列/並列スィッチ2316によりアース接続部2320に電気的に接続電可能である。
【0146】
プロセッサ2308は、入力を監視する命令を実行して出力を提供し得る任意の形態の演算装置とすることができる。プロセッサ2308に対する入力としては、発電モジュール2110(図21)の発電機から供給される入力電力ライン2330上の入力電力が挙げられる。前記発電機から供給される電力は三相もしくは単相のAC電力とされ、これは一個以上のダイオードにより整流されてプロセッサ2308にDC電力を供給可能である。
【0147】
プロセッサ2308に対する他の入力としては、第1エネルギ貯蔵装置2302に対する第1充電ライン2332上の第1充電示度、および、第2と第3のエネルギ貯蔵装置2304、2306の夫々に対する第2と第3の充電ライン2334、2336上の第2と第3の充電示度が挙げられる。充電ライン2332、2334、2336はプロセッサ2308に対し、夫々のエネルギ貯蔵装置2302、2304、2306に貯蔵された充電量を知らせる。これに加え、図示例においては、第1放電ライン2338および第2放電ライン2340の夫々における第1放電示度および第2放電示度が入力としてプロセッサ2308に提供される。前記第1放電示度は、第2エネルギ貯蔵装置2304である前記コンデンサの放電量を提供する。第3エネルギ貯蔵装置2306である前記コンデンサの放電量は、前記第2放電示度により提供される。
【0148】
プロセッサ2308からの出力としては、第1充電制御スィッチ2310、第2充電制御スィッチ2312および第3充電制御スィッチ2314の作動を制御する制御信号が挙げられる。第1充電制御スィッチ2310が付勢されると、第1充電ライン2342上で第1充電電圧が第1エネルギ貯蔵装置2302に提供され得る。第2充電制御スィッチ2312が閉成されたとき、第2エネルギ貯蔵装置2304には、第2充電ライン2344上の第2充電電圧が提供され得る。第3充電制御スィッチ2314は、第3エネルギ貯蔵装置2306に第3充電ライン2346上で第3充電電圧を提供すべく付勢され得る。
【0149】
プロセッサ2308はまた、負荷制御スィッチ2318に指示を与えて負荷用供給ライン2348上の電圧を制御すべく出力制御信号も提供可能である。負荷用供給ライン2348は、負荷に電力を供給可能である。この例において負荷としては、電動バルブ2202(図22)、および、電子モジュール2108(図21)に含まれる電子機器が挙げられる。他の例においては、他の任意の負荷が負荷用供給ライン2348から電力を供給することができる。
【0150】
負荷用供給ライン2348上の電力は、プロセッサ2308により、発電モジュール2110における発電機から、かつ、/又は、エネルギ貯蔵装置2302、2304、2306の内の一個以上に貯蔵された電荷から供給され得る。たとえば前記発電機が電力を発生しているとき、プロセッサ2308はその電力を負荷用供給ライン2348上の負荷に直接的に供給可能である。これに加えてプロセッサ2308は、前記発電機により生成された電力によりエネルギ貯蔵装置2302、2304、2306の内の一個以上を充電すべく充電電圧を提供可能である。代替的に、たとえば前記発電機が電力を発生していない(または十分な電力を発生していない)とき、プロセッサ2308は、エネルギ貯蔵装置2302、2304、2306の内の一個以上に貯蔵された電荷から負荷用供給ライン2348上に電力を提供可能である。
【0151】
プロセッサ2308はまたバルブ制御ライン2350上に、電動バルブ2202の作動を制御する制御出力も提供可能である。プロセッサ2308からのステータースライン2352上の出力は、作動ステータースを提供可能である。作動ステータースとしては、エラー表示、エネルギ貯蔵装置2302、2304、2306上の電荷の状態、電動バルブ2202(図22)の位置、または、作動に関連する他の任意の示度もしくはパラメータが挙げられる。ステータースライン2352は、発光ダイオード(LED)、ディスプレイ、可聴警報器などの任意の形態のユーザインタフェースに連結可能である。
【0152】
直列/並列スィッチ2316は、直列スィッチ2356および並列スィッチ2358を含む。プロセッサ2308は、直列スィッチ2356および並列スィッチ2358の作動を指示する出力を提供可能である。直列スィッチ2356および並列スィッチ2358は、第2と第3のエネルギ貯蔵装置2304、2306を並列形態もしくは直列形態に構成することができる。
【0153】
前記並列形態においては、第2と第3のエネルギ貯蔵装置2304、2306により低い度合の放電電圧が負荷に個別に供給され得る。前記直列形態においては、第2と第3のエネルギ貯蔵装置2304、2306の組み合わせ放電により、負荷には高い度合の放電電圧が供給され得る。プロセッサ2308、充電制御スィッチ2310、2312、2314、直列/並列スィッチ2316および負荷制御スィッチ2318は、特定用途集積回路(ASIC)により実現され得る。代替的に、別体の構成要素、または、別体の構成要素群を利用可能である。
【0154】
メモリ内に記憶された命令をプロセッサ2308により実行することにより、第1、第2と第3のエネルギ貯蔵装置2302、2304、2306の充放電の制御が可能である。プロセッサ2308による制御は、所定スレッショルド電圧と、所定スレッショルド充電レベルと、発電モジュール2110における発電機により供給される入力電力とに基づいて行うことができる。第1スレッショルド電圧は、前記発電機および/またはエネルギ貯蔵装置2302、2304、2306の内の一個以上から供給される入力電圧の大きさとすることができる。第2スレッショルド電圧は、負荷用供給ライン2348に供給された出力電圧とすることができる。
【0155】
エネルギ貯蔵装置2302、2304、2306の各々に対する所定スレッショルド充電レベルは、個々のエネルギ貯蔵装置の特性に基づいて決定され得る完全充電状態とすることができる。エネルギ貯蔵装置2302、2304、2306の各々に対する第1、第2と第3の放電レベルスレッショルド値も決定され得る。放電レベルスレッショルド値の各々は、放電限界点(discharge limit)および放電遮断点(discharge cutoff)を含むことができる。前記放電限界点は、完全充電状態より一定レベルだけ低い充電レベルの減耗を表し得る。前記放電遮断点は、充電減耗の最大所望レベルより低い充電の減耗を表し得る。
【0156】
これに加えてプロセッサ2308は、エネルギ貯蔵装置2302、2304、2306のステータースを表示するための計時機能を含むことができる。プロセッサ2308によれば、前記エネルギ貯蔵装置の内の1個が充電されるときに計時を開始すべく充電タイマが起動され得る。充電されつつある特定のエネルギ貯蔵装置の充電ライン上の充電示度に基づき、前記充電タイマの計時内容は、完全充電に対する百分率、充電速度などを決定すべく使用可能である。充電関連の決定は、ステータースライン2352に提供され得る。同様に、プロセッサ2308によれば、第2と第3のエネルギ貯蔵装置2304、2306の各々の放電サイクルの間における計時を開始すべく放電タイマが有効化され得る。夫々の放電ライン2338、2340上の放電示度は、第2と第3のエネルギ貯蔵装置2304、2306の各々の放電の百分率、放電速度などをステータースライン2352上で表すべく、前記放電タイマにより使用可能である。
【0157】
発電モジュール2110における発電機が電力を発生しているとき、プロセッサ2308はエネルギ貯蔵装置2302、2304、2306の内の一個以上を選択的に充電し得る。たとえば液体の流れが比較的に高い圧力にて比較的に大きいとき、前記発電機は比較的に高いレベルにて豊富な量の発電可能である。これらの条件下でプロセッサ2308は、第1充電スィッチ2310、第2充電スィッチ2312および第3充電スィッチ2314により同時にエネルギ貯蔵装置2302、2304、2306の全てを充電させ得る。代替的に、更に少ないもしくは低い電圧の電力が生成されているとき、プロセッサ2308は第1、第2と第3の充電スィッチ2310、2312、2314の全てより少ない個数のスィッチを起動し得る。
【0158】
作動する間、エネルギ貯蔵装置2302、2304、2306の内の一個以上に貯蔵された電荷が所定放電限界点より高ければ、負荷制御スィッチ2318はプロセッサ2308により有効化されて負荷に電力を供給し得る。前記負荷が電力を消費することでエネルギ貯蔵装置2302、2304、2306の内の一個以上が放電限界点未満まで放電されたとき、プロセッサ2308はバルブ制御ライン2350上の制御信号により電動バルブ2202(図22)を起動して開成させ得る。上述したように、衛生器具2100(図21)および発電モジュール2110を通る液体の流れによれば、前記発電機による電力の生成が誘起される。
【0159】
入力電力ライン2330上で入力電力を検知すると同時にプロセッサ2308は、充電制御スィッチ2310、2312、2314の内の一個以上を起動して夫々のエネルギ貯蔵装置2302、2304、2306を再充電し得る。もしエネルギ貯蔵装置2302、2304、2306が遮断限界点まで放電し続けるなら、負荷制御スィッチ2318はプロセッサ2308により無効化され得る。前記負荷に対する負荷用供給ライン2348上の電力が喪失されると同時に、電動バルブ2202(図22)は開成されたままとされ、かつ、発電モジュール2110における発電機は電力を供給し続け得る。代替的に、電力の喪失時に、電動バルブ2202は閉成され得ると共に、前記発電機からの入力電力は中断され、かつ、エネルギ貯蔵装置2302、2304、2306からの電力はステータースライン2352上でエラーを表すべくプロセッサ2308により使用可能である。前記エラーは、点滅する発光ダイオード(LED)などの表示器により表示可能である。
【0160】
エネルギ貯蔵装置2302、2304、2306の内の一個以上からの電力が放電される間、プロセッサ2308は選択的に直列/並列スィッチ2316を切換えて放電時間を最長化し得る。これに加え、負荷用供給ライン2348上の電圧は直列/並列スィッチ2316を選択的に切換えることで維持可能である。と言うのは、放電は効率を最大化すべく行われるからである。更に、プロセッサ2308は直列/並列スィッチ2316の選択的な切換えにより、出力電圧の振幅を別の電圧振幅へと変換し得る。たとえば前記発電機からの約6VDCの入力電圧は、プロセッサ2308により3VDCへと変換することができる。別の例において、前記発電機から供給された1.5VDCはプロセッサ2308により6VDCへと変換することができる。
【0161】
図24は、エネルギ貯蔵装置2228および電力制御器2230の別の例示的な回路図である。この例において電力制御器2230は、プロセッサ2308を含む。エネルギ貯蔵装置2228は、アース接続2410に電気的に接続された第1コンデンサ2402、第2コンデンサ2404、第3コンデンサ2406および第4コンデンサ2408から成る複数のエネルギ貯蔵装置を含む。他の例においては、第4コンデンサ2408の代わりに、バッテリーなどの他の形態および個数のエネルギ貯蔵装置が使用可能である。
【0162】
プロセッサ2308は、発電モジュール2110(図21)における発電機からの入力電力を入力電力ライン2330上で受信し得る。前記入力電力は第1コンデンサ2402も充電し得る。プロセッサ2308は、前記発電機が電力の生成を停止したときに第1コンデンサ2402から入力電力を提供可能である。
【0163】
プロセッサ2308は第4コンデンサ2408の充放電を充電制御ライン2412により制御し得る。第4コンデンサ2408の充電は、入力電力ライン2330上に供給された電力により行われ得る。第4コンデンサ2408の放電は、負荷用供給ライン2348により電力供給が行われつつある負荷に基づき得る。前記負荷としては、電動バルブ2202(図22)、および/または、電子モジュール2108(図21)における他の任意の電子機器が挙げられる。
【0164】
プロセッサ2308は、負荷用供給ライン2348上の負荷に対し、調整済み出力電圧を提供可能である。負荷用供給ライン2348上に供給される電力は、前記発電機、第1コンデンサ2402および/または第4コンデンサ2408からとすることができる。第2と第3のコンデンサ2404、2406は、負荷用供給ライン2348上に存在し得る一切の高周波過渡電流のノイズを抑制し得る。
