説明

非線形顕微鏡及び非線形観察方法

【課題】セクショニング画像を高コントラストに取得する。
【解決手段】本発明の非線形顕微鏡は、観察対象物(10)中の特定種類の分子に非線形光学過程による特定波長の光を生起させるためのレーザ光を生成する生成手段(11〜13)と、前記レーザ光を集光して前記観察対象物の観察対象面上にレーザスポットを形成する集光手段(18)と、前記レーザスポットを、面内位置のずれた1対のレーザスポットに分離する分離手段(161、162)と、前記1対のレーザスポットの一方で生起した前記特定波長の光と他方で生起した前記特定波長の光との間の位相ズレを示す信号を生成する検出手段(21〜25)と、前記1対のレーザスポットで前記観察対象面上を走査しながら前記信号を繰り返し取り込むことにより、前記観察対象面における前記信号の分布を計測する制御手段(30)とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非線形顕微鏡及び非線形観察方法に関する。
【背景技術】
【0002】
近年、バイオ産業の勢いはとどまるところを知らず、とりわけ生体試料を観察対象とした3次元分解顕微鏡の需要は高まる一方である。その中でも空間分解能の高い共焦点顕微鏡は、古くから現在に至るまで広く使われている。従来の共焦点顕微鏡は、生体試料に含まれる蛍光分子が照射光の強度に対して線形な強度で発する蛍光(線形光学過程による信号)を観測するものであるが、近年になると、生体試料に含まれる特定種類の分子が照射光の強度に対して非線形な強度で発する光(非線形光学過程による信号)を観測する非線形顕微鏡が注目されつつある。
【0003】
非線形顕微鏡は、照射光として比較的長い波長の光(例えば近赤外線)を用いるので、試料の深部まで観察することが可能である。また、上述した非線形過程は対物レンズの焦点近傍の微小領域でしか生起しないので、非線形顕微鏡が取得する画像は極めて薄い層の画像(セクショニング画像)となる。このような非線形顕微鏡の1つに、非線形過程としてコヒーレントアンチストークスラマン散乱(CARS)を利用したCARS顕微鏡がある(特許文献1等を参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−47435号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら従来のCARS顕微鏡では、CARS過程による信号(CARS信号)と共に、CARS信号と同じ波長のノイズ信号も発生するため、セクショニング画像のコントラストが低い(バックグラウンドノイズが大きい)という問題がある。
【0006】
そこで本発明は、セクショニング画像を高コントラストに取得することのできる非線形顕微鏡及び非線形観察方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明を例示する非線形顕微鏡の一態様は、観察対象物中の特定種類の分子に非線形光学過程による特定波長の光を生起させるためのレーザ光を生成する生成手段と、前記生成手段が生成した前記レーザ光を集光して前記観察対象物の観察対象面上にレーザスポットを形成する集光手段と、前記観察対象面上に形成される前記レーザスポットを、面内位置のずれた1対のレーザスポットに分離する分離手段と、前記1対のレーザスポットの一方で生起した前記特定波長の光と他方で生起した前記特定波長の光との間の位相ズレを示す信号を生成する検出手段と、前記1対のレーザスポットで前記観察対象面上を走査しながら前記検出手段が生成する信号を繰り返し取り込むことにより、前記観察対象面における前記信号の分布を計測する制御手段とを備える。
【0008】
また、本発明を例示する非線形観察方法の一態様は、観察対象物中の特定種類の分子に非線形光学過程による特定波長の光を生起させるためのレーザ光を生成する生成手順と、前記生成手順で生成された前記レーザ光を集光して前記観察対象物の観察対象面上にレーザスポットを形成する集光手順と、前記観察対象面上に形成される前記レーザスポットを、面内位置のずれた1対のレーザスポットに分離する分離手順と、前記1対のレーザスポットの一方で生起した前記特定波長の光と他方で生起した前記特定種類の光との間の位相ズレを示す信号を生成する検出手順と、前記1対のレーザスポットで前記観察対象面上を走査しながら前記検出手順で生成される信号を繰り返し取り込むことにより、前記観察対象面における前記信号の分布を計測する制御手順とを含む。
【発明の効果】
【0009】
本発明によれば、セクショニング画像を高コントラストに取得することのできる非線形顕微鏡及び非線形観察方法が実現する。
【図面の簡単な説明】
【0010】
【図1】第1実施形態のCARS顕微鏡の構成図である。
【図2】空間光位相変調素子161、162の機能を説明する図である。
【図3】CARS過程及び非共鳴過程を説明する図である。
【図4】点像振幅分布φ1、φ2、φrを説明する模式図である。
【図5】点像St、St’とダブルスリット板23との関係を説明する図である。
【図6】干渉縞Spとピンホールアレイ板25との関係を説明する図である。
【図7】第2実施形態のCARS顕微鏡の構成図である。
【図8】点像St、St’とピンホール板225との関係を説明する図である。
【図9】点像St、St’の強度分布を説明する模式図である。
【図10】第3実施形態のCARS顕微鏡の構成図である。
【発明を実施するための形態】
【0011】
[第1実施形態]
以下、本発明の第1実施形態を説明する。本実施形態は、CARS顕微鏡の実施形態である。
【0012】
