説明

Fターム[2H052AF02]の内容

顕微鏡、コンデンサー (26,857) | 顕微鏡、その他 (5,304) | 観察以外の機能が付加されているもの (2,915) | 測定・検査装置 (1,123)

Fターム[2H052AF02]の下位に属するFターム

測長装置 (38)
干渉計 (46)
遠心分離機
測光装置 (418)
硬度計

Fターム[2H052AF02]に分類される特許

1 - 20 / 621




【課題】染色された試料に含まれる細胞の所定の情報をより明確に検出することができる。
【解決手段】第1の光学系106は、第1のスペクトルと第2のスペクトルを重ね合わせたスペクトルを有する光を照射する。第3の光学系109は、第2の光学系108からの光が入射され、第1の波長領域の光と第2の波長領域の光とを分けて出射する。第1の撮像部111は、第3の光学系109からの第1の波長領域の光が入射され、第1の波長領域の光による標本スライド101の画像を撮像する。第2の撮像部113は、第3の光学系109からの第2の波長領域の光が入射され、第2の波長領域の光による標本スライド101の画像を撮像する。画像処理部114は、第2の撮像部113が撮像した標本スライド101の画像を用いて第1の撮像部111が撮像した標本スライド101の画像に含まれる細胞の所定の情報の強調処理を行う。 (もっと読む)


【課題】蛍光標識としての輝点の検出精度の向上を図ることのできる画像取得装置を提供する。
【解決手段】蛍光標識が付された生体サンプルに当該蛍光標識に対する励起光を照射する光源と、生体サンプルの撮像対象を拡大する対物レンズを含む光学系と、対物レンズにより拡大される撮像対象の像が結像される撮像素子と、生体サンプルの厚み方向に光学系の焦点位置を移動させる焦点可動部と、それぞれ生体サンプルの厚み方向の輝点検出範囲の長さ未満の所定のスキャン長を有し、かつ厚み方向での中心位置が相互に異なる複数のスキャン範囲が予め設定され、当該スキャン範囲毎に、光学系の焦点位置を移動させながら撮像素子を露光させて生体サンプルの蛍光像を取得するデータ処理部とを具備する (もっと読む)


【課題】光変換可能な光学標識を用いる光学顕微鏡法を提供する。
【解決手段】第1の活性化放射線を、光変換可能な光学標識(「PTOL」)を含む試料601に供給し、試料中のPTOLの第1サブセットを活性化させる。第1の励起放射線を、試料中のPTOLの第1サブセットに供給して少なくともいくつかの活性化されたPTOLを励起させ、PTOLの第1サブセット内の活性化及び励起されたPTOLから放たれる放射線を撮像用光学素子606で検出する。第1サブセット内の活性化されたPTOL当たりの平均ボリュームが撮像用光学素子606の回折限界分解能ボリューム(「DLRV」)にほぼ等しいか又はそれよりも大きくなるように第1の活性化放射線が制御される (もっと読む)


【課題】透明導電膜によるヒータを用いることなく、試料エリアの上部プレートの結露や培養容器の結露を防ぐことが可能となる顕微鏡用培養装置を提供すること。
【解決手段】ディッシュ2を収納する試料エリア3と、試料エリア3の側面の外側に設けた加熱エリア4と、加熱エリア4の底面部に設置されたヒータ5と、試料エリア3と加熱エリア4との間に設置された仕切り6と、試料エリア3および加熱エリア4の上面に配置された透明な板からなる上部プレート7とを有し、仕切り6の上端部と上部プレート7の間に隙間8を設けている。 (もっと読む)


【課題】上皮器官や他の体細胞組織などの解剖学的構造に関する広範囲な微視的光学画像を得るための装置を提供する。
【解決手段】解剖学的構造に少なくとも一つの電磁放射を送り、前記少なくとも一つの電磁放射を用いて前記解剖学的構造の少なくとも一つの部分を走査して少なくとも一つの信号を生成するように構成された少なくとも一つの第1の装置と、前記解剖学的構造内部の所定の場所に、前記少なくとも一つの第1の装置の焦点の位置を特定の信号の関数として自動制御するように構成された少なくとも一つの第2の装置と、を備え、(i)前記少なくとも第1の装置が共焦点顕微鏡装置であるか、(ii)前記少なくとも一つの信号がスペクトル符号化信号であるか、または(iii)前記特定の信号がスペクトル符号化信号であるかの少なくとも何れかである。 (もっと読む)