【0165】
図23の例と同様にプロセッサ2308は、第4コンデンサ2408における放電限界レベルより低い電荷の減耗を検知し、バルブ制御ライン2350上で制御信号を送信して電動バルブ2202(図22)を開成させ得る。結果的な液体の流れは発電モジュール2110(図21)における発電機を高RPMで回転させ、入力電力ライン2330上に電力が生成され得る。第4コンデンサ2408における電荷が放電遮断レベルまで減耗したときに、ステータースライン2350上にエラーを発生させて、電動バルブ2202(図22)を消勢して前記負荷に対する電力を中断するようにできる。
【0166】
図25は、図22から図23の電力制御器2230の例示的処理を示すプロセスフローチャートである。前記負荷に対する所望出力電圧、所望充電レベルおよび所望放電レベルスレッショルド値(前記放電限界点および放電遮断点)が確立されてプロセッサ2308に記憶されたとき、ブロック2502にて処理が開始される。ブロック2504にてプロセッサ2308は、入力電力ライン2330上における供給電圧、および、エネルギ貯蔵装置2302、2304、2306の充放電電圧を監視すべく命令を実行し得る。
【0167】
ブロック2506にてプロセッサ2308は、供給電圧の大きさが前記負荷に対する所望出力電圧以上であるか否かを決定する。もし供給電圧が所望出力電圧より大きければ、ブロック2508にてプロセッサ2308は充電制御スィッチ2310、2312、2314の内の一個以上を起動して入力電力ライン2330からの電力の供給を有効化することで、エネルギ貯蔵装置2302、2304、2306の内の一個以上を充電する。ブロック2510にてプロセッサ2308は、一個以上の充電タイマを起動して充電制御スィッチ2310、2312、2314の充電を監視し得る。これに加え、ブロック2512にてプロセッサ2308は、負荷用供給ライン2348上の負荷に対する入力電力ライン2330からの電力の供給を有効化し得る。この処理は次にブロック2504に戻り、電圧および電荷の監視が継続される。
【0168】
ブロック2506にて、もし供給電圧が所望出力電圧未満であれば、ブロック2518にてプロセッサ2308は、入力電力ライン2330上の供給電圧が所望出力電圧より所定量(x)だけ低いか否かを決定する。もし供給電圧が少なくとも所定量(x)だけ所望出力電圧より低ければ、ブロック2520にてプロセッサ2308はエネルギ貯蔵装置2302、2304、2306の内の一個以上を有効化し、貯蔵された電荷を貯蔵済み電力ライン2332、2334、2336上で放電する。プロセッサ2308は前記負荷に供給を行うべく、貯蔵された電荷を負荷用供給ライン2348上の出力電圧および電流として提供可能である。ブロック2522にてプロセッサ2308は放電タイマを有効化することで、エネルギ貯蔵装置2302、2304、2306の各々からの電力の放電を監視し得る。前記処理はブロック2504に戻り、電圧および電荷の監視が継続される。
【0169】
ブロック2518にて供給電圧が所望出力電圧以上であれば、ブロック2526にてプロセッサ2308は、全てのエネルギ貯蔵装置2302、2304、2306が完全に充電されているか否かを決定する。もし全てのエネルギ貯蔵装置2302、2304、2306が完全充電されていれば、ブロック2528にてプロセッサ2308は電動バルブ2202が開成されているか否かを決定する。もし電動バルブ2202が開成されていなければ、前記処理はブロック2504に戻り電圧が監視される。もし電動バルブ2202が開成されていれば、ブロック2530にてプロセッサ2308はバルブ制御ライン2350上に信号を送信して電動バルブ2202を閉成する。電動バルブ2202が閉成されたとき、発電モジュール2110における発電機は電力の生成を停止する。
【0170】
ブロック2532にては放電タイマがリセットされ、処理はブロック2504に戻り電圧および電荷が監視される。もしブロック2526にてエネルギ貯蔵装置2302、2304、2306の全てが完全には充電されていなければ、ブロック2536にてプロセッサ2308は、エネルギ貯蔵装置2302、2304、2306のいずれかが放電遮断点より低く放電されたか否かを決定する。もしエネルギ貯蔵装置2302、2304、2306が放電遮断点より低く放電されていれば、ブロック2538にてプロセッサ2308は、負荷用供給ライン2348上における出力電力の供給を無効化する。これに加え、ブロック2540にてプロセッサ2308はバルブ制御ライン2350上に信号を送信することで電動バルブ2202を閉成する。ブロック2542にてプロセッサ2308はステータースライン2352上に、エネルギ貯蔵装置2302、2304、2306の充電が実施され得ないという表示を行う。処理は次にブロック2504に戻り、電圧および電荷が監視される。
【0171】
もしブロック2536にてエネルギ貯蔵装置2302、2304、2306のいずれもが放電遮断点より低くは放電されていなければ、ブロック2546にてプロセッサ2308は、エネルギ貯蔵装置2302、2304、2306のいずれが放電限界点より低く放電されているかを決定する。もしエネルギ貯蔵装置2302、2304または2306のいずれかが放電限界点より低く放電されていれば、ブロック2548にてプロセッサ2308はバルブ制御ライン2350上で制御信号を送信して電動バルブ2202を開成させる。電動バルブ2202が開成されたとき、発電モジュール2110における発電機は入力電力ライン2330上に電力を発生する。前記処理はブロック2504に戻り、前記発電機からエネルギ貯蔵装置2302、2304、2306を充電しかつ前記負荷に電力を供給する。もしブロック2546にてエネルギ貯蔵装置2302、2304、2306のいずれもが放電限界点より低くは放電されていなければ、前記処理はブロック2504に戻り、電圧および電荷を監視する。
【0172】
図21と類似する別の例において、前記水力発電システムは水栓システム(faucet system)である衛生器具を含むことができる。前記水栓システムは、バルブモジュール2016、電子モジュール2108および発電モジュール2110を含むことができる。発電モジュール2110における発電機は、電子モジュール2108における少なくとも一個のエネルギ貯蔵装置を充電し得る。電子モジュール2108における電力制御器は、前記エネルギ貯蔵装置が充電されるまで直接充電を許容し得る。これにより前記水栓システムは、液体が該水栓システムを流通する期間を超えて貯蔵電力を使用し得る。これに加え、もし前記水栓システムが延長期間に亙り使用されなければ、単純な手動の一時的押しボタンにより発電モジュール2110内の発電機が液体の流れにより回転されて前記エネルギ貯蔵装置が再充電可能である。
【0173】
更に別の例において、前記水力発電システムはシャワーヘッドである衛生器具を含むことができる。該シャワーヘッドは、ラジオおよび/または他の耐水電子機器を含むことができる。前記ラジオは耐水性とされると共に、AM、FM、コンパクトディスクまたは他の任意の娯楽装置とすることができる。前記水力発電システムは、図9、10に示されたシステムと同様の特徴を含むことができる。前記ステーター内で旋回するタービンから帰着する発電機は、コンデンサ、スーパーコンデンサもしくはウルトラコンデンサを充電する電源とすることができる。これにより前記電子機器には、電源がバッテリーなどの場合には交換のために必要とされる保守サイクルを必要としない電源が提供される。前記シャワーヘッドはまた、シャワーの計時を維持すべくアラーム付きのシャワータイマおよび事前警告表示器も含むことができる。前記アラームは、シャワーの長さを所定時間に維持するために使用可能である。更に前記シャワーヘッドは、該シャワーが作動しているときに照明されるディスプレイを備えたクロックを含むことができる。液体流がない期間中、前記クロックは照明なしでエネルギ貯蔵装置から操作されることで、電力が節約される。
【0174】
図26は、外側ハウジング2602、内側ハウジング2604、センタリングロッド2606およびノズル2608を含む水力発電システム12の更に別の実施形態を示している。内側ハウジング2604は、外側ハウジング2602内に形成されたキャビティ2610内に配置され、かつ、該内側ハウジング2604の外面2613上に配置された複数のパドル2612を含む。外側ハウジング2602は、吐出口2614および内部壁2616を含む。図26に示された水力発電システム12の特徴は多くの点で、既述した水力発電システムの例と類似している。故に簡潔さのために、以下の説明では既述した例との差異について述べる。
【0175】
図示例において外側ハウジング2602は、内側ハウジング部2618、ノズル部2620、排出部2622および流れ収集部2624を含む。内側ハウジング部2618は、内側ハウジング2604の一部を隣接して囲繞すべく形成される。各パドル2612は内側ハウジング部2618の内部壁2616の近傍に配置され、液体インピーダンスを最小化する。先行例におけるのと同様に、内側ハウジング部2618内の内部壁2616は吐出口2614に向けて液体を導くための案内構造(図示せず)を含むことができる。
【0176】
ノズル部2620は、外側ハウジング2602の頂部を形成すると共に、ノズル2608を受容すべく構成される。ノズル2608は、外側ハウジング2602を貫通すべく、かつ、実質的に垂直な液体の流れを内側ハウジング2604のパドル2612に向けて導向すべく配置される。実質的に垂直な液体の流れはノズル2608のノズル吐出口2626から、良好に画成された実質的な層流として比較的に高速で吐出され得る。前記液体の流れは、吐出の後でもノズル吐出口2626の直径を実質的に維持し得る。故に液体の霧化は最小化され得ると共に、液体の流れにおける運動エネルギは比較的に小さな領域に集中可能である。
【0177】
図27は、外側ハウジング2602、内側ハウジング2604、センタリングロッド2606およびノズル2608を含む水力発電システム12の破断側面図である。内側ハウジング2604はパドル2612を含む。外側ハウジング2602は、内側ハウジング部2618、ノズル部2620、排出部2622および流れ収集部2624を含む。
【0178】
パドル2612に対する液体流の衝撃に続き、該液体流は排出部2622に進入し得る。前記衝撃の故に前記液体は、ノズル吐出口2624の直径よりも大きい直径を備えた拡散液体流となり得る。これに加え、前記衝撃ならびに内側ハウジング2604の回転により液体の霧化が生成され得る。前記拡散液体流の直径(もしくは霧化パターン)は、液体の流れの速度と前記発電機に対する電気的な負荷量とに依存し得る。前記発電機に対する負荷が殆どないとき、内側ハウジング2604は比較的に自由に回転可能となっている。故に、ノズル2608から吐出された液体流と共軸的な中心軸線2702に関して30°の拡散角度などの様に、拡散液体流の拡散量は比較的に小さい。逆に、大きな負荷が存在する場合、内側ハウジング2604の回転を維持するには相当の力が必要とされ、かつ、拡散液体流の拡散は中心軸線2702に関する90°もの大きな拡散角度に帰着し得る。前記負荷が如何なるものであれ、パドル2612に対する液体の衝突により、液体の霧化および拡散液体流が生成され得る。説明を目的として、拡散液体流の拡散角度は約45°と仮定される。他の例においては、更に大きな又は更に小さな拡散角度が使用可能である。
【0179】
図27には、衝撃箇所2704および複数の軌跡ベクトル2706も示される。衝撃箇所2704は、ノズル2608から吐出されて良好に画成された実質的に線形の液体流がパドル2612に衝突する領域である。軌跡ベクトル2706は、パドル2612に対する衝撃に続く液体の経路を拡散角度に基づいて示している。軌跡ベクトル2706の内で中心軸線2702に接近するベクトルに従う液体は、収集部2624に直接的に進入して吐出口2614へと導かれ得る。
【0180】