図1は、本実施形態のCARS顕微鏡の構成図である。図1に示すとおり、本実施形態のCARS顕微鏡には、レーザ光源11と、波長可変の光パラメトリック発振器(OPO:optical parametric oscillator)12と、ビームエキスパンダ13と、ダイクロイックミラー14と、全反射ミラー151、152と、空間光位相変調素子161、162と、ダイクロイックミラー17と、第1対物レンズ18と、透過型の試料ステージ19と、第2対物レンズ20と、波長選択フィルタ21と、集光レンズ22と、ダブルスリット板23と、コリメートレンズ24と、ピンホールアレイ板25と、光検出器26と、制御部30とが備えられる。
【0013】
試料ステージ19には、透明な培養容器10が配置される。培養容器10には生体細胞を含んだ透明な培養液が収容されており、生体細胞に含まれる特定種類の分子(タンパク質、脂質など)が観察対象となる。以下、観察対象となる特定種類の分子を「観察対象分子」と称す。
【0014】
レーザ光源11は、パルスレーザ光を発振するパルスレーザ光源であって、レーザ光源11が発振するパルスレーザ光のパルス形状は、適切な形状に設定されている。パルス形状の設定により、後述するレーザスポットの中心部分のエネルギー密度は、観察対象分子にCARS信号を発生させるのに適したエネルギー密度となる。
【0015】
光パラメトリック発振器12は、レーザ光源11が発振したパルスレーザ光により、光周波数の互いに異なる(すなわち波長の互いに異なる)2種類のパルスレーザ光L1、L2を生成し、それらのパルスレーザ光L1、L2を同軸で出射する。なお、この光パラメトリック発振器12は、外部から与えられた電気信号に応じて、パルスレーザ光L1の光周波数ω1と、パルスレーザ光L2の光周波数ω2との組み合わせを変更することができる。よって、光パラメトリック発振器12は、観察対象分子の変更に対応できる。通常、光パラメトリック発振器12が出射するパルスレーザ光L1、L2の光周波数ω1、ω2の組み合わせは、観察対象分子の固有振動数ωvに対してωv=ω1−ω2の式を満たすように設定される。
【0016】
ビームエキスパンダ13は、光パラメトリック発振器12から射出したパルスレーザ光L1、L2を、径の太い平行光束に変換する。
【0017】
ダイクロイックミラー14は、ビームエキスパンダ13を射出したパルスレーザ光L1、L2を互いに分離する。ここでは、ダイクロイックミラー14の反射/透過波長特性は、パルスレーザ光L1と同じ光周波数(光周波数ω1)の光を反射し、かつパルスレーザ光L2と同じ光周波数(光周波数ω2)の光を透過するような特性に設定されているものとする。
【0018】
ダイクロイックミラー14を反射したパルスレーザ光L1は、全反射ミラー151及び空間光位相変調素子161を介してダイクロイックミラー17へ入射し、ダイクロイックミラー14を透過したパルスレーザ光L2は、全反射ミラー152及び空間光位相変調素子162を介してダイクロイックミラー17へ入射する。
【0019】
空間光位相変調素子161、162の各々は、光路長分布が非一様な位相板(媒質厚さ分布が非一様な位相板)であって、その光路長分布の非一様性により、入射光束の波面(位相分布)を変形する。ここでは、パルスレーザ光L1、L2の光周波数の組み合わせが可変であるので、空間光位相変調素子161、162は、外部から与えられた電気信号に応じて光路長分布を変化させることができるものとする。
【0020】
なお、光路長分布が可変の空間光位相変調素子161、162の各々としては、例えば、特表2008−504583号公報、 特表2009−501953号公報、特表2010−507119号公報の何れかに記載されたディジタルレンズが適用可能である。
【0021】
空間光位相変調素子161がパルスレーザ光L1に与える位相分布は、図2(A)の左側に示すとおりに設定され、空間光位相変調素子162がパルスレーザ光L2に与える位相分布は、図2(A)の右側に示すとおりに設定される。すなわち、空間光位相変調素子161は、光軸を含む所定の平面(図2ではYZ平面)でパルスレーザ光L1の波面を空間的に2分割し、かつ、分割波面の一方(プラスX側)と他方(マイナスX側)との間に位相差πを与える。また、空間光位相変調素子162は、前記平面に対応する平面(YZ平面)でパルスレーザ光L2の波面を空間的に2分割し、分割波面の一方(プラスX側)と他方(マイナスX側)との間に位相差πを与える。
【0022】
なお、パルスレーザ光L1とパルスレーザ光L2との間では光周波数が異なるので、空間光位相変調素子161と空間光位相変調素子162との間では、入射光に与える位相分布が互いに等しくとも、光路長分布(プラスX側の光路長とマイナスX側の光路長との段差)は互いに異なる。
【0023】
また、図1には示さなかったが、ダイクロイックミラー14からダイクロイックミラー17までのパルスレーザ光L1の光路長と、ダイクロイックミラー14からダイクロイックミラー17までのパルスレーザ光L2の光路長との少なくとも一方は調節可能であって、ダイクロイックミラー17へパルスレーザ光L1が入射するタイミングと、ダイクロイックミラー17へパルスレーザ光L2が入射するタイミングとは合致しているものとする。これにより、培養容器10にパルスレーザ光L1が入射するタイミングと培養容器10にパルスレーザ光L2が入射するタイミングとが合致する。
【0024】
ダイクロイックミラー17は、空間光位相変調素子161を射出したパルスレーザ光L1と、空間光位相変調素子162を射出したパルスレーザ光L2とを同軸に統合する。このダイクロイックミラー17の反射/透過波長特性は、パルスレーザ光L1と同じ光周波数の光を反射し、かつパルスレーザ光L2と同じ光周波数の光を透過するような特性に設定されている。
【0025】
第1対物レンズ18は、ダイクロイックミラー17で統合されたパルスレーザ光L1、L2を、第1対物レンズ18の焦点面上に集光する。この焦点面は、培養容器10の深部の特定層に一致しており、この層が観察対象面となる。以下、この観察対象面上でパルスレーザ光L1、L2の照射される部分を「レーザスポット」と称す。