【課題】顕微鏡で観察するのと同時に生体関連物質の信号情報を透明バイオセンサで取得する場合に、その信号情報を正確に取得することができる生体情報評価システムを提供する。
【解決手段】透明基材とその透明基材上に設けられた薄膜トランジスタ素子部及び透明な生体関連物質感応部とを有し、その薄膜トランジスタ素子部が酸化物半導体膜を有する透明バイオセンサ10と、透明バイオセンサ10が有する生体関連物質感応部に載置される生体関連物質から信号情報を取得する電気信号測定装置101と、透明バイオセンサ10をステージ53上にセットし、透明バイオセンサ10に光源光62,74を照射して生体関連物質感応部に載置される生体関連物質を観察する顕微鏡90とを少なくとも備え、透明バイオセンサ10と光源光62,74との間に紫外線カットフィルタ51を設けた生体情報評価システム50により上記課題を解決した。 (もっと読む)


【課題】顕微鏡撮像光線路の球面収差を識別し補正する方法及び装置を提供する。
【解決手段】対物レンズ(10)と、撮像光線路に配置された試料(9)を担持又は覆うカバースリップ(2)と、を備える顕微鏡(1)による試料(9)の顕微鏡撮像の状況で、顕微鏡撮像光線路(7)の球面誤差を識別する方法であって、測定ビーム(130)は、対物レンズ(10)を通って試料(9)上に、偏心して対物レンズ(10)の光軸(8)外に案内され、試料(9)とカバースリップの界面(116)で反射された測定ビーム(132)は、対物レンズ(10)を通して検出器(128)に案内され、検出器(128)は、反射測定ビーム(132)の強度プロファイルを取得し、球面誤差の存在は、前記強度プロファイルから定性的及び/又は定量的に特定される。 (もっと読む)


【課題】長い物体距離や大きな開口数という高い光学性能を達成するとともに、全長の短いコンデンサレンズ、及び、このコンデンサレンズを有する顕微鏡装置を提供する。
【解決手段】顕微鏡装置10に用いられ、標本からの観察光を集光するコンデンサレンズCLは、観察光が集光されて出射する側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、から構成され、所定の条件を満足することを特徴とする。 (もっと読む)


【課題】発光量の少ない発光試料でも、鮮明な画像を短い露出時間で、ひいてはリアルタイムに撮ることができる発光試料撮像方法、発光細胞撮像方法および対物レンズを提供すること。
【解決手段】鮮明な画像を短い露出時間で、ひいてはリアルタイムに撮ることができる発光試料撮像方法、発光細胞撮像方法および対物レンズを提供することを課題とする。本発明の発光試料撮像方法では、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値が0.01以上である対物レンズ2と、集光レンズ3と、0℃程度の冷却CCDカメラ4と、モニタ5と、を用いて、発光試料であるサンプル1を短い露出時間で、ひいてはリアルタイムに撮像する。 (もっと読む)


【課題】
テレセントリック光学系と明視野照明と暗視野照明を備え、低重心で小型化された撮像装置を提供する。
【解決手段】
正面(11)及び背面(12)を扁平面とする扁平形状に形成されたケーシング(13)の正面側に前群レンズ(6)を配したアパーチャ(14)が形成され、ケーシング内で背面側に向けて取り付けられた撮像素子(2)の撮像光軸(X)が、直角に屈曲されて背面に沿ってテレセントリック光学系(3)の絞り(5)を透過した後、アパーチャの中心軸に沿って正面側に向かって直角に屈曲され、アパーチャの周囲に発光素子を環状に配した暗視野照明ユニット(8)と、撮像光軸から分岐された照明光軸(X)上で絞りと対応する位置から前群レンズの開口角と略等しい角度で照明光を拡散させる光源装置(21)を備えた明視野照明ユニット(7)を備えた。 (もっと読む)


【課題】拡大観察装置の校正を簡単かつ短時間で行うことを可能にする校正具および拡大観察装置を提供する。
【解決手段】校正板400は、ガラス板からなる透光性プレート420を含む。透光性プレート420は、3つの校正区域421,422,423を有する。各校正区域421,422,423は、第1の領域AR1および第2の領域AR2を含む。各校正区域421,422,423の中央に第1の領域AR1が設けられ、第1の領域AR1を取り囲むように第2の領域AR2が設けられる。第1の領域AR1には校正目盛Cが形成され、第2の領域AR2には複数のガイドマーカGMが分散して形成される。第1の領域AR1の校正目盛Cが撮像されることにより拡大観察装置の校正が行われる。第2の領域AR2の各ガイドマーカGMは、当該ガイドマーカGMから第1の領域AR1の中央部分TPに向かう方向を示す。 (もっと読む)