しかし、中心軸線2702から更に離間した軌跡2706における液体は、排出部2622における内面2616に衝突する。この液体は吐出口2614へと効率的に導かれ、流体インピーダンスが最小化される。これに加え、内面2616との衝突から帰着する液体の霧化が最小化される。排出部2622において内面2616は所定形状に構成されることで、液体は吐出口2614へと効率的に導かれて液体の霧化が最小化される。故に、既述した内面2616における案内構造は不要である。代わりに、第2セグメント2710内の内面は実質的に平坦のままとされて反射板として作用する形状とされ、かつ、外側ハウジング2602から液体を効率的に排出して液体インピーダンスを最小化し得る。故にキャビティ2610は、約0.44リットル/分から約4.16リットル/分の範囲の液体流速により実質的に無水に維持可能である。
【0181】
図27に更に示すように、排出部2622内の内面2616は所定形状に構成することができる。該所定形状は、排出部2622内において軌跡ベクトル2706の各々と内面2616との間に形成される軌跡流角度2708に基づき得る。軌跡流角度2708は、内面2616と、パドル2612に対する衝撃から帰着する拡散液体流および液体の霧化により追随される軌跡ベクトル2706と、の交点における角度として定義される。内面2616の形状は、拡散液体流により追随される軌跡流角度2708を約20°未満に維持すべく設計され得る。軌跡流角度2708は、製造許容差および/または液体に伴う物理的特性に基づいて±5°まで変更可能である。
【0182】
図示例において第2セグメント2710の内面2616の形状は、略円錐形の弾丸状ノズル(rocket nozzle)として構成される。前記内面の形状は、回転するパドル2612との衝撃から帰着する拡散液体流の挙動のモデル化もしくは分析に基づき得る。拡散液体流により追随される軌跡流角度2708を内面2616に関して約20°以内に維持することで、液体は更に少ない非層流を以て更に整然とした状態に留まり得る。
【0183】
前記の更に整然とした状態によれば、キャビティ2610からは比較的に更に迅速に排出が行われ得る。故に、液体がノズル2608から吐出されるときに外側および内側ハウジング2602、2604を依然として実質的に無水に維持し乍ら、外側ハウジング2602の全体サイズは最小化することができる。これに加え、吐出口2614から流出する液体の流れは、前記内面と軌跡ベクトル2706との形状の類似性の故に一定の大きさの速度を有し得る。更に、流動液体の更に整然とした状態によれば液体の霧化および乱流は最小化されることから、流体インピーダンスは最小化され、かつ、運動エネルギから回転エネルギへの変換は最大化することができる。
【0184】
外側ハウジング2602の排出部2622の形状はまた、既述した水力発電システムの例に関しても実施され得る。たとえば図11の水力発電システム12を参照すると、ノズル1108が流体流を垂直に吐出するように、外側ハウジング1102は90°回転され得る。これに加え、吐出口1114はノズル1108の反対側となる外側ハウジング1102の壁部へと移動され得ると共に、前記外側ハウジングは約20°以下の軌跡ベクトルに対する軌跡流角度を達成すべく再構成することができる。図21の例示的な水力発電システムにおいて、衛生器具2100の吐出口2104の上流の外側ハウジング1102は、約20°以下の軌跡ベクトルに対する軌跡流角度を達成すべく単純に再構成することができる。
【0185】
図28は、水栓2802である衛生器具の例を示す斜視図である。水栓2802は、図示するように流し台の水栓、ネジ付きの庭用水栓(sillcock)、シャワーヘッド、その他水のような液体の流れを選択的に提供可能な衛生器具をすることができる。水栓2802の尖端には、水処理システム2804が取付けられている。他の例では、水処理システム2804は、ホースその他の管路を介して衛生器具に連結され、カウンタートップ形態やアンダーカウンター形態とすることができる。更に、他の例では、水処理システム2804の構成要素を分離してもよい。例えば、幾つかの構成要素を水栓の端部に取付、カウンタートップ形態やアンダーカウンター形態の一部となる他の構成要素をホースその他のタイプの管路を介して水栓に取付けられている構成要素に連結するようにしてもよい。
【0186】
図示する実施形態による水処理システム2804は、ハウジング2808に結合された切換機構2806を具備する。切換機構2806は、スナップ式の嵌合、摩擦嵌合、ネジ連結、溶接その他の結合機構によって、ハウジング2808に結合することができる。或いは、切換機構2806は、ハウジング2808の一部として形成してもよい。ハウジング2808および切換機構2806は、プラスチック、炭素繊維、鉄鋼、アルミニウムおよび/または他の適当な材料から形成することができる。
【0187】
水処理システム2804は、水栓2802からの液体の流れを受容する入口2810と、処理システム2804からの液体の流れを放出するための出口2812とを具備する。出口2812は、第1と第2の出口2816、2818を含む。第1の出口2816からの液体の流れは、第1の流路を流通して水処理システム2804によって処理される。第2の出口2818からの液体の流れは、第2の流路を流通し、処理されない。切換機構2806は、液体の流れを第1の出口2816から流出させるか、或いは、第2の出口2818から流出させるかを選択するために切換えられるスイッチ2824を含んでいる。他の例では、水処理システム2804に更に出口を設けて、1または複数のスイッチによって、処理された液体または未処理の液体の流れを選択、提供するようにしてもよい。例えば、水処理システム2804は、未処理の水をシンクスプレーヤーと同様のシャワースプレーパターンでスイッチにより選択的に提供可能な出口を設けることができる。
【0188】
図29は、図28の水処理システム2804の例の分解斜視図である。水処理システム2804は、切換機構2806とハウジング2808とを含む。切換機構2806はハウジング2808に結合され、かつ、水栓2802に着脱自在に結合され、水処理システム2804から処理された水または未処理の水を選択的に流出可能とする。
【0189】
切換機構2806は、スイッチ2824、カラー2902、第1の上ガスケット2904、アダプター2906、第2の上ガスケット2908、バルブ本体2910、レバー2912、バネ2914、ボール2916、バルブシール2918、バルブコア2920、外側下ガスケット2922、内側下ガスケット2924を含んでいる。切換機構2806を形成する構成要素は、鉄鋼、プラスチックおよび/または他の無孔材料とすることができる。カラー2902は、図示するネジ連結、バヨネットマウントその他の結合機構によってバルブ本体2910に結合することができる。アダプター2906は、カラー2902によってバルブ本体2910に対して保持される。第1の上ガスケット2904および第2の上ガスケット2908は、夫々、カラー2902とアダプター2906の間およびカラー2902とバルブ本体2910の間に配置される。アダプター2906は、水栓2802に対して液密に連結するように形成することができる。或いは、アダプター2906は、他の如何なる結合方法によっても、水栓2802に液密に連結することができよう。水栓2802からの液体の流れは、カラー2902、第1の上ガスケット2904、アダプター2906、第2の上ガスケット2908を流通してバルブ本体2910へ流入する。
【0190】
液体は、バルブ本体2910に形成された空所2932内に流入する。レバー2912は、第1のポスト2934と第2のポスト2936とを有し、かつ、空所2932に嵌合するように形成されている。第1のポスト2934は、バルブ本体2910を貫通して、そしてリング2938を貫通して延設されている。該リングは、バルブ本体2910に形成することができる。第1のポスト2934にOリング2940を設けて、空所2932からの液体の漏洩を防止する液密のシール部を形成するようにしてもよい。スイッチ2824が切換えられたときに、第1のポスト2934が回転して、これによって、第2のポスト2936が空所2932内で回動するように、第1のポスト2934はスイッチ2824に結合されている。第2のポスト2936は、バネ2914がボール2916を介してバルブシール2918を一定圧力を付勢するように、バネ2914およびボール2916バネ2914およびボール2916を受容するようになっている。第2のポスト2936が回動すると、バルブシール2918に含まれている第1の着座部2941と第2の着座部2942との間でボール2916が移動する。第1と第2の着座部2941、2942の各々は、バルブコア2920への独立した流路を形成するオリフィスを含んでいる。バルブコア2920はシール2918を受容するように形成することができ、かつ、第1のオリフィス2950と第2のオリフィス2952とを含んでいる。
【0191】
図30は、図29に示したバルブコア2920の一例の底面斜視図である。第1と第2のオリフィス2950、2952は、バルブコア2920の上壁2002を貫通し、かつ、各々リップ部2004によって周囲を囲繞されている。第1と第2の着座部2941、2942(図29)の各々は、第1と第2のオリフィス2950、2952に受容され、かつ、リップ部2004の方へ延設されている。バルブコア2920は、また、上壁3002、外壁3008および内壁3010によって画成される外側凹所3006を含み、外壁および内壁は双方ともに上壁3002に対して垂直になっている。外壁3008は斜面3012および外側下面3014まで延びており、外側下面は上壁3002に平行となっている。内壁3010は上壁3002に垂直に内側下面3016まで延びており、内側下面もまた上壁3002に平行となっている。内壁3010および上壁3002によって、外側凹所3006内に内側凹所3020が画成される。内側凹所3020は、内壁3010によって外側凹所3006から完全に分離されている。
【0192】
第1と第2のオリフィス2950、2952の各々は、リップ部2004から延設されたカバー3022によって部分的に閉じられている。第1のオリフィス2950を部分的に閉じるカバー3022は、リップ部2004から外側の斜面3012まで延在しており、かつ、第1のオリフィス2950を流通する流体を内側凹所3020のみに導く。他方で、第2のオリフィス2952を部分的に閉じるカバー3022は、リップ部2004から内側下面3016まで延在しており、かつ、第2のオリフィス2952を流通する流体を外側凹所3006のみに導く。こうして、第1のオリフィス2950および内側凹所3020は、第1の流路(処理液体)の一部を形成し、第2のオリフィス2952および外側凹所3006は第2の流路(未処理液体)の一部を形成する。第1と第2の凹所3006、3020は、内壁3010によって分離、独立した流路を提供する。
【0193】
図29を参照すると、バルブ本体2910の空所2932はレバー2912、バネ2914、ボール2916、シール2918、バルブコア2920を受容するように形成されている。バルブコア2920は、また、空所2932からの液体の漏れを防止するためにバルブシール2954を含んでいる。バルブ本体2910は、ハウジング2808がバルブ本体2910等を空所2932内に保持するように、ネジ連結によってハウジング2808に結合することができる。他の例では、バルブ本体2910およびハウジング2808は他の機構によって結合することもできる。
【0194】
図29、30を参照すると、外側下ガスケット2922および内側下ガスケット2924は、切換機構2806とハウジング2808との間のシール部を形成する。外側下ガスケット2922は外側下面3014に隣接させて配置され、内側下ガスケット2924は内側下面3016に隣接させて配置することができる。こうして、内側下ガスケット2924は、第1と第2の流路を流通する液体の分離を維持し、外側下ガスケット2922は、液体が第2の流路から漏洩することを防止する。第1と第2の流路を流通する液体はハウジング2808に流入する。
【0195】
ハウジング2808は、プラスチック、炭素繊維、アルミニウム、鉄鋼または他の無孔材料から形成することができる。図29に示すように、ハウジング2808は、フィルタモジュール2960である第1の構成要素、動力発生モジュール2962である第2の構成要素、紫外線(UV)照射モジュール2964である第3の構成要素、および、電子モジュール2966である第4の構成要素から成る複数のモジュールを含んでいる。フィルタモジュール2960および紫外線照射モジュール2964は近接させて配置されており、ハウジング2808の略円筒状部分を形成する。動力発生モジュール2962は、ハウジング2808の前記円筒状部分に取付けられた、ハウジング2808の概ね螺旋状部分を形成する。他の例では、水処理システム2804は異なる形態および/または形状とすることができ、水処理システム2804の機能に対応して一層少ないまたは多いモジュールをハウジング2808内に収納することができる。