【0026】
ここで、パルスレーザ光L1の分割波面には図2(A)の左側に示したとおり位相差πが付与されているため、パルスレーザ光L1のレーザスポットは、図2(B)の左側に示すとおり1対のレーザスポットS1、S1’に分離している。また、パルスレーザ光L2の分割波面にも図2(A)の右側に示したとおり位相差πが付与されているため、パルスレーザ光L2のレーザスポットも、図2(B)の右側に示すとおり1対のレーザスポットS2、S2’に分離している。1対のレーザスポットS1、S1’の間では位相がπだけずれており、1対のレーザスポットS2、S2’の間では位相がπだけずれている。
【0027】
なお、1対のレーザスポットS1、S1’の分離方向は、パルスレーザ光L1の波面の分割方向(X方向)に対応しており、1対のレーザスポットS2、S2’の分離方向も、パルスレーザ光L2の波面の分割方向(X方向)に対応している。また、1対のレーザスポットS1、S1’の横ズレ量は、第1対物レンズ18の開口数によって決まる微小距離(例えば数百nm)であり、1対のレーザスポットS2、S2’の横ズレ量も、第1対物レンズ18の開口数によって決まる微小距離(例えば数百nm)である。なお、レーザスポットS1、S1’の各々のサイズは、パルスレーザ光L1の光周波数ω1によって決まり、レーザスポットS2、S2’の各々のサイズは、パルスレーザ光L2の光周波数ω2によって決まるので、レーザスポットS1、S1’のサイズとレーザスポットS2、S2’のサイズとは若干異なる。しかし、マイナスX側に位置するレーザスポットS1、S2同士はほぼ一致し、プラスX側に位置するレーザスポットS1’、S2’同士はほぼ一致する。よって、以下では、マイナスX側に位置するレーザスポットS1、S2を纏めて「レーザスポットS」と称し、プラスX側に位置するレーザスポットS1’、S2’を纏めて「レーザスポットS’」と称す(図2(C)参照。)。
【0028】
ここで、上述したとおり、レーザ光源11の出射パルス形状は適切に設定されているので、図2(C)に示すとおり、レーザスポットSの中央部分Srのエネルギー密度と、レーザスポットS’の中央部分Sr’のエネルギー密度とは、観察対象分子がCARS信号を発生するのに適したエネルギー密度となる(但し、図2(B)、(C)は模式図なので、実際のスポット形状は、図2(B)、(C)のとおりになるとは限らない。)。
【0029】
よって、レーザスポットSの中央部分Srに観察対象分子が存在していれば、その部分SrにおいてCARS過程(図3(A))の生起する可能性があり、レーザスポットS’の中央部分Sr’に観察対象分子が存在していれば、その部分Sr’においてCARS過程(図3(A))の生起する可能性がある。以下、レーザスポットSのうちCARS信号の発生しうる部分Srを「高密度スポットSr」と称し、レーザスポットS’のうちCARS信号の発生しうる部分Sr’を「高密度スポットSr’」と称す。なお、前述したとおり、レーザスポットS、S’の横ズレ量は微小(数百nm)なので、高密度スポットSr、Sr’の横ズレ量も微小である。
【0030】
ここで、CARS過程(図3(A))は、次のとおり生起する。すなわち、光周波数ω1を有したパルスレーザ光L1と光周波数ω2を有したパルスレーザ光L2は、光周波数(ω1−ω2)を有したうなりを発生させるが、観察対象分子の固有振動数ωvは、そのうなりの光周波数(ω1−ω2)と等しいため、観察対象分子はうなりに共鳴して励起状態へと移行する。そして、励起状態となった観察対象分子に対して光周波数ω1を有したパルスレーザ光L1が照射されると、観察対象分子は、(ωv+ω1)に相当するエネルギーを有した中間状態へと移行する。その後、中間状態の観察対象分子が基底状態へ移行する際に、光周波数ωr=2ω1−ω2を有したCARS信号が発生する。
【0031】
因みに、このCARS過程によると、高密度スポットSr、Sr’で発生し得るCARS信号の振幅分布φr(X,Y)(=観察対象分子の密度が一様であるときにCARS信号が観察対象面に形成する点像振幅分布)は、以下の式で表される。
【0032】
φr(X,Y)={φ1(X,Y)}×{φ2(X,Y)}
但し、この式におけるφ1(X,Y)は、レーザスポットS1、S1’の振幅分布(=パルスレーザ光L1が観察対象面に形成する点像振幅分布)であり、φ2(X,Y)は、レーザスポットS2、S2’の振幅分布(=パルスレーザ光L2が観察対象面に形成する点像振幅分布)である。
【0033】
なお、パルスレーザ光L1の点像振幅分布φ1(X)は、例えば図4(A)の左側に示すような2つの点像振幅分布を合成したものであり、パルスレーザ光L2の点像振幅分布φ2(X)も、例えば図4(A)の右側に示すような2つの点像振幅分布を合成したものであるので、CARS信号の点像振幅分布φr(X)は、例えば図4(B)に示すように、互いに分離した2つの点像振幅分布となる(但し、図4は模式図なので、実際の振幅分布が図4のとおりになるとは限らない。)。
【0034】
ところで、高密度スポットSr、Sr’(図2(C)参照)の各々では、共鳴過程の1種であるCARS過程(図3(A))だけでなく、非共鳴過程(図3(B))も生起し得る。この非共鳴過程は、培養液中及び細胞中の水分子に起因するものであって、ノイズ信号の原因となる過程である。
【0035】
ここで、水分子による非共鳴過程(図3(B))は次のとおり生起する。すなわち、水分子は、光周波数ω1を有したパルスレーザ光L1によって2光子励起され、2×ω1に相当するエネルギーを有した中間状態へと移行する可能性がある。その後、中間状態の水分子が基底状態へ移行する際に、光周波数ωrを有した第1の光と、光周波数ω2を有した第2の光とが発生する。
【0036】
