説明

高純度錫合金及び高純度錫合金の製造方法

【課題】高密度化及び高容量化が必要な半導体装置で使用されるはんだ材料に対し、α線の少ない高純度錫または錫合金若しくは高純度錫の製造方法の提供。
【解決手段】U、Thのそれぞれの含有量が5ppb以下、Pb、Biのそれぞれの含有量が1ppm以下であり、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、鋳造組織を持つ高純度錫のα線カウント数が0.001cph/cm2以下に低減させた高純度錫又は錫合金である。原料となる錫を酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着材を懸濁させ、原料Snアノードを用いて電解精製を行う、錫合金及び高純度錫の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、半導体製造装置の製造等に使用する、錫のα線量を低減させた高純度錫又は錫合金及び高純度錫の製造方法に関する。
【背景技術】
【0002】
一般に、錫は、半導体の製造に使用される材料で、特にはんだ材料の主たる原料である。半導体を製造する際に、はんだは半導体チップと基板との接合、ICやLSI等のSiチップをリードフレームやセラミックスパッケージにボンディングし又は封止する時、TAB(テープ・オートメイテッド・ボンディング)やフリップチップ製造時のバンプ形成、半導体用配線材等に使用されている。
最近の半導体装置は、高密度化及び高容量化されているので、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきた。このようなことから、前記はんだ材料及び錫の高純度化の要求があり、またα線の少ない材料が求められている。
【0003】
錫からα線を減少させるという目的の技術に関するいくつかの開示がある。それを以下に紹介する。
下記特許文献1には、錫とα線量が10 cph/cm2以下の鉛を合金化した後、錫に含まれる鉛を除去する精錬を行う低α線錫の製造方法が記載されている。
この技術の目的は高純度Pbの添加により錫中の210Pbを希釈してα線量を低減しようとするものである。しかし、この場合、錫に添加した後で、Pbをさらに除去しなければならないという煩雑な工程が必要であり、また錫を精錬した3年後にはα線量が大きく低下した数値を示しているが、3年を経ないとこのα線量が低下した錫を使用できないというようにも理解されるので、産業的には効率が良い方法とは言えない。
【0004】
下記特許文献2には、Sn-Pb合金はんだに、Na、Sr、K、Cr、Nb、Mn、V、Ta、Si、Zr、Baから選んだ材料を10〜5000ppm添加すると、放射線α粒子のカウント数が0.5cph/cm2以下に低下するという記載がある。
しかし、このような材料の添加によっても放射線α粒子のカウント数を減少できたのは0.015cph/cm2レベルであり、今日の半導体装置用材料としては期待できるレベルには達していない。
さらに問題となるのは、添加する材料としてアルカリ金属元素、遷移金属元素、重金属元素など、半導体に混入しては好ましくない元素が用いられていることである。したがって、半導体装置組立て用材料としてはレベルが低い材料と言わざるを得ない。
【0005】
下記特許文献3には、はんだ極細線から放出される放射線α粒子のカウント数を0.5cph/cm2以下にして、半導体装置等の接続配線用として使用することが記載されている。しかし、この程度の放射線α粒子のカウント数レベルでは、今日の半導体装置用材料としては期待できるレベルには達していない。
下記特許文献4には、特級硫酸、特級塩酸などの精製度の高い硫酸と塩酸を使用して電解液とし、かつ高純度の錫を陽極に用いて電解することにより鉛濃度が低く、鉛のα線カウント数が0.005cph/cm2以下の高純度錫を得ることが記載されている。コストを度外視して、高純度の原材料(試薬)を使用すれば、高純度の材料が得られることは当然ではあるが、それでも特許文献4の実施例に示されている析出錫の最も低いα線カウント数が0.002cph/cm2であり、コスト高の割には、期待できるレベルには達していない。
【0006】
下記特許文献5には、粗金属錫を加えた加熱水溶液に硝酸を添加してメタ錫酸を沈降させ、ろ過し、これを洗浄し、洗浄後のメタ錫酸を塩酸又は弗酸で溶解し、この溶解液を電解液として電解採取により5N以上の金属錫を得る方法が記載されている。この技術には漠然とした半導体装置用としての適用ができると述べているが、放射性元素であるU、Th及び放射線α粒子のカウント数の制限については、特に言及されておらず、これらについては関心が低いレベルのものと言える。
【0007】
下記特許文献6には、はんだ合金を構成するSn中に含まれるPbの量を減少させ、合金材としてBi又はSb、Ag、Znを用いるとする技術が示されている。しかし、この場合たとえPbをできるだけ低減したとしても、必然的に混入してくるPbに起因する放射線α粒子のカウント数の問題を根本的に解決する手段は、特に示されていない。
下記特許文献7には、特級硫酸試薬を用いて電解して製造した、品位が99.99%以上であり、放射線α粒子のカウント数が0.03cph/cm2以下である錫が開示されている。この場合も、コストを度外視して、高純度の原材料(試薬)を使用すれば、高純度の材料が得られることは当然ではあるが、それでも特許文献7の実施例に示されている析出錫の最も低いα線カウント数が0.003cph/cm2であり、コスト高の割には、期待できるレベルには達していない。