【0196】
ハウジング2808は、また、該ハウジング2808の中心部分2970に挿入されるマニフォールド2968を含んでいる。マニフォールド2968もまたプラスチック、炭素繊維、アルミニウム、鉄鋼または他の無孔材料から形成することができる。図示する例では、マニフォールド2968は、動力発生モジュール2962の近くでフィルタモジュール2960と紫外線照射モジュール2964との間のハウジング2808の略円筒部分に配置されている。マニフォールド2968はフィルタモジュール2960の近傍に配置されたマニフォールドカバー2972を含んでいる。マニフォールド2968は流路の一部を形成し、かつ、バルブコア2920の内側凹所3020(図30)から流出する液体を受け入れる。マニフォールド2968は、フィルタモジュール2960、紫外線(UV)照射モジュール2964および動力発生モジュール2962間に液体の流れを導く。
マニフォールド2968を一体構造とすることにより、多数のホース、継手、結合部分を有利に省略することができ、かつ、モジュール間で液体を液密に流通させることが可能となる。更に、製造効率、保守の容易性および信頼性が改善される。
【0197】
図31は、図29に示されたマニフォールド2968の一例の斜視図である。マニフォールド2968は、液体の流れに対応した第1の通路3102と第2の通路3104とを含む。第1と第2の通路3102、3104の各々は、第1の流路(処理液体の流路)の一部を形成する。第1の通路3102は第1通路入口3114を有し、第2の通路3104は第2通路出口3118を有する。
【0198】
図32は、図31に例示したマニフォールド2968を反対側から見た斜視図であり、第1の通路3102、第2の通路3104、第1通路入口3114および第2通路出口3118を示す図である。ほぼ円筒状の第1の通路3102は、ほぼ円筒状の第2の通路3104を囲繞するように同軸に位置せしめられる。第1の通路3102は、マニフォールド内壁3202およびマニフォールド分割壁3204によって形成される。分割壁3204は、また、第2の通路3104を画成し、かつ、第1と第2の通路3102、3104の分離を維持する。分割壁3204は、マニフォールドカバー2972(図29)の一部を受容する凹部3206を含む。マニフォールド内壁3202は、マニフォールドカバー2972(図29)を例えば超音波溶接によってマニフォールド2968に結合するための畝部3208を含む。他の例では、マニフォールドカバー2972は、ネジ連結、スナップ式の嵌合、接着その他の結合機構によってマニフォールド2968に結合することができる。
【0199】
図31を再び参照すると、マニフォールド2968は、また、ノズル保持部3106およびランプ着座部3124を含む。ノズル保持部3106は、ノズル1108(図29)と係合して、該ノズルをマニフォールド2968に接触させてしっかりと結合する。ノズル1108は、また、第1流路の一部を形成する。ランプ着座部3124は、マニフォールド2968から紫外線照射モジュール2964へ向けて堅固に突き出た複数の指部3126を含む。指部3126は、紫外線照射モジュール2964(図29)の紫外線光源(図示せず)を保持し、これを支持するように形成されている。。
【0200】
また、マニフォールド2968には、第1のガスケット3132および第2のガスケット3134を受承するように形成された、第1の溝3128および第2の溝3130を有している。図示するマニフォールド2968は概ね円筒形状を有し、kつ、ハウジング2808の略円筒部分を液密にシールするようになっている。マニフォールド2968がハウジング2808の中心部分2970に挿入され、バルブコア2920(図29)から液体を受け入れるように配置されると、第1と第2のガスケット3132、3134と、ハウジング2808の内壁との間が液密にシールされる。バルブコア2920の内側凹所3020(図30)からハウジング2808に流入した液体は、第1通路入口3114を通って第1の通路3102へ導かれる。第1の通路3102は液体の流れをフィルタモジュール2960へ導く。
【0201】
図29に示すように、フィルタモジュール2960はフィルタ窩2974内に配設されたフィルタ2972を含んでいる。フィルタ2972は、フィルタ2972を通過する液体から粒子などを除去する多孔質材料から形成することができる。更に、フィルタ2972は、液体の流れから臭気、塩素、有機化合物などを除去するために活性炭などのような材料を含んでいてもよい。フィルタ2972の全体および/またはフィルタ2972の部分は交換可能とすることができる。フィルタモジュール2960は、第1の流路の一部を形成し、第1の流路に沿ってハウジング2808を流れる液体によって充満される。図示する例示的形態では、第1の流路を流通する液体は、フィルタ入口を通過し、フィルタ2972を包囲するフィルタ窩2974へ流出する。液体は、フィルタ2972を通過し、フィルタ窩2974からフィルタ出口2978を通ってマニフォールド2968へ流出する。
【0202】
図33は、フィルタモジュール2960、マニフォールド2968およびマニフォールドカバー2972の分解斜視図である。マニフォールドカバー2972は、プラスチック、炭素繊維、アルミニウム、鉄鋼、その他第1と第2の通路3102、3104を覆うように形成可能な材料から形成することができる。マニフォールドカバー2972は、リップ部3306が形成された第1と第2のカバー通路3302、3304を含む。第1のカバー通路3302のリップ部3306は、第1の通路3102内に突出し、かつ、凹部3206に受承されるように形成されている。更に、第1のカバー通路3302は、フィルタ入口2976を受承し、フィルタガスケット3310を用いて液密に連結するように形成できる。第1の通路3102内の液体の流れは、第1のカバー通路3302を通過してフィルタ入口2976へ流入する。第2のカバー通路3304のリップ部3306は、第2の通路3104内に突出するように形成することができる。更に、第2のカバー通路3304は、フィルタ出口2978を受承し、フィルタガスケット3310を用いて液密に連結するように形成できる。フィルタ出口2978を流通する液体は、第2のカバー通路3304を通じて第2の通路3104に受け入れられる。第2の通路3104を流通する液体は、第2通路出口3118から紫外線照射モジュール2964へ流入する。
【0203】
図29を再び参照すると、紫外線照射モジュール2964は、エンドキャップ2980、のぞき窓2981および紫外線照射システム2982を含む。エンドキャップ2980は、ハウジング2808の一部を形成し、紫外線照射システム2982への着脱自在のアクセス部を構成する。エンドキャップ2980は、ネジ連結、スナップ式の嵌合その他の着脱自在の結合機構によって、ハウジング2808の残りの部分に結合される。のぞき窓2981は、紫外線照射システム2982が作動していることを目視確認できるようにするポリカーボネートのような窓材料とすることができる。
【0204】
紫外線照射システム2982は、紫外線光源2984、ソケット2986、反応容器2988を含む。紫外線光源2984は、約100ナノメートル〜約280ナノメートルの範囲のUV−Cエネルギのような紫外線エネルギを放射し、液体に含まれているであろうバクテリア、藻などのような生物有機体を無力化する。紫外線光源の例は、低圧水銀タイプ、冷陰極タイプ、発光ダイオードタイプが含まれる。図示する紫外線光源2984は、2管式紫外線光源であって、これは、約3ワット〜約6ワットの交流のような作動電力で連続的に作動させることができよう。更に、紫外線光源2984は、最初に、約8ワット〜12ワットの交流のような所定のワット数で付勢するようにしてもよい。紫外線光源2984は、一般的に着脱自在となっており、ソケット2986に電気的に結合することができる。図示する例では、紫外線光源2984は、電気的に接続するために、ソケット2986の複数の小孔2990に挿入される複数のポスト(図示せず)を含んでいる。
【0205】
ソケット2986は、ネジ連結、接着剤、ファスナその他の機構によりハウジング2808内に同心に取付けることができる。紫外線光源2984は、反応容器2988に隣接させて配置されるように、ソケット2986に結合させることができる。反応容器2988は、テフロン(登録商標)のような紫外線エネルギに対して透過性を有し、かつ、液体を流通させる螺旋状の通路を形成可能な材料から形成することができる。透過性材料によって、反応容器2988を流通する液体は、紫外線光源2984により生成される紫外線エネルギの照射を受けることが可能となる。図示する例では、反応容器2988は、紫外線光源2984を収容する中心孔を有するように形成される。紫外線光源2984は、反応容器2988を流通する液体が受ける紫外線エネルギを最大化するように、反応容器2988と同心に配置され、かつ、該反応容器によって包囲されるように取付けることができる。紫外線光源2984においてソケット2986の反対側の端部は、反応容器2988の中心孔内における紫外線光源2984の位置を保持するために、図31を参照して上述したランプ着座部3124に係合、着座する。
【0206】
図34は、図29に示した反応容器2988に結合したマニフォールド2968の斜視図である。反応容器2988は、第1の流路の一部を形成する、直線部分3402、エルボー部分3404および螺旋部分3406を含む。図示されていないが、第2通路出口3118(図31)は、摩擦嵌合のような液密の連結手段を用いて直線部分3402に結合されている。直線部分3402は、反応容器2988の第1の端部3410から第2の端部3412へ螺旋部分3406を貫通して延在している。エルボー部分3404は、直線部分3402と螺旋部分3406との間の液密の連結部を提供する。
【0207】
図35は、エルボー部分3404の一例を示す斜視図である。エルボー部分3404は、プラスチック、炭素繊維、アルミニウム、鉄鋼その他の無孔材料から形成することのできる第1の半体部分3502と第2の半体部分3504とを含む。第1と第2の半体部分3502、3504は、接着、超音波溶接、その他液密にシール可能な結合機構によって結合することができる。第1の半体部分3502は第1の入口ニップル3506を有している。該第1の入口ニップルは概ね直線状をなし、半体部分3502(図34)の直線部分3402(図34)に受承されるように形成されている。入口ニップル3506は、第1と第2の半体部分3502、3504により画成されるエルボー空洞3508内に連通する通路を形成する。また、螺旋部分3406と同様の曲率半径で湾曲した出口ニップル3510が、第1と第2の半体部分3502、3504によって形成される。入口ニップル3506からエルボー空洞3508に流入した液体は、出口ニップル3510を通ってエルボー空洞3508から反応容器2988(図34)螺旋部分3406(図34)へ流出する。或いは、直線部分3402と螺旋部分3406とを単一の連続通路として形成し、エルボー部分3404を省略してもよい。
【0208】
図34に示すように、螺旋部分3406は、螺旋入口3416と螺旋出口3418とを有する。螺旋入口3416は、出口ニップル3510を受承し液密に連結するように形成されている。螺旋出口3118は、第1の端部3410において、直線部分3402への入口に隣接させて配置されている。従って、同じ端部で液体が反応容器2988に流入、流出する。螺旋出口3418は、ノズル1108に結合し液密にシールするように形成されている。図34は、また、ノズル保持部3106に係合するノズル1108、および、紫外線光源2984(図29)を受容するように螺旋部分3406に形成された中心孔が図示されている。
【0209】