このうち、第2の光は、CARS信号と光周波数が異なるため波長選択フィルタ21でカットすることができるが、第1の光は、CARS信号と光周波数が同じであるため波長選択フィルタ21でカットすることができない。しかも、第1の光は、CARS信号と比較して強度が高く、CARS信号に対してコヒーレントである。この第1の光が、前述したバックグラウンドノイズとなる。以下、この第1の光を「バックグラウンドノイズ」と称す。
【0037】
しかしながら、非共鳴過程(図3(B))とCARS過程(図3(A))との相違により、バックグラウンドノイズとCARS信号との間では、位相が必ずπ/2だけずれるという特徴がある。
【0038】
本実施形態のCARS顕微鏡は、バックグラウンドノイズに関するこれらの特徴(CARS信号より強度が高く、CARS信号とは位相がπ/2だけずれるという特徴)を利用して、CARS信号をバックグラウンドノイズから分離する。前述したとおりレーザスポットを1対のレーザスポットに分離したのも、CARS信号をバックグラウンドノイズから分離するためである。
【0039】
図1に戻り、第2対物レンズ20は、培養容器10を挟み第1対物レンズ18に対向する位置に配置されており、第2対物レンズ20の光軸は第1対物レンズ18の光軸に一致し、第2対物レンズ2の焦点は第1対物レンズ18の焦点に一致している。よって、第2対物レンズ20は、レーザスポットS、S’から射出する光(パルスレーザ光L1、L2、CARS信号、バックグラウンドノイズ、第2の光)を捉える。
【0040】
波長選択フィルタ21は、第2対物レンズ20の光射出側に配置され、CARS信号と同じ光周波数の光を透過し、他の光周波数の光をカットするような特性に設定されている。よって、パルスレーザ光L1、L2及び第2の光は波長選択フィルタ21でカットされるが、CARS信号及びバックグラウンドノイズは波長選択フィルタ21を透過する。
【0041】
集光レンズ22は、波長選択フィルタ21の光射出側に配置されており、集光レンズ22の光軸は第2対物レンズ20の光軸に一致している。この集光レンズ22は、波長選択フィルタ21を透過した光(CARS信号及びバックグラウンドノイズ)を、所定面上に向けて集光する。この所定面は、集光レンズ22及び第2対物レンズ20に関して観察対象面と光学的に共役な面である。よって、この所定面には、図5(A)に示すような1対の点像St、St’が形成される(なお、図5は模式図なので、点像の実際の形状は図5のとおりになるとは限らない。)。
【0042】
ダブルスリット板23は、これら1対の点像St、St’の形成面に配置される。ダブルスリット板23には、図5(B)に示すとおり、Y方向に延びる2本のスリット23a、23a’がX方向に並べて形成されており、一方のスリット23aのX方向の形成先は、一方の点像Stのピーク位置(強度がピークとなる位置であって、点像Stのほぼ中心)であり、他方のスリット23a’のX方向の形成先は、他方の点像St’のピーク位置(強度がピークとなる位置であって、点像St’のほぼ中心)である。また、スリット23a、23a’の各々のスリット幅は十分に狭く設定されており、スリット23aを透過した光(CARS信号及びバックグラウンドノイズからなる混合光)のX方向の波面形状と、他方のスリット23a’を透過した光(CARS信号及びバックグラウンドノイズからなる混合光)のX方向の波面形状とは、理想的球面状となる。
【0043】
コリメートレンズ24は、ダブルスリット板23の光射出側に配置され、コリメートレンズ24の光軸は、集光レンズ22の光軸に一致し、コリメートレンズ24の焦点は、集光レンズ22の焦点に一致している。よって、コリメートレンズ24は、ダブルスリット板23の像を無限遠方に形成する。この場合、コリメートレンズ24の光射出側の所定面(ダブルスリット板23のフーリエ面)にダブルスリット板23のフーリエ変換像が形成される。このフーリエ変換像は、例えば図6(A)に模式的に示すような干渉縞Spであって、この干渉縞SpのX軸上の強度分布は正弦波状である。
【0044】
この干渉縞Spに寄与したのは、一方のスリット23aを通過した光と、他方のスリット23a’を通過した光とである。以下、一方のスリット23aを通過して干渉縞Spに寄与する光を「一方の被干渉光」と称し、他方のスリット23a’を通過して干渉縞Spに寄与する光を「他方の被干渉光」と称す。
【0045】
この干渉縞Spの位相(明暗位置)は、一方の被干渉光と他方の被干渉光との間の位相差によって決まる。
【0046】
ここで、培養容器10中に観察対象分子が存在せずに培養液のみが収容されているとき(非観察時)の干渉縞Spを考える。図6(A)〜(C)が、非観察時の干渉縞Spを説明する図である(但し、図6は模式図なので、干渉縞Spの実際のパターンが図6に示すとおりになるとは限らない。)。
【0047】
先ず、非観察時には、観察対象分子に起因するCARS信号は発生せず、水分子に起因するバックグラウンドノイズは発生する。
【0048】
よって、非観察時の干渉縞Spに寄与する一方の被干渉光は、バックグラウンドノイズのみからなり、他方の被干渉光も、バックグラウンドノイズのみからなる。
【0049】
よって、非観察時には、これら1対の被干渉光の間では、強度はほぼ等しくなり、位相差はπとなるはずである。
【0050】
なぜなら、培養容器10中では水分子の密度分布はほぼ一様なので、1対の高密度スポットSr、Sr’の間でも水分子の密度は等しくなり、その結果、1対のバックグラウンドノイズの間で強度は等しくなる。また、1対のレーザスポットS、S’の間には位相差πが付与されているので、1対のバックグラウンドノイズの位相差もπとなる。
【0051】
したがって、図6(B)に示すとおり、非観察時の干渉縞Spのコントラストは十分に高くなり、非観察時の干渉縞Spの位相は所定位相(例えば光軸上に明部が位置するような位相)となる。
【0052】