【課題】テラヘルツ電磁波の検出精度を向上させることができるテラヘルツ放射顕微鏡、これに用いられる、光伝導素子、レンズ及びデバイスの製造方法を提供すること。
【解決手段】光伝導素子は、基材と、電極と、膜材とを具備する。前記基材は、光源から発生したパルスレーザーが、観察対象であるデバイスに照射されることにより発生するテラヘルツ電磁波が入射する入射面を有する。前記電極は、前記基材に形成され、前記基材の入射面に入射された前記テラヘルツ電磁波を検出する。前記膜材は、前記基材の前記入射面に形成され、前記テラヘルツ電磁波を透過させ、前記パルスレーザーを反射させる。 (もっと読む)


【課題】観測光が微弱な場合においても,測定光の出射端面の反射をすることができる低減観察装置を提供する。
【解決手段】レーザ光源101として,中心波長840nm,光出力7mWの9個の出力を持つ光源を用いる。ファイバカプラユニット102は分岐比90:10の2対1カプラが9個並列に並べられている。レーザ光源側から出射光ユニット103側に光が通過するときに10%透過するように配置されている。逆に,反射光が出射光ユニット103側から入射するときは,90%の光量が検出ユニット106に入射する。検出ユニット106の内部には各ファイバ端にAPD(アバランシェフォトダイオード)が設けられ,検出光を電気信号に変えて検出する。出射光ユニット103から出射された測定光は,走査光学系104でコリメートされガルバノスキャナで走査され,対物レンズ105で眼底110上に集光される。 (もっと読む)


【課題】最適な検鏡法を容易に判別する技術を提供する。
【解決手段】拡大観察装置100は、複数の検鏡法を切り換える切換順序を決定し(S101)、決定された切換順序に従って複数の検鏡法を切り換える(S102)。さらに、各検鏡法への切換後に試料の画像を生成し(S103)、画像が生成される毎に、生成された画像を表示する(S105)。 (もっと読む)


【課題】コントラストが良好でありながら輝度むらのない3次元画像を生成する。
【解決手段】標本からの蛍光を標本の異なる深さ位置で撮像した蛍光画像であり、各深さ位置において異なる露光量で複数ずつ撮像された蛍光画像を深さ位置毎に合成することにより合成画像を生成する画像合成部73と、該画像合成部73によって生成された各合成画像から代表輝度を算出し、算出された代表輝度を深さ方向に平滑化することにより、各合成画像について平滑化輝度を算出する平滑化輝度計算部74と、該平滑化輝度計算部74によって算出された平滑化輝度と代表輝度との差分に基づいて各合成画像の輝度を補正することにより補正画像を生成する輝度補正部75と、該輝度補正部75によって生成された複数の補正画像から標本の3次元画像を生成する3次元画像生成部76とを備える画像処理装置700を提供する。 (もっと読む)


【課題】焦点調節と開口調節とを選択的に、または同時に行ってNAを制御するNA(numerical aperture)制御ユニット、それを採用した可変型光プローブ、映像診断システム、深度スキャニング方法、イメージ検出方法、及び映像診断方法を提供する。
【解決手段】NA制御ユニット1000は、光が透過する開口が調節される開口調節ユニットVAと、開口を通過した光をフォーカシングし、焦点距離が調節される焦点調節ユニットVFと、を含む。 (もっと読む)


【課題】点状対象物の3次元位置決め用の顕微鏡装置と顕微鏡法を提供する。
【解決手段】顕微鏡装置には、点状対象物を、焦点配光40、40’の形態で2つの別個の画像空間に結像する2つの結像光学系26、26’と、且つそれぞれの画像空間で配置された検出面27、27’の検出点にて、分析可能な光点を捕捉する2つの検出ユニット28、28’と、2つの検出面27、27’の検出点を相互にペアで対応させ、且つ2つの光点を分析することによって点状対象物の横方向x−y位置および軸方向z位置を確認する評価ユニットと、が含まれる。2つの結像光学系には、それぞれの検出ユニットの検出面に垂直な検出軸に対して、それぞれの焦点配光を斜めに向ける光学手段が含まれる。2つの焦点配光の傾斜が相互に反対であることにより、点状対象物のz位置の変化に応じて2つの光点が、反対方向にシフトする。 (もっと読む)


【課題】生体内内視鏡共焦点顕微鏡法の実施が可能である装置を提供する。
【解決手段】光ファイバ9の末端に接続された可撓性プローブによる内視鏡法に特に有用な走査型共焦点顕微鏡法システム及び装置であって、プローブは、対象物のある領域にわたって1次元に延びるスペクトル成分を有する多重スペクトル光のビームを送出し、別の次元での走査のために動かされる、回折格子12及びレンズ14を有し、領域の画像を提供するために、反射共焦点スペクトルが測定される。 (もっと読む)


1 - 20 / 621