図29及び図34を参照すると、反応容器2988は、ハウジング2808の紫外線照射モジュール2964に嵌合する外径と、紫外線光源2984および直線部分3402を収容する内径とを有した螺旋を形成する。紫外線照射モジュール2964内において、反応容器2988を反射器(図示せず)によって包囲し、紫外線光源2984により放射された紫外線エネルギを螺旋部分3406の中心孔へ向けて反射するようにできる。或いは、反応容器2988に隣接するハウジング2808の内壁を反射面としてもよい。紫外線光源2984は螺旋部分3406内に同心に配置した場合、液体は、直線部分3402を紫外線光源2984に平行に流通し、かつ、螺旋部分3406を紫外線光源2984の周囲を周方向に流通し、液体の流れの照射が最大化される。液体を第2通路出口3118から直線部分3402、エルボー部分3404、螺旋部分3406、螺旋出口3418を通してノズル1108へ流れるようにできる。液体は反応容器2988内のみを流通するので、紫外線照射モジュール2964は実質的に乾燥状態に維持される。
【0210】
螺旋部分3406からの液体の流れはノズル1108へ流入し、液体噴流としてノズル1108から押出される。ノズル1108への流入点において、液体の流れはフィルタモジュール2960によって濾過され、かつ、紫外線照射モジュール2964によって紫外線の照射を受けており、処理済みの液体と看做される。本明細書では、「処理液体」および「処理水」との語は、濾過され紫外線エネルギの照射を受けた液体を意味する。
【0211】
既述したように、ノズル1108は、加圧された流体の液体の流速を高める。加圧され第1の流速で供給された液体は、ノズル1108を流通し第1の流速よりも実質的に高い第2の流速で該ノズル1108から吐出される。ノズル1108は、液体の流れをノズル1108から押出された液体噴流に変換する。液体噴流は、ノズル1108により発電モジュール2962に吐出される。
【0212】
図29に示すように、発電モジュール2962は、既述した水力発電システムを含んでいる。水力発電システムは、ノズル1108と水力発電機2992とを具備している。水力発電機2992は、図11〜図27を参照して説明した実施形態と同様の、内側ハウジング1104である発電機ハウジング、センタリングロッド1106およびノズル1108を含む。従って、ここでは、既述した水力発電システムの特徴については詳細に説明しない。既述した水力発電システムの実施形態の特徴および/または構成要素は、発電モジュール2962に含まれることは理解されよう。
【0213】
発電モジュール2962は、また、第1の流体通路を形成する外側ハウジング2994を含み、第1の流体通路は、ハウジング2808を貫通する第1の流路(処理液体の流路)の一部を形成する。外側ハウジング2994は、図11〜図22を参照して説明した外側ハウジング1102および/または図26、27を参照して説明した外側ハウジング2602と同様とすることができる。第1の出口2816によって、処理液体が、外側ハウジング2994を流通する液体から供給される。
【0214】
発電モジュール2962は、更に、第2の液体通路を含む。第2の液体通路は、第2の流路の一部を形成する未処理液体の通路2996である。第2の出口2818によって、未処理液体通路2996から未処理の液体が供給される。未処理液体の通路2996は、外側ハウジング2992の外面とハウジング2808の内面とによって形成される。すなわち、未処理液体の通路2996は、未処理液体を発電モジュール2962内で外側ハウジング2992の周囲に分離、独立させて第2の出口2818へ向けて流通させるための通路である。
【0215】
こうして、発電モジュール2962は、第1と第2の出口2816、2818の双方に供給する。外側ハウジング2992に形成された第1の液体通路は、処理液体を第1の出口2816へ供給し、未処理液体の通路2996は、未処理液体を第2の出口2818へ供給する。第1と第2の液体通路内の液体の流れは、他の液体通路から分離、独立に維持される。
【0216】
図36は、図28〜図35に示した水処理システム2804からハウジング2808の一部を取外して示す側面図である。作動する間、スイッチ2824が第1の位置にかるとき、加圧液体は、水栓2802からバルブボディ2910を通過して内側オリフィス2950へ、そして第1の凹所3020へ流入する。内側下ガスケット2924は、外側凹所3006への液体の漏洩を防止する。液体の流れは、ハウジング2808内の処理液体通路3602を介して、マニフォールド2968の第1通路入口3114へ導かれる。ハウジング2808内の第1の流路(処理液体の通路)に沿って流れる液体は、遮蔽体3602のために第2の流路(未処理液体の通路2996)へは流入しない。既述したように、液体はフィルタモジュール2960および反応容器2988を流通し、ノズル1108によって高速で外側ハウジング2994内に吐出される。
【0217】
押出された液体噴流は、空気中を移動して、水力発電機2992に衝当する。より詳細には、押出された液体噴流は、内側ハウジング1104の表面に取付けられているパドル1118に衝当し、内側ハウジング1104を回転させる。内側ハウジング1104が回転すると発電され、紫外線光源2984を励起し、これを維持する。或いは、後述するように、紫外線光源2984を最初に励起し、これを維持することに関連して、エネルギ貯蔵装置3740を用いてもよい。パドル1118に衝当した後、液体は外側ハウジング2994内に収容され、そして第1の出口2816へ流れ、この液体は、処理液体として水処理システム2804のユーザに利用可能となる。
【0218】
スイッチ2824が第2の位置に切換えられると、水栓2802からの圧力液体は、第2の流路沿いに第2のオリフィス2952へバルブボディ2910内を流通し、そして外側凹所3006へ流入する。外側下ガスケット2992および内側下ガスケット2994が、外側凹所3006からの液体の漏洩を防止する。外側凹所3006から、液体は未処理液体の通路2996へ導かれ、次いで第2の出口2818へ導かれる。
【0219】
再び図29を参照すると、水処理システム2804の作動、監視および制御は電子モジュール2966により行われる。図示する例では、電子モジュール2966は、ハウジング2808の一部を形成する水密の室である。他の例では、電子モジュール2966は、複数の小室とし、水密の構成要素および/または説明した機能を果たす他の形態とすることができる。
【0220】
図37は、電子モジュール2966のブロック図であり、該ブロック図には、紫外線光源2984および水力発電機2992が含まれている。一例として示す電子モジュール2966は、プロセッサ3702、表示器3704、UVスイッチ370および電源3708を含んでいる。他の例では、電子モジュール2966の機能を記述するために付加的な構成要素または一層少ない構成要素を含んでいてもよい。
【0221】
プロセッサ3702は、水処理システムの表示、監視、制御および操作の少なくとも1つを行うために、入力を受け入れること、および/または、出力することに関連した論理および/または指示を実行可能な如何なる装置とすることもできよう。プロセッサ3702は、指示およびデータを格納するために、メモリー装置のような記憶部を含むことができる。この記憶部は、揮発性または不揮発性のメモリー装置とすることができる。更に、プロセッサ3702は、アナログ−デジタル変換機能のような信号変換機能を含むことができる。プロセッサ3702は、また、電気信号を伝達、受信するための入出力機能、および、データおよび/または指示を伝達、受信するための外部通信ポートを含むことができる。
【0222】
水力発電システムによって生成された電力の監視、表示、制御および分配は、プロセッサ3702によって実行することができよう。水力発電機2992の監視は、1分当りの回転数(RPM)、出力、温度および/または水力発電機2992の関連した他の作動パラメータを受信することを含む。図示する例では、プロセッサ3702は、出力ライン3712上の水力発電機2992の出力を代表する信号を受信する。水力発電機2992によって生成された交流の周波数に基づいて、プロセッサ3702は水力発電機2992のRPMを検知可能である。プロセッサ3702は、また、第1の流路(処理液体の流路)を流通する液体の流量を検知するために、このRPM(交流電力)を用いることができよう。こうして、フィルタの寿命、紫外線光源の寿命、総水量、または、関連したパラメータの他の利用は、プロセッサ3702によって追跡、記録することができよう。
【0223】
選択可能の例として、電子モジュール2966は、また、紫外線センサ、A級センサ(class A sensor)、流量センサなどのような1または複数のセンサ3714を含んでいてもよい。プロセッサ3702は、センサ監視ライン3716でセンサ3714を監視し、紫外線光源が作動しているか、システムを流通する液体が紫外線照射を受けているか、流量などを検知する。或いは、プロセッサ3702はメモリに予め作成したランプ照射曲線をテーブルとして格納していてもよい。ランプ照射曲線によって、紫外線光源2984に供給された電力および液体の流れが紫外線エネルギに照射された時間に基づいて、十分な紫外線照射レベルを達成することができよう。
【0224】
プロセッサ3702は、前記テーブルおよび水力発電機2992を用いて、紫外線光源2984が規定照射量を達成するために必要な量を定刻に決定するようにしてもよい。ここで「規定照射量」との語は、反応室2988(図29)での測定流量において、液体の流れを十分に浄化するのに必要な紫外線エネルギ出力を意味する。このテーブルにした情報を備え、水力発電機2992の現在の出力レベルを知ることにより、プロセッサ3702は、紫外線光源が、要求される規定照射量を達成するために必要な始動時間を決定する。ここで、紫外線光源の「始動時間」との語は、紫外線エネルギ(初期光出力ILO)を放射するプラズマを得るためにアークを生成しガスをイオン化するのに必要な時間を意味する。
【0225】
プロセッサ3702は、また、システム状態の表示を駆動する。表示器3704は、発光ダイオード(LED)、液晶表示器(LCD)、光表示器、圧電、アナンシエーター(annunciator)等のような視覚的または聴覚的表示形態とすることができる。表示器3704は電子モジュール2966に設けることができる。或いは、表示器3704は、ハウジング2808(図29)の概ね球形の部分のような、ハウジング2808において半径方向に目視可能な他の部位に設けてもよい。表示器3704を介してプロセッサ3702により駆動される視覚的または聴覚的な表示は、紫外線光源2984の寿命(使用量)、フィルタ2972(図29)の寿命(使用量)、紫外線光源2984が規定照射量に達したか或いは達したとき、紫外線光源2984を励起するための電力が不足しているか或いは不足したとき、システム故障、システム作動、流量その他のシステムおよび/または作動の表示/状態を表示することができる。プロセッサ3702は、表示器3704を駆動するために表示ライン3718に信号を送出することができる。
【0226】
プロセッサ3702による制御は、紫外線光源2984の起動および作動の制御を含むことができる。既述したように、紫外線光源2984は、水力発電機2992により生成される電力によって初期励起され、次いで、連続励起される。プロセッサ3702は、水力発電機2992のRPMおよび/または出力を監視し、RPMおよび/または出力が所定範囲にあるとき、紫外線光源2984を励起する。水力発電機2992のRPMおよび出力は相互に関連していることは理解されよう。更に、RPMが増加すると、それに対応して出力も増加し、RPMが低下すると、それに対応いて出力も低下する。前記出力の所定範囲は、紫外線光源2984の始動時間を最小化するように選定することができる。言い換えれば、紫外線光源2984が規定照射量に達するのに必要な起動時間は、プロセッサ3702によって最小化されよう。水力発電機のRPMが所定範囲にあるような場合に、最適作動条件で紫外線光源2984を選択的に励起することによって、起動時間はプロセッサによって最小化されよう。起動時間を最小化することにより、水処理システムは、望ましい「即時始動」が可能となろう。即時始動は、第1の流路を流通する未処理液体の量を最小化することができる。
【0227】
紫外線光源2984の起動時間は、また、紫外線光源2984の形態に基づいても有利に短縮することができよう。有利内容に形成された紫外線光源2984の形態に関するパラメータは、紫外線光源2984のフィラメントの大きさ、紫外線光源2984内の混合気および場合によっては予熱制御部3720の利用が含まれる。
【0228】