図1に戻り、ピンホールアレイ板25は、前述した所定面(フーリエ面)に配置される。ピンホールアレイ板25には、図6(C)に示すとおり、干渉縞Spの縞ピッチと同じピッチで複数(例えば3以上)のピンホール25aがX軸上に配列されている。個々のピンホール25aの直径は、縞ピッチの1/2倍以下に設定されており、各ピンホール25aの形成先は、図6(C)に示すとおり、非観察時の干渉縞Spの各暗部に一致している。よって、非観察時にピンホールアレイ板25を通過する光の光量は、ほぼゼロとなる。
【0053】
次に、培養容器10に培養液と共に観察対象分子も収容されているとき(観察時)の干渉縞Spを考える。図6(D)〜(F)が、観察時の干渉縞Spを説明する図である。
【0054】
先ず、観察時には、観察対象分子に起因するCARS信号と、水分子に起因するバックグラウンドノイズとの双方が発生する。
【0055】
よって、観察時の干渉縞Spに寄与する一方の被干渉光は、バックグラウンドノイズ及びCARS信号の混合光となり、他方の被干渉光も、バックグラウンドノイズ及びCARS信号の混合光となる。
【0056】
よって、観察時には、これら1対の被干渉光の間では、強度は等しくならない可能性があり、位相差はπからずれる可能性がある。
【0057】
なぜなら、培養容器10中では観察対象分子の密度分布は非一様なので、1対の高密度スポットSr、Sr’の間で観察対象分子の密度は等しいとは限らず、その結果、1対のCARS信号の間で強度が等しくなるとは限らない。この場合、一方の被干渉光に対して一方のCARS信号が与える影響(位相遅延量及び振幅変化量)と、他方の被干渉光に対してCARS信号が与える影響(位相遅延量及び振幅変化量)とは一致しない可能性がある。
【0058】
しかも、これら1対の被干渉光の間では、強度バランスの変化よりも位相差の変化の方が顕著である。
【0059】
なぜなら、CARS信号の強度はバックグラウンドノイズの強度と比較して低く、CARS信号の位相はバックグラウンドノイズの位相よりも必ずπ/2だけずれるので、一方のCARS信号が一方の被干渉光に与える影響は主に位相遅延であり、他方のCARS信号は他方の被干渉光に対して与える影響も主に位相遅延である。このため、1対の被干渉光の間でも、強度バランスの変化よりも位相差の変化の方が顕著となる。
【0060】
よって、図6(D)〜(E)に示すとおり、観察時の干渉縞Spは、大凡、非観察時の干渉縞Sp(図6(A)〜(F))の位相をシフトさせたものに相当する。
【0061】
したがって、非観察時の干渉縞Spを基準とした、観察時の干渉縞Spの位相シフト量さえ検知できれば、一方の被干渉光に対して一方のCARS信号が与えた影響と、他方の被干渉光に対して他方のCARS信号が与えた影響との差、すなわち、1対のCARS信号の差分(=微分CARS信号)を、既知とすることができる。
【0062】
実際、本実施形態の顕微鏡では、複数のピンホールアレイ25aの形成先が前述したとおり最適化されているので、図6(E)、(F)に示すとおり、観察時にピンホールアレイ板25を通過する光の光量は、観察時の干渉縞Spの位相シフト量を表す。
【0063】
光検出器26は、ピンホールアレイ板25の光射出側に配置され、ピンホールアレイ板25を通過した光の光量を電気信号に変換する受光素子、例えばPMT(フォトマルチプライヤ)である。よって、本実施形態のCARS顕微鏡は、観察時における光検出器26の出力信号を、微分CARS信号として使用することができる。
【0064】
観察時、制御部30は、光軸と垂直な方向(XY方向)へ試料ステージ19を走査しながら、各走査位置において、レーザ光源11を駆動しパルスレーザ光L1、L2を培養容器10へ照射すると共に、検出器26から出力信号の取り込みを行い、各走査位置で取り込まれた出力信号の値に基づき1フレームの画像を作成し、不図示のモニタへ表示する。この画像は、微分CARS信号の観察対象面上の分布(微分CARS画像)を表す。
【0065】
以上、本実施形態のCARS顕微鏡では、観察対象面上のレーザスポットを1対のレーザスポットS、S’に分離し、それら1対のレーザスポットS、S7の中央(1対の高密度スポットSr、Sr’)からCARS信号と同じ波長で射出する1対の光(1対の混合光)の間の位相ズレに応じて信号を生成する。
【0066】
したがって、非観察時(バックグラウンドノイズしか発生しないとき)の信号強度を基準とすれば、観察時(バックグラウンドノイズとCARS信号とが共に発生するとき)の信号強度を、微分CARS信号として使用することができる。この微分CARS信号は、バックグラウンドノイズの影響を受けないので、SN比が高い。よって、本実施形態のCARS顕微鏡が取得する微分CARS画像は、バックグラウンドノイズが少なくコントラストの高い画像となる。
【0067】
また、本実施形態のCARS顕微鏡では、1対の被干渉光の間の位相ズレを信号化するために、1対の点像St、St’から1対の理想的球面波を生成し、それら1対の理想的球面波による干渉縞Spの位相をピンホールアレイ板25により検出している。この場合、1対の被干渉光の間の位相ズレを、光検出器26の出力信号に対して強く反映させることができるので、微分CARS信号のSN比は更に高まる。
【0068】
また、本実施形態のCARS顕微鏡では、レーザスポットを分離するために空間光位相変調素子を使用するので、1対のレーザスポットS1、S1’の間で偏光方向が一致し、1対のレーザスポットS2、S2’の間で偏光方向が一致し、その結果、1対のレーザスポットS、S’各々による分子の励起方向を等しくすることができる。よって、前述した微分CARS信号には、1対の高密度スポットSr、Sr’の間における観察対象分子の密度差が正確に反映される。
【0069】