【0008】
下記特許文献8には、4ナイン以上の品位を有し、放射性同位元素が50ppm未満、放射線α粒子のカウント数が0.5cph/cm2以下である、半導体装置用ろう材用鉛が記載されている。また、下記特許文献9には、99.95%以上の品位で、放射性同位元素が30ppm未満、放射線α粒子のカウント数が0.2cph/cm2以下である、半導体装置用ろう材用錫が記載されている。
これらはいずれも、放射線α粒子のカウント数の許容量が緩やかで、今日の半導体装置用材料としては期待できるレベルには達していない問題がある。
引用文献10には、純度が99.999%(5N)であるSnの例が示されているが、これは免震構造体用金属プラグ材料に使用するもので、放射性元素であるU、Th及び放射線α粒子のカウント数の制限については、一切記載がなく、このような材料を半導体装置組立て用材料として使用することはできない。
さらに引用文献11には、多量のテクネチウム(Tc)、ウラン、トリウムで汚染されたニッケルから、テクネチウムを黒鉛又は活性炭の粉末により除去する方法が開示されている。この理由は、テクネチウムを電解精製法で除去しようとするとニッケルに追従して、カソードに共析するため分離できないからである。すなわち、ニッケルに含まれる放射性物質であるテクネチウムを電解精製法では除去できない。引用文献11の技術はテクネチウムで汚染されたニッケル固有の問題であり、他の物質に適用できる問題ではない。
また、この技術は人体に有害な産業廃棄物を処理するという、高純度化の技術としては低レベルの技術に過ぎず、半導体装置用材料としてのレベルには達していない。
【0009】
【特許文献1】特許第3528532号公報
【特許文献2】特許第3227851号公報
【特許文献3】特許第2913908号公報
【特許文献4】特許第2754030号公報
【特許文献5】特開平11-343590号公報
【特許文献6】特開平9-260427号公報
【特許文献7】特開平1-283398号公報
【特許文献8】特開昭62-47955号公報
【特許文献9】特開昭62-1478号公報
【特許文献10】特開2001-82538号公報
【特許文献11】特開平7-280998号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
最近の半導体装置は、高密度化及び高容量化されているので、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきている。特に、半導体装置に近接して使用される、はんだ材料若しくは錫に対する高純度化の要求が強く、またα線の少ない材料が求められているので、本発明は、これに適応できる錫のα線量を低減させた高純度錫又は錫合金及び高純度錫の製造方法を得ることを課題とする。
【課題を解決するための手段】
【0011】
上記の問題点を解決するため、本発明の高純度錫又は錫合金は、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、その中でも放射性元素であるU、Thのそれぞれの含有量が5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量が1ppm以下であることを特徴とし、半導体チップへのα線の影響を極力排除するものである。(なお、本願発明で使用する%、ppm、ppbは、全て重量(wt)を示す。)
本発明の高純度錫又は錫合金は最終的には、溶解・鋳造及び、必要により圧延・切断して製造されるもので、その高純度錫のα線カウント数が0.001cph/cm2以下であることが望ましく、本願発明の高純度錫又は錫合金はそれを実現するものである。
【0012】
本願発明において、特に高純度錫の製造が重要であるが、この高純度錫の製造方法としては、原料となる錫を酸、たとえば硫酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着材を懸濁させ、原料Snアノードを用いて電解精製を行うものであり、これによって純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、その中でも放射性元素であるU、Thのそれぞれの含有量が5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量が1ppm以下である高純度錫を得る。
Pb、BiはいずれもSnと電位が近いので、除去が難しいという問題があるが、本願発明は本方法により、この効果的な除去を実現するものである。
前記電解液に懸濁させる吸着材としては、酸化チタン、酸化アルミニウム、酸化錫等の酸化物、活性炭、カーボン等を用いることができる。
【0013】
さらに、上記の電解精製によって得られた高純度錫を250〜500°Cで溶解鋳造し、この鋳造したインゴットの6ヶ月以上経過した後のα線カウント数を0.001cph/cm2以下とする。Snの鋳造時には、ラドンの取り込み、ポロニウムの蒸発があり、Sn中の実際の不純物やα線量の厳密な測定が困難である。したがって、これが安定する6ヶ月以上の経過は必要である。
すなわち換言すれば、本発明においては、6ヶ月以上の経過によりα線