アークを生成するための紫外線光源2984の高エネルギ起動によって、紫外線光源2984内のプラズマが熱イオン温度まで上昇する。紫外線光源2984により発生する紫外線エネルギの安定性および堅牢性を最大化する熱イオン温度は望ましい。熱イオン温度が低すぎると、高エネルギによって形成されたプラズマが不安定になる。反対に、熱イオン温度が高すぎると反応が低下する。
【0229】
紫外線光源2984のために、プラズマ熱イオン温度の範囲を確立することができる。所定範囲のプラズマ熱イオン温度を得るために、プロセッサ3702の指示により、所定範囲の起動電圧(従ってRPM)を紫外線光源2984に供給することができる。この所定範囲のプラズマ熱イオン温度は、安定性を考慮しないで単純にプラズマを形成するために必要なプラズマ熱イオン温度よりも高いであろう。所定範囲内とするためには、プラズマ熱イオン温度は一層高くする必要があるかもしれないので、所定起動電圧もまた大きくなるかもしれない。望ましい熱イオン温度範囲内とするために望ましい起動電圧に対応するために、紫外線光源2984内のフィラメントもまた大きくなるであろう。こうして、プロセッサ3702の指示により水力発電機2992によって供給される起動電圧は悪影響無く高くすることができ、また、起動時間も最小化される。
【0230】
プラズマを形成する反応の熱イオン温度を最大化するために、ネオンおよびアルゴンの所定混合気が紫外線光源2984内で用いることができる。例えば、混合気は、5%までの範囲のネオンと、残りをアルゴンとした混合気とすることができる。ネオンは約5%〜約15%としてもよい。更に、ネオンを約25%以下とし、アルゴンを約75%以下としてもよい。
【0231】
望ましい温度範囲での反応の熱イオン温度を生成するために、水力発電機2992によって発生する出力はアークを生成させ気体をイオン化するために用いられるので、発生した電力、従って、その結果得られる熱イオン温度を決定するために、最悪の場合の液体流量および温度を用いることもできる。最適な熱イオン温度範囲が決定されると、気体がイオン化したときに最適熱イオン温度範囲内の熱イオン温度が得られたときにのみ紫外線光源2984を励起するために、プロセッサ3702によって水力発電機2992のパラメータを監視するようにできる。
【0232】
紫外線スイッチ3706を制御して、水力発電機2992から紫外線光源2984への電力供給を制御するようにできる。紫外線スイッチ3706は、リレー、FETまたはプロセッサ3702によって駆動されるその他のスイッチ機構とすることができる。プロセッサ3702は、許可ライン3722上の出力信号として送出される許可信号によって、紫外線スイッチ3706を指示する。紫外線スイッチ3706は、エネーブルされると、水力発電機2992から高圧ライン2724を介して電力を受け取り、この水力発電機2992によって発生した電力を紫外線光源2984へ電力供給ライン越しに送電する。
【0233】
紫外線照射システム2988(図34)および水力発電機2992は、また、種々の流量条件下で流れる液体を十分に照射するために、「負荷整合的(load matched)」に設計されている。流量変化が検知されると、水力発電機2992の出力電圧もまた変化しよう。更に、水力発電機2992の電圧(RPM)変化によって紫外線光源2984の紫外線エネルギ出力も変化するであろう。こうした変化に基づいて、水力発電機2992および紫外線光源2984は、液体流量の予想される範囲の流量条件下で、十分な照射を提供するよう負荷整合的に設計されている。更に、直線部分3402および螺旋部分3406(図34)のような紫外線照射システム2988の他の特徴も、変化する流量のもとで十分に照射できるように設計することができる。
【0234】
予熱制御部3718は、紫外線光源2984に結合したグロー球のような機械的制御部とすることができる。グロー球は、気体のイオン化が開始したときに、紫外線光源2984のフィラメントを短絡するであろう。イオン化が完了し、紫外線光源2984内の反応が望ましい熱イオン温度範囲に達すると、グロー球は短絡を停止するようにできる。或いは、予熱制御部3718をプロセッサ3702によって制御されるリードリレーやトライアックのような短絡スイッチとしてもよい。プロセッサ3702は、短絡スイッチを選択的に付勢し或いは消勢し、規定の照射を達成するために紫外線光源2984の作動時間(on-time)を最小化する。予熱制御部3718の付勢、消勢は、予熱ライン3728上へのプロセッサ3702からの信号によって可能となろう。
【0235】
水力発電機2992の出力を利用してプロセッサ3702へ調整された直流制御電圧を供給するために、電源3708を用いることができる。調整された直流制御電圧は、水力発電機2992が回転を開始するとすぐに、直流制御ライン3730を介してプロセッサ3702へ供給することができる。その結果、プロセッサ3702が先ず付勢され、水力発電機2992が回転し始めるのと実質的に同時に水力発電機2992の出力を監視し始める。
【0236】
水力発電機2992は、高電圧モードで高圧発電機として、そして低電圧モードでは低圧発電機として作動させるようにすることができる。例えば、高電圧モードでは、水力発電機2992は、紫外線光源2984へ高電圧出力を発生するように形成されたコイルを含むことができよう。或いは、低電圧モードでは、紫外線光源2984へ比較的低圧の出力を発生するように形成されたコイルを含むことができよう。
【0237】
本明細書では、「高電圧モード」との語は、水力発電機2992によって発生した作動電圧が、紫外線光源2984を直接励起しかつ作動させるのに十分に高い電圧を意味する。例えば、高電圧モードでは、約300〜400VACの初期励起電圧(水力発電機2992に負荷がかかっていないときの初期起動電圧)を、そして起動後に紫外線光源2984の励起を維持するために約20〜40VACの電圧を提供するようにできる。また、「低電圧モード」との語は、後述するように、紫外線光源2984を起動しかつ作動させるために安定期によって用いられる、水力発電機2992の出力電圧を意味する。例えば、低電圧モードでは水力発電機は約6〜20VACの電圧を提供するようにできる。他の例では、紫外線光源2984を起動、作動させるために、他の電圧モードや他の形態を水力発電機2992で用いることができる。
【0238】
水力発電機2992が高電圧モードで作動している場合、高圧電力ライン3724を介して紫外線スイッチに高電圧出力を供給するようにできる。更に、水力発電機2992は、交流出力ライン3732を介して電源3708へ低電圧出力を供給するように形成されたコイルを含むことができる。最適作動条件となったときに、紫外線光源2984内でアークを発生させるために、比較的高圧の交流電力を紫外線スイッチ3706に供給するようにできる。
【0239】
水力発電機2992が低電圧モードで作動し、比較的低電圧の出力が紫外線光源2984へ供給される場合、電子モジュール2966は安定器3730を含むことができる。安定器3730は、紫外線スイッチ3706と紫外線光源2984との間の電力供給ライン3726に配設することができる。紫外線スイッチ3706は、低電圧モードで作動中の水力発電機2992からの供給電力に基づいて、電源3708から約3〜12VDCのような整流し未調整の直流電圧の供給を受ける。整流した直流電圧は、最適作動条件に達し、プロセッサ3702によって紫外線スイッチ3706が起動したときに、安定器3730によって交流電力に変換し直され紫外線光源2984へ供給される。
【0240】
高電圧モードの水力発電機2992での起動に際して、紫外線光源2984は、既述したように最低電流および高電圧を利用する。イオン化の間、紫外線光源2984のインピーダンスは、1MΩのような比較的高いインピーダンスから100Ωのような比較的低いインピーダンスへ変化する。水力発電機2992を直接電源として用いることにより、紫外線光源2984の変化するインピーダンスと協調的に作動するように構成することのできる電源が提供される。
【0241】
高電圧モードの水力発電機2992は、紫外線光源2984を直接的に初期励起するために所定の起動電圧を提供する。所定の起動電圧は、より悪い場合に予想される液体流量および温度を用いて、無負荷条件での水力発電機2992により出力される第1のRPM、従って起動電圧を予測するために水力発電機2992が備えている電圧範囲とすることができる。プロセッサ3702は、水力発電機2992のRPMが所定の起動電圧を提供可能な所定範囲にあるときのみ、紫外線光源2984を励起する。更に、水力発電機2992は、最悪の場合で予測される液体流量および温度のもとでの対応する第2のRPMに対して設計することにより、初期励起の後に紫外線光源2984の励起を維持する運転電圧を提供するように構成できよう。
【0242】
高電圧モードで作動可能な水力発電機2992は、更に、紫外線光源2984の初期励起を完了するのに十分に長い所定時間、第1のRPM、従って起動電圧を実質的に維持するために、フライホール効果を考慮するようにできる。第1のRPMを実質的に維持することにより、水力発電機2992は、様々な負荷条件下において、望ましい熱イオン温度範囲内で、アークを形成し、紫外線光源2984内の気体をイオン化するために十分な電力を供給可能となる。前記所定時間は、例えば800ミリ秒とすることができる。プロセッサ3702は、水力発電機2992のフライホール効果(起動電圧)を監視し、そして、前記所定時間を達成するために前記RPMの所定範囲を調節する。こうして、プロセッサ3702は、紫外線光源2984を初期励起し、次の紫外線光源2984の起動を最短化するために、最適な時間を連続的に調節する。紫外線光源2984の連続負荷によって、紫外線光源2984の励起を維持するために必要な作動電圧を提供するために、水力発電機2992のRPMは低下するであろう。
【0243】
水力発電機2992が低電圧モードで作動している場合、紫外線スイッチ3706によって紫外線光源2984を初期励起可能とする最適時間を決定することできる。プロセッサ3702によって、水力発電機2992のRPM(または電圧)が所定範囲にあるかを監視するようにできる。前記所定範囲に達すると、紫外線スイッチ3706は安定器3730に直流電圧を供給し、紫外線光源2984内にアークを形成する。前記所定範囲にあるので、安定器3730は、望ましい範囲の熱イオン温度範囲内で紫外線光源2984内にアークを形成することができる大きさの電圧を提供できる。
【0244】
高電圧モードまたは低電圧モードで作動する水力発電機2992は、プロセッサ3702の制御によって、紫外線光源2984と効果的に「インピーダンス整合」するであろう。プロセッサ3702は、水力発電機2992のRPMを監視し、RPMが起動を最短化する所定範囲に達したときに、紫外線スイッチ3706を付勢して紫外線光源2984に電力を供給する。水力発電機2992から十分な電力が供給されたときにだけ紫外線光源2984内にアークを形成することにより、紫外線光源2984の寿命を最大化することができよう。更に、紫外線光源2984内で生成されるプラズマは、生成する紫外線エネルギを最大限安定化し変動を最小化する望ましい熱イオン温度範囲内となるであろう。
【0245】
いずれのモードでも、RPMが所定範囲に達するまでプロセッサ3702が待機する間、アークの形成は遅れるであろう。この遅れは、水力発電機2992の回転の慣性に対抗するために必要な時間のために生じるであろう。この遅れは、水力発電機2992が最高速まで立ち上がる間、水力発電機2992からエネルギを取出すことにより有利に回避できるであろう。こうして、紫外線光源2984の迅速かつ効果的な起動が達成され、イオン化された気体を最大限安定させることができよう。
【0246】
電子モジュール2966は、また、場合によっては、エネルギ貯蔵装置3740と充電/放電制御部3742とを含むことができる。エネルギ貯蔵装置は、コンデンサ、バッテリー、電力を貯蔵、放電できるその他のエネルギ貯蔵機構とすることができる。充電/放電制御部3742は、選択的に電力を伝導可能なリレーやFETのような切換え機構の形態とすることができる。プロセッサ3702は、充電/放電ライン3740へ送出した信号によって、充電/放電制御部3742を制御することができる。充電/放電制御部3742は、また、エネルギ貯蔵ライン3746によってエネルギ貯蔵装置3740に、エネルギ貯蔵ライン3748によって電源3708に結合することができる。
【0247】