なお、本実施形態のCARS顕微鏡では、空間光位相変調素子161、162の各々として、光路長分布が可変の空間光位相変調素子を使用したが、空間光位相変調素子161、162の少なくとも一方として、光路長分布が不変の空間光位相変調素子(いわゆる位相板)を使用してもよい。但し、光路長分布が不変の空間光位相変調素子を使用する場合、入射光の波長が変更されるときには、その空間光位相変調素子を、光路長分布の異なる他の空間光位相変調素子に交換する必要がある。
【0070】
また、本実施形態のCARS顕微鏡では、点像St、St’の形成面に配置される絞り部材としてダブルスリット板23を使用したが、ダブルスリット板23の代わりに、1対のピンホールを有したダブルピンホール板を使用してもよい。このダブルピンホール板における1対のピンホールの形成先は、点像St、St’の各々のピーク位置であり、1対のピンホールの各々の直径は、ピンホールを透過した光の波面形状が理想的球面状となるよう十分に小さく設定される。
【0071】
また、本実施形態のCARS顕微鏡では、複数のピンホール25aの形成先を、非観察時の干渉縞Spの各暗部に一致させたが、非観察時の干渉縞Spの各明部に一致させてもよい。因みに、複数のピンホール25aの形成先を非観察時の干渉縞Spの各暗部に一致させた場合、微分CARS画像は暗視野画像(暗い背景の上に微分CARS像が明るく写る画像)となるが、複数のピンホール25aの形成先を非観察時の干渉縞の各明部に一致させた場合、微分CARS画像は明視野画像(明るい背景の上に微分CARS像が暗く写る画像)となる。
【0072】
また、本実施形態のCARS顕微鏡では、干渉縞Spの形成面に配置される絞り部材としてピンホールアレイ板25を使用したが、ピンホールアレイ板25の代わりに、Y方向に延びる複数のスリットをX方向に配列したスリットアレイ板を使用してもよい。このスリットアレイ板における複数のスリットの形成先は、非観察時の干渉縞Spの各暗部又は各明部に設定される。
【0073】
また、本実施形態のCARS顕微鏡では、観察時の干渉縞Spの基準(非観察時の干渉縞Sp)として、培養容器10中に観察対象分子が存在しない場合に形成される干渉縞Spを使用したが、本実施形態のCARS顕微鏡で基準として使用すべき干渉縞は、少なくとも、高密度スポットSr、Sr’の間で観察対象分子の密度が等しいときに形成される干渉縞であればよい。すなわち、培養容器10内で観察対象分子の密度が一様である場合に形成される干渉縞や、観察対象分子の密度がゼロ又は一様である領域にビームスポットS、S’を配置したときに形成される干渉縞を、基準として使用してもよい。
【0074】
[第2実施形態]
以下、本発明の第2実施形態を説明する。本実施形態は、第1実施形態の変形例である。ここでは、第1実施形態との相違点のみを説明する。
【0075】
図7は、本実施形態のCARS顕微鏡の構成図である。図7において、図1に示したものと同じ要素には、図1における符号と同じ符号を付与した。図1、図7を比較すると明らかなとおり、本実施形態のCARS顕微鏡は、第1実施形態のCARS顕微鏡において、ダブルスリット板23の代わりにピンホール板225を配置し、コリメートレンズ24及びピンホールアレイ板25を省略したものである。
【0076】
ピンホール板225の配置先は、ダブルスリット板23の配置先と同様、1対の点像St、St’の形成面である。ピンホール板225には、図8に示すとおり、単一のピンホール225aが形成されており、ピンホール225aの形成先は、一方の点像Stと他方の点像St’との間のバレー位置(強度がバレーとなる位置であって、点像St、St’の中間点)である。また、ピンホール225aの直径は、点像St、St’の横ズレ量以下に設定されている。
【0077】
ここで、培養容器10中に観察対象分子が存在せずに培養液のみが収容されているとき(非観察時)の点像St、St’を考える。図9(A)が、被観察時の点像St、St’を説明する図である(但し、図9は模式図なので、点像St、St’の強度分布が図9に示すとおりになるとは限らない。)。
【0078】
先ず、非観察時には、観察対象分子に起因するCARS信号は発生せず、水分子に起因するバックグラウンドノイズは発生する。
【0079】
よって、非観察時の一方の点像Stに寄与する光(一方の結像光)は、バックグラウンドノイズのみからなり、他方の点像St’に寄与する光(他方の結像光)も、バックグラウンドノイズのみからなる。
【0080】
よって、非観察時には、これら1対の結像光の間では、強度はほぼ等しくなり、位相差はπとなるはずである。
【0081】
なぜなら、培養容器10中では水分子の密度分布はほぼ一様なので、1対の高密度スポットSr、Sr’の間で水分子の密度は等しくなり、その結果、1対のバックグラウンドノイズの間で強度は等しくなる。また、1対のレーザスポットS、S’の間には位相差πが付与されているので、1対のバックグラウンドノイズの位相差もπとなる。
【0082】
したがって、図9(A)に示すとおり、非観察時の点像St、St’の各々のピーク強度は十分に高くなり、非観察時の点像St、Stのバレー強度はほぼゼロとなる(点像St、St’のピーク強度もほぼ等しくなる。)。
【0083】
したがって、ピンホール225aの配置先を前述したとおり最適化しておけば、非観察時にピンホール板225を通過する光の光量は、ほぼゼロとなる。
【0084】
次に、培養容器10に培養液と共に観察対象分子も収容されているとき(観察時)の点像St、St’を考える。図9(B)が、観察時の点像St、St’を説明する図である。
【0085】
先ず、観察時には、観察対象分子に起因するCARS信号と、水分子に起因するバックグラウンドノイズとの双方が発生する。
【0086】
よって、観察時の点像St、St’に寄与する一方の結像光は、バックグラウンドノイズ及びCARS信号の混合光となり、他方の結像光も、バックグラウンドノイズ及びCARS信号の混合光となる。
【0087】
よって、観察時には、これら1対の結像光の間では、強度は等しくならない可能性があり、位相差はπからずれる可能性がある。
【0088】
なぜなら、培養容器10中では観察対象分子の密度分布は非一様なので、1対の高密度スポットSr、Sr’の間で観察対象分子の密度は等しいとは限らず、その結果、1対のCARS信号の間で強度が等しくなるとは限らない。この場合、一方の結像光に対して一方のCARS信号が与える影響(位相遅延量及び振幅変化量)と、他方の結像光に対して他方のCARS信号が与える影響(位相遅延量及び振幅変化量)とは一致しない可能性がある。
【0089】
しかも、これら1対の結像光の間では、強度バランスの変化よりも位相差の変化の方が顕著である。
【0090】
なぜなら、CARS信号の強度はバックグラウンドノイズの強度と比較して低く、CARS信号の位相はバックグラウンドノイズの位相よりも必ずπ/2だけずれるので、一方のCARS信号が結像光に対して与える影響は主に位相遅延であり、他方のCARS信号が他方の結像光に対して与える影響も主に位相遅延である。このため、1対の結像光の間でも、強度バランスの変化よりも位相差の変化の方が顕著となる。
【0091】
よって、図9(B)に示すとおり、観察時の点像St、St’は、大凡、非観察時の点像St、St’(図9(A))のコントラスト(ピーク強度とバレー強度の差)を低下させたものに相当する。
【0092】
したがって、非観察時の点像St、St’を基準とした、観察時の点像St、St’ のコントラスト低下量さえ検知できれば、一方の結像光に対してCARS信号が与えた影響と、他方の結像光に対してCARS信号が与えた影響との差、すなわち、1対のCARS信号の差分(=微分CARS信号)を、既知とすることができる。
【0093】
実際、本実施形態の顕微鏡では、ピンホール225aの形成先が前述したとおり最適化されているので、図9(B)に示すとおり、観察時にピンホール板225を通過する光の光量は、観察時の点像St、St’のコントラスト低下量を表す。
【0094】
光検出器26は、ピンホール板225の光射出側に配置され、ピンホール板225を通過した光の光量を電気信号に変換する。よって、本実施形態のCARS顕微鏡は、観察時における光検出器26の出力信号を、微分CARS信号として使用することができる。
【0095】
したがって、本実施形態の制御部30は、第1実施形態の制御部30と同様に各部を制御することにより、微分CARS画像を取得することができる。
【0096】
以上、本実施形態のCARS顕微鏡では、1対の結像光の間の位相ズレを信号化するために、1対の点像St、St’のコントラスト(ここでは1対の点像St、St’のバレー強度)をピンホール板225により検出している。この場合、微分CARS信号の感度は、第1実施形態のそれほどは高くないものの、微分CARS信号の生成に要する光学素子の点数が第1実施形態のそれよりも抑えられるという利点がある。
【0097】
なお、本実施形態のCARS顕微鏡では、点像St、St’の形成面に配置される絞り部材としてピンホール板を使用したが、ピンホール板の代わりに、Y方向に延びるスリットを有したスリット板を使用してもよい。このスリット板におけるスリットの形成先は、点像St、St’のバレー位置である。
【0098】
[第3実施形態]
以下、本発明の第3実施形態を説明する。本実施形態は、第1実施形態の変形例である。ここでは、第1実施形態との相違点のみを説明する。
【0099】
図10は、本実施形態のCARS顕微鏡の構成図である。図10において、図1に示したものと同じ要素には、図1における符号と同じ符号を付与した。図1、図10を比較すると明らかなとおり、本実施形態のCARS顕微鏡は、第1実施形態のCARS顕微鏡において、第1対物レンズ18及び第2対物レンズ20の代わりに1つの対物レンズ200を備え、光スキャナ319、ダイクロイックミラー210、リレー光学系31を備え、波長選択フィルタ21を省略したものである。なお、本実施形態のCARS顕微鏡の照明方式は、落射照明方式であり、本実施形態のCARS顕微鏡の走査方式は、光走査型である。
【0100】
図10において、ダイクロイックミラー17には、第1実施形態と同様のパルスレーザ光L1、L2が到達する。これらのパルスレーザ光L1、L2は、ダイクロイックミラー210を透過し、光スキャナ319へ入射する。なお、光スキャナ319は、Xスキャン用のガルバノメータとYスキャン用のガルバノメータとを有している。
【0101】
光スキャナ319を射出したパルスレーザ光L1、L2は、リレー光学系31を介して対物レンズ200へ入射する。なお、対物レンズ200は、第1実施形態の第1対物レンズ18の機能と第2対物レンズ20の機能とを兼ねる。また、リレー光学系31には、光スキャナ319の配置先を対物レンズ200の瞳面と共役に結ぶ働きがある。
【0102】
対物レンズ200へ入射したパルスレーザ光L1、L2は、対物レンズ200の焦点面(観察対象面)上に第1実施形態と同様のレーザスポットS、S’を形成する。前述した光スキャナ319が駆動されると、観察対象面上をレーザスポットS、S’が二次元走査する。但し、その走査範囲は、対物レンズ200の視野内に収められる。
【0103】
レーザスポットS、S’から射出する光(CARS信号、バックグラウンドノイズ、第2の光、パルスレーザ光L1、L2)は、レーザスポットS、S’を形成したレーザ光L1、L2と同じ光路を逆に辿り、対物レンズ200及び光スキャナ319を介してダイクロイックミラー210へ入射する。
【0104】
ダイクロイックミラー210の特性は、CARS信号と同じ光周波数の光を反射し、他の光周波数の光を反射する特性に設定されている。よって、光スキャナ319からダイクロイックミラー210へ入射したCARS信号及びバックグラウンドノイズはダイクロイックミラー210を反射し、それ以外の光はダイクロイックミラー210を透過する。