貯蔵装置3740は、水力発電機2992によって電力が生成されていないときに、水処理システムに電力を供給するために、プロセッサ3702によって利用するようにできる。更に、貯蔵装置3740は、水力発電機2992の現在の出力を超過する電力要求を満足するために、プロセッサ3702によって利用するようにできる。例えば、水力発電機2992のRPMが不十分なために、プロセッサ3702が紫外線光源2984にアークを形成できない場合に、プロセッサ3702は、貯蔵装置3740からの電力で利用可能な電力を補償すべく充電/放電制御部をエネーブルし、かつ、紫外線光源2984にアークを形成すべく紫外線スイッチ3706をエネーブルするようにできる。プロセッサ3702は、また、水力発電機2992が十分な量の電力を生成しているときに、充電/放電制御部3742が貯蔵装置3740に電力を貯蔵できるようにしてもよい。
【0248】
他の例では、プロセッサ3702は、貯蔵装置3740からの電力によって紫外線光源2984を初期励起することができよう。プロセッサ3702は、該プロセッサ3702が水力発電機2992の回転を検知したときに、つまり、プロセッサ3702が第1の流路に沿って液体の流れを検知したときに、紫外線スイッチ3706をエネーブルする。水力発電機2992のRPM(または電圧)は、紫外線光源2984の励起を維持可能な所定範囲に達するまでプロセッサ3702により監視される。プロセッサ3702は、次いで、同期スイッチ(図示せず)によって電力の供給を貯蔵装置3740から水力発電機に切換えることができよう。こうして、水処理システムは、紫外線光源2984を即時に起動でき、また、電源内蔵型となる。貯蔵装置3740を備えた選択肢は、第三世界諸国のような液体の圧力が低い条件下で、安価で便利な方法を提供する。
【0249】
図38、39は、図28〜図37を参照して上述した水処理システム2804の作用を示すプロセスフローチャートの一例である。図示された作用の一例では、水処理システム2804は、従前に作動しており、従って液体を保持していると仮定する。液体が切換機構2806に流入したときに、先ず、図38のブロック3802から作動を開始する。水処理システム2804のユーザがスイッチ2824を切換えて、処理液体を受け取ることを選択すると、ブロック3804において、液体は、第1の流路に沿って切換機構2806を流通してハウジング2808に流入する。ブロック3806では、従前に既に第1の流路内に存在していた液体が流通し始めている。この既に存在している液体は、水処理システム2804の従前の使用から残っているものである。
【0250】
この既に存在していた液体は、水力発電機2992において高速で押出される噴流として噴射され、ブロック3808で水力発電機2992は回転し始める。ブロック3810では、水力発電機2992は、電力を生成し始める。ブロック3812では、この電力によってプロセッサ3702が付勢される。ブロック3814において、水力発電機2992の出力を監視し、所定範囲のRPMに達したか否かを判断する。RPMが所定範囲に達すると、ブロック3816において、プロセッサ3702は、紫外線光源2984を励起すべく紫外線スイッチ3706をエネーブルする。
【0251】
ブロック3814でRPMが所定範囲になければ、プロセッサ3702は、ブロック3820において、流量を監視して流量が所定範囲を超えていないかを判断する。検知された流れの量は、反応容器2988内に存在し、既に紫外線エネルギの照射を受けた従前の液体の量であるかもしれない。検知された流量が超過している場合には、プロセッサ3702は、ブロック3822で、液体の流れが十分に処理されていない旨のアラームその他の表示を行う。
【0252】
図39を参照すると、ブロック3824では、プロセッサ3702は、3秒のような所定時間が超過したか否かを判断する。所定時間を超過していない倍には、ブロック3814へ戻り、所定範囲のRPMを監視する。所定時間を超こすると、プロセッサ3702は、ブロック3826において、表示器3704により、紫外線光源2984を起動するのに十分な電力が得られないこと示すアラームをだし、ブロック3814へ戻る(図38)。或いは、プロセッサ3702は、既述したように、補助動力を提供すべく貯蔵装置3740(具備する場合に)をエネーブルしてもよい。
【0253】
ブロック3816(図38)で紫外線光源が励起すると、プロセッサ3702は、ブロック3732で流量、フィルタの寿命(使用量)、紫外線光源の寿命(使用量)等を監視する。紫外線光源2984を起動するために貯蔵装置3740を用いる場合には、プロセッサ3702は、所定範囲のRPMに基づいて、貯蔵装置3740から水力発電機2992によって供給される電力に切換えるかを決定する。ブロック3734において、プロセッサ3702は、テーブルにアクセスして、液体が十分な紫外線照射を受けたか否かを判断する。或いは、プロセッサ3702がセンサ3714を監視して上記の判断をしてもよい。液体が十分に照射を受けている場合には、プロセッサ3702は、ブロック3836で、表示器3704によりユーザに液体が処理されている旨の表示をする。液体が十分に照射されていない場合には、ブロック3838において、プロセッサ3702は、表示器3704によりアラームを発生する。
【0254】
ブロック3840で、切換機構2806に流入した液体は、マニフォールド2968に流入し、第1の流路沿いにフィルタ2972へ導かれる。この液体は、ブロック3742で濾過される。ブロック3744では、濾過された液体は、マニフォールド2968へ戻り、第1の流路沿いに反応容器2988へ導かれる。ブロック3846で、濾過された液体は、反応容器2988内で紫外線エネルギの照射を受ける。ブロック3848で、照射された液体は、マニフォールド2968へ再び戻り、第1の流路沿いにノズル1108へ導かれる。ブロック3850では、この液体は、ノズル1108により液体噴流として水力発電機2992へ押出され、第1の流路沿いに第1の出口2816から流出する。
【0255】
図38を再び参照すると、ブロック3802で、ユーザが未処理液体を選択すると、液体は、ブロック3802で第2の流路に沿って切換機構2806を流通する。ブロック3856で、液体は、第2の流路沿いにハウジングへ流入し、未処理液体通路2996を流通する。未処理液体は、ブロック3858で出口2818に供給される。
【0256】
ユーザが液体の流れを停止したとき、プロセッサ3702は、作動データおよび使用量データを不揮発性メモリに送出するのに十分な量のエネルギが残留しているであろう。或いは、貯蔵装置3740からプロセッサ3702へ電力を供給するようにしてもよい。データの格納が完了すると、プロセッサ3702は消勢され、水処理システムは停止する。
【0257】
既述した小型の水処理システムは、独立の電源を形成する小型の水力発電システムにより電源内蔵型である。電力は、小型の水処理システムにより処理された液体を用いて生成される。小型の水処理システムは、水栓の端部に取付けることができる。小型の水処理システムを流通する液体は、処理液体を提供する第1の流路または未処理液体を提供する第2の流路とを選択的に流通する。第1の流路を流通する液体は濾過され、紫外線エネルギの照射を受け、水力発電機を高RPMで回転させるために噴流として押出される水力発電機が回転することにより、紫外線光源を初期励起し、かつ、励起を維持するために用いられる電力が生成される。また、この電力によって小型の水処理システムに含まれているプロセッサを付勢するようにできる。プロセッサは、小型の水処理システム内の監視および制御はもとより、紫外線光源の励起を制御する。
【0258】
特定の実施形態を参照して本発明を説明したが、本発明の精神と範囲とを逸脱することなく、これらの実施形態の種々の修正、変更が可能であることは明らかであろう。全ての均等物を含めて、特許請求の範囲に本発明の精神と範囲とが規定されている。
【図面の簡単な説明】
【0259】
【図1】水力発電システムの一実施形態に連結された水処理システムを示す図である。
【図2】図1に示されたノズルの一実施形態の断面図である。
【図3】図1に示されると共に90°回転され、かつ、水力発電システムの一部が破断された前記水処理システムおよび水力発電システムを示す図である。
【図4】水力発電システムの別実施形態の断面図である。
【図5】図4の5−5線に沿うノズルの断面図である。
【図6】図4に示されると共に90°回転され、かつ、水力発電システムの一部が破断された前記水力発電システムを示す図である。
【図7】前記水処理システムに連結された水力発電システムの別実施形態の断面図である。
【図8】図7に示されると共にステーターハウジングの一部が破断された前記水力発電システムの実施形態の平面図である。
【図9】前記水力発電システムの別実施形態の断面図である。
【図10】図9の水力発電システムの一部の断面図である。
【図11】前記水力発電システムの別実施形態の側面図である。
【図12】図11に示されたノズルの端面図である。
【図13】図12に示された前記ノズルの13−13線に沿う断面図である。
【図14】図12に示された前記ノズルの14−14線に沿う別の断面図である。
【図15】図11に示された水力発電システムの外側ハウジングの一部の15−15線に沿う断面図である。
【図16】図11に示されると共に内側ハウジングが取り外された前記水力発電システムの側面図である。
【図17】図11に示された水力発電システムの外側ハウジングの底部の17−17線に沿う断面図である。
【図18】図11に示された水力発電システムに含まれる内側ハウジングの分解斜視図である。
【図19】図11に示された水力発電システムに含まれるパドルの斜視図である。
【図20】図19に示された前記パドルの20−20線に沿う断面図である。
【図21】衛生器具を含む水力発電システムの斜視図である。
【図22】図21に示された衛生器具の断面図である。
【図23】図22の衛生器具に含まれる電力制御器の一例の概略図である。
【図24】図22の衛生器具に含まれる電力制御器の別の例の概略図である。
【図25】図21から図24の衛生器具内の水力発電システムの作用を示すプロセスフローチャートである。
【図26】前記水力発電システムの別実施形態の部分的側断面図である。
【図27】図26の水力発電システムの別の側断面図である。
【図28】水処理システムの斜視図である。
【図29】図28に示した水処理システムの分解斜視図である。
【図30】図29の水処理システムに含まれているバルブボディの斜視図である。
【図31】図29の水処理システムに含まれているマニフォールドの斜視図である。
【図32】図31のマニフォールドの他の斜視図である。
【図33】図29の水処理システムに含まれているフィルタモジュールと反応容器の分解斜視図である。
【図34】図29の水処理システムに含まれているマニフォールドと反応容器の分解斜視図である。
【図35】図34の反応容器に含まれているエルボーの分解斜視図である。
【図36】ハウジングの一部を除去して示す、図28の水処理システムの斜視図である。
【図37】図29の水処理システムの一部のブロック図である。
【図38】図29の水処理システムの作用を示すプロセスフローチャートである。
【図39】図38のプロセスフローチャートの第2の部分である。

【特許請求の範囲】
【請求項1】
第1と第2の室と、乾燥状態に維持される第3の室とを含むハウジングであって、前記第1と第2の室は、該ハウジングを流通する液体の流れに連通するようにしたハウジングと、
前記第1の室内に配設され、かつ、前記第1の室を流通する液体の流れから粒子を除去するように形成されたフィルタと、
前記第3の室内に配設され液体の流れを浄化するように形成された紫外線照射システムと、
前記第2の室内で作動するように形成された水力発電システムであって、該水力発電システムはノズルを含み、該ノズルから前記第2の室内に噴流として押出される液体の流れに応答して発電するようにした水力発電システムと、
前記第1と第2の室の間に配設された唯1つのマニフォールドであって、前記ノズルと係合するノズル保持部と、液体の流れを前記第1と第2の室に導くために該マニフォールド内に形成された複数の独立の通路とを含むマニフォールドとを具備する液体処理システム。
【請求項2】
前記マニフォールドは、液体の流れを前記第1の室に導くための第1の通路と、液体の流れを前記フィルタと前記紫外線照射システムとの間に導くための第2の通路とを具備する請求項1に記載の液体処理システム。