【0105】
ダイクロイックミラー210を反射した光(CARS信号及びバックグラウンドノイズ)は、集光レンズ22、ダブルスリット板23、コリメートレンズ24、ピンホールアレイ板25を介して光検出器26へ入射する。なお、集光レンズ22から光検出器26までの構成は、第1実施形態のそれと同じである。
【0106】
よって、本実施形態の制御部30は、試料ステージ19を走査する代わりに光スキャナ319を駆動するだけで、観察対象面をレーザスポットS、S’で二次元走査することができる。したがって、本実施形態のCARS顕微鏡も、第1実施形態のCARS顕微鏡と同様の効果を得ることができる。
【0107】
[その他]
なお、第3実施形態は、第1実施形態の変形例であるが、第2実施形態を同様に変形してもよい。
【0108】
また、上述した何れかの実施形態のCARS顕微鏡では、空間光位相変調の対象(スポットの分離対象)を、2種類のパルスレーザ光L1、L2の双方としたが、一方のみとしてもよい。
【0109】
また、上述した何れかの実施形態の非線形顕微鏡は、非線形過程としてCARS過程を利用したが、他の非線形過程を利用してもよい。他の非線形過程とは、例えば、二光子蛍光、第2高調波(SHG)、第3高調波(THG)、コヒーレントストークスラマン散乱(CSRS)、4波混合、和周波発生などである。
【符号の説明】
【0110】
11…レーザ光源、12…光パラメトリック発振器、13…ビームエキスパンダ、14…ダイクロイックミラー、151、152…全反射ミラー、161、162…空間光位相変調素子、17…ダイクロイックミラー、18…第1対物レンズ、19…透過型の試料ステージ19、20…第2対物レンズ、21…波長選択フィルタ、22…集光レンズ、23…ダブルスリット板、24…コリメートレンズ、25…ピンホールアレイ板、26…光検出器、30…制御部

【特許請求の範囲】
【請求項1】
観察対象物中の特定種類の分子に非線形光学過程による特定波長の光を生起させるためのレーザ光を生成する生成手段と、
前記生成手段が生成した前記レーザ光を集光して前記観察対象物の観察対象面上にレーザスポットを形成する集光手段と、
前記観察対象面上に形成される前記レーザスポットを、面内位置のずれた1対のレーザスポットに分離する分離手段と、
前記1対のレーザスポットの一方で生起した前記特定波長の光と他方で生起した前記特定波長の光との間の位相ズレを示す信号を生成する検出手段と、
前記1対のレーザスポットで前記観察対象面上を走査しながら前記検出手段が生成する信号を繰り返し取り込むことにより、前記観察対象面における前記信号の分布を計測する制御手段と、
を備えることを特徴とする非線形顕微鏡。
【請求項2】
請求項1に記載の非線形顕微鏡において、
前記検出手段は、
前記1対のレーザスポットで発生した前記特定波長の光により前記1対のレーザスポットの像である1対の点像を形成する形成する結像光学系と、
前記1対の点像の形成面に配置され、前記1対の点像の各々から理想的球面波を生成する第1絞り部材と、
前記第1絞り部材が生成した1対の理想的球面波が成す干渉縞の形成面に配置され、前記干渉縞の縞周期と同じ周期で複数の開口部を配列した第2絞り部材と、
前記第2絞り部材を通過した前記特定波長の光の光量を検出する光検出器と
を備えることを特徴とする非線形顕微鏡。
【請求項3】
請求項1に記載の非線形顕微鏡において、
前記検出手段は、
前記1対のレーザスポットで発生した前記特定波長の光により前記1対のレーザスポットの像である1対の点像を形成する結像光学系と、
前記1対の点像の形成面に配置され、前記1対の点像のバレー位置に開口部を配置した絞り部材と、
前記絞り部材を通過した前記特定波長の光の光量を検出する光検出器と
を備えることを特徴とする非線形顕微鏡。
【請求項4】
請求項1〜請求項3の何れか一項に記載の非線形顕微鏡において、
前記分離手段は、
前記観察対象面に向かう前記レーザ光の波面を空間的に分割し、分割波面の一方及び他方の間に位相差πを付与する空間光位相変調素子である
ことを特徴とする非線形顕微鏡。
【請求項5】
請求項1〜請求項4の何れか一項に記載の非線形顕微鏡において、
前記レーザ光には、波長の異なる2種類のレーザ光が含まれ、
前記2種類のレーザ光の波長の組み合わせは、前記観察対象物に含まれる特定種類の分子にコヒーレントアンチストークスラマン散乱光学過程を生起させるための組み合わせに設定される
ことを特徴とする非線形顕微鏡。
【請求項6】
観察対象物中の特定種類の分子に非線形光学過程による特定波長の光を生起させるためのレーザ光を生成する生成手順と、
前記生成手順で生成された前記レーザ光を集光して前記観察対象物の観察対象面上にレーザスポットを形成する集光手順と、
前記観察対象面上に形成される前記レーザスポットを、面内位置のずれた1対のレーザスポットに分離する分離手順と、
前記1対のレーザスポットの一方で生起した前記特定波長の光と他方で生起した前記特定種類の光との間の位相ズレを示す信号を生成する検出手順と、
前記1対のレーザスポットで前記観察対象面上を走査しながら前記検出手順で生成される信号を繰り返し取り込むことにより、前記観察対象面における前記信号の分布を計測する制御手順と、
を含むことを特徴とする非線形観察方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−47632(P2012−47632A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−190938(P2010−190938)
【出願日】平成22年8月27日(2010.8.27)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】