【請求項3】
前記ハウジングは、水栓の端部に取付けるようになっている請求項1に記載の液体処理システム。
【請求項4】
前記紫外線照射システムは、反応容器と紫外線光源とを具備し、前記反応容器は、入口と出口とを具備しており、前記第1と第2の出口は前記マニフォールドと前記ノズルとに結合するために、双方とも前記反応容器の一方の端部に配設されている請求項1に記載の液体処理システム。
【請求項5】
前記紫外線照射システムは前記紫外線光源に結合されたソケットを更に具備し、前記マニフォールドは、前記紫外線光源においてソケットの反対側の端部と係合するランプ着座部を具備する請求項4に記載の液体処理システム。
【請求項6】
前記反応容器は、直線状の管と、螺旋状の管と、エルボーとを具備し、前記直線状の管は入口を含み、前記螺旋状の管を貫通して前記反応容器の反対側の端部において前記エルボーに結合され、該エルボーは前記螺旋状の管に結合されており、前記螺旋状の管が前記出口を含む請求項4に記載の液体処理システム。
【請求項7】
前記ハウジングは略円筒状部分を具備しており、前記マニフォールドを前記フィルタと前記紫外線照射システムとの間に配置するようにして、前記フィルタ、前記紫外線照射システムおよび前記マニフォールドが前記略円筒状部分内に同心配置されている請求項1に記載の液体処理システム。
【請求項8】
前記ハウジングが略円筒状部分と、球状部分とを具備しており、前記フィルタ、前記紫外線照射システムおよび前記マニフォールドが前記略円筒状部分内に配置され、前記水力発電システムが前記球状部分内に配置されている請求項1に記載の液体処理システム。
【請求項9】
前記ハウジングを水栓の端部に着脱自在に結合するように形成され、かつ、処理液体と未処理液体の流れの何れか一方を選択して前記ハウジングから排出可能とする切換機構を更に具備する請求項1に記載の液体処理システム。
【請求項10】
前記フィルタが活性炭を具備する請求項1に記載の液体処理システム。
【請求項11】
水栓の端部に取付けるようにしたハウジングと、
前記ハウジングを流津する液体の流れから粒子を除去するために前記ハウジング内に配設されたフィルタと、
前記液体の流れを浄化するために前記ハウジング内に配設された紫外線光源と、
前記液体の流れにより回転して前記紫外線光源のために発電するために前記ハウジング内に配設された水力発電機とを具備する液体処理システム。
【請求項12】
前記水力発電機の回転速度が所定範囲内にあるときのみ該水力発電機により生成された電力によって前記紫外線光源を励起するようにしたプロセッサを更に具備する請求項11に記載の液体処理システム。
【請求項13】
前記所定範囲は、前記紫外線光源が、望ましい熱イオン温度範囲内で初期励起可能な範囲である請求項12に記載の液体処理システム。
【請求項14】
前記ハウジング内に配設されたノズルおよび唯1つのマニフォールドとを更に具備し、前記マニフォールドは、前記液体の流れを前記フィルタに導く第1の通路と、前記液体の流れを前記フィルタから前記紫外線光源へ導く第2の通路と、前記ノズルとに係合するように形成されたノズル保持部とを具備し、前記ノズルは、前記紫外線光源からの液体を液体噴流として前記水力発電機へ導き回転を引起こすように形成されている請求項11に記載の液体処理システム。
【請求項15】
前記紫外線光源は、約25%までのネオンガスと、約75%までのアルゴンガスとを含む請求項11に記載の液体処理システム。
【請求項16】
前記ハウジング内に配設されたノズルを更に具備し、該ノズルは、前記液体の流れから液体噴流を生成するように形成されており、該液体噴流は、回転を引き起こすために、前記水力発電機へ向けて噴出されことができるようになっている請求項11に記載の液体処理システム。
【請求項17】
前記水力発電機は、複数のパドル有した発電機ハウジングと、該発電機ハウジングを貫通させて延設されたセンタリングシャフトとを含み、前記パドルは前記発電機ハウジングの外表面に垂直に取付けられており、前記パドルが前記液体噴流を受けると前記発電機ハウジングが前記センタリングシャフトを中止として回転するようになっている請求項16に記載の液体処理システム。
【請求項18】
前記水力発電機は、ローターとステーターとを具備し、前記ローターは発電機ハウジングに希有号された永久磁石より成り、前記ステーターは前記センタリングシャフト上に回転しないように取付けられている請求項11に記載の液体処理システム。
【請求項19】
スイッチを更に具備し、該スイッチのみが前記水力発電機と紫外線光源との間に結合されており、前記プロセッサは、前記水力発電機から前記紫外線光源へ電力を直接供給すべく前記スイッチをエネーブルする請求項12に記載の液体処理システム。
【請求項20】
スイッチおよび安定器を更に具備し、前記スイッチは前記水力発電機と前記安定器との間に結合され、前記安定器は前記紫外線光源に結合されており、前記プロセッサは、前記水力発電機から前記紫外線光源へ電力を供給すべく前記スイッチをエネーブルする請求項12に記載の液体処理システム。
【請求項21】
前記フィルタが活性炭を具備する請求項11に記載の液体処理システム。
【請求項22】
処理液体を提供する第1の流路および未処理液体を提供する第2の流路と、
前記第1の流路の一部を形成するフィルタと、
前記第1の流路の一部を形成する紫外線照射システムと、
前記第1の流路の一部を形成する第1の通路および前記第2の流路の一部を形成する第2の通路を含むように形成された発電モジュールとを具備し、
前記発電モジュールは、前記第1つの流路を液体が流通したときのみ、前記紫外線照射システムのために電力を生成するようになっている液体処理システム。
【請求項23】
処理液体を前記第1の流路から吐出するための第1出口と、未処理液体を前記第1の出口とは独立の前記第2の流路から吐出するための第2出口とを更に具備する請求項22に記載の液体処理システム。
【請求項24】
前記発電モジュールが生成する電力を監視するように構成されたプロセッサを更に具備し、該プロセッサは、前記生成された電力の関数として、前記第1の流路を流通する液体の流量を検知するように構成されている請求項22に記載の液体処理システム。
【請求項25】
前記発電モジュールは、ノズルと水力発電機とを具備し、前記水力発電機は、液体噴流として前記ノズルから押出される、前記第1の流路の流体の流れに応答して、前記第1の流路内で回転するようになっている請求項22に記載の液体処理システム。
【請求項26】
前記水力発電機は、前記第1の流路に回転自在に配設された水力発電機を具備し、前記プロセッサは、生成された電力の関数として前記水力発電機の回転数を検知し、該水力発電機の回転数が所定範囲にあるとき、その電力で紫外線照射システムを励起するように構成されている請求項22に記載の液体処理システム。
【請求項27】
前記プロセッサは、前記フィルタと前記紫外線照射システムの使用量を、生成された電力の関数として検知するように構成されている請求項22に記載の液体処理システム。
【請求項28】
前記発電モジュールは、前記第1の通路内に配設されたローターとステーターとを具備し、前記ローターは、前記第1の通路内の液体の押出された噴流に応答して、前記ステーターを中心として回転し、電力を生成可能となっている請求項22に記載の液体処理システム。
【請求項29】
第1と第2の流路間で切換えるように形成された切換機構を更に具備する請求項22に記載の液体処理システム。
【請求項30】
前記第1の通路は、前記発電モジュールの外側ハウジング内に形成され、前記第2の通路は、前記外側ハウジングの外部に形成される請求項22に記載の液体処理システム。
【請求項31】
レバーおよびバルブコアを更に具備し、前記バルブコアは、前記第1の流路の一部として形成された第1の凹所と、前記第2の流路の一部として形成された第2の凹所とを有しており、前記第1と第2の凹所は、前記レバーにより選択可能な分離独立した流路を形成する請求項22に記載の液体処理システム。
【請求項32】
前記フィルタが活性炭を具備する請求項22に記載の液体処理システム。
【請求項33】
液体処理システムにおいて、
第1の通路を含むように形成された一体構成のマニフォールドと、
第1の通路を流通する液体の流れを濾過するように構成されたフィルタとを具備し、
前記マニフォールドは、濾過済み液体の流れを前記フィルタから離反するように導く第2の通路を含むように形成され、
前記液体処理システムは、更に、前記第2の通路から液体の流れを直接受け入れるように形成され該液体の流れを浄化するための紫外線照射システムを具備し、
前記マニフォールドが、前記マニフォールドに取付けられたノズルと係合するノズル保持部を具備し、前記ノズルは、前記紫外線照射システムから浄化された液体の流れを直接受け入れ、該液体の流れを押出された液体噴流として噴出するようになっており、
前記液体処理システムは、更に、前記押出された液体噴流との接触に応答してローター、紫外線照射システムに供給するために電力を生成する水力発電機を具備する液体処理システム。
【請求項34】
前記フィルタおよび紫外線照射システムは、前記マニフォールドの両側部において、同軸に配置されている請求項33に記載の液体処理システム。
【請求項35】
前記水力発電機は、センタリングシャフトと、該センタリングシャフトを中心として回転自在の発電機ハウジングとを具備する請求項33に記載の液体処理システム。
【請求項36】
前記ハウジングが、該ハウジングの表面に実質的に垂直に延設された複数のパドルを含み、該パドルが前記液体噴流の衝当を受けると回転するようになっている請求項35に記載の液体処理システム。
【請求項37】
前記フィルタは活性炭を具備する請求項33に記載の液体処理システム。
【請求項38】
液体処理システムで液体を処理するための方法において、
液体処理システムを通して液体の流れを引き起こす段階と、
前記液体の流れを濾過する段階と、
前記液体の流れ出水力発電機を回転して電力を生成する段階と、
前記水力発電機の1分当りの回転数を検知するために、前記電力を監視する段階と、
前記水力発電機の1分当りの回転数が所定範囲内に入ったときに、前記水力発電機により生成される電力によって紫外線光源を励起する段階と、
前記紫外線光源によって生成した紫外線エネルギによって前記液体の流れを照射する段階とを含む液体処理方法。
【請求項39】
前記電力および前記紫外線光源の励起との関数として、前記液体が十分に照射されたときを表示する段階を更に含む請求項38に記載の液体処理方法。
【請求項40】
前記紫外線光源の励起は、安定器を介さずに前記水力発電機から直接交流電力を前記紫外線光源へ供給することを含む請求項38に記載の液体処理方法。
【請求項41】
前記紫外線光源の励起は、前記紫外線光源を励起するように構成された安定器へ、前記水力発電機から直流電力を供給することを含む請求項38に記載の液体処理方法。
【請求項42】
前記紫外線光源の励起は、前記紫外線光源内の熱イオン温度が、所定の熱イオン温度範囲内になるように高めることを含む請求項38に記載の液体処理方法。
【請求項43】
前記電力の監視は、前記電力を監視するために前記水力発電により生成される電力でプロセッサを付勢することを含む請求項38に記載の液体処理方法。
【請求項44】
前記電力の監視は、電力の関数として前記フィルタおよび前記紫外線光源の使用量を追跡、記録することを含む請求項38に記載の液体処理方法。
【請求項45】
前記水力発電機を回転させることは、内壁に永久磁石が取付けられたハウジングを、該ハウジングを貫通して延在し静止しているセンタリングロッドに取付けられたステーターを中心として回転することを含む請求項38に記載の液体処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate


【公表番号】特表2007−512940(P2007−512940A)
【公表日】平成19年5月24日(2007.5.24)
【国際特許分類】
【出願番号】特願2006−532264(P2006−532264)
【出願日】平成16年1月17日(2004.1.17)
【国際出願番号】PCT/US2004/001484
【国際公開番号】WO2005/044734
【国際公開日】平成17年5月19日(2005.5.19)
【出願人】(302070822)アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー (122)
【Fターム(参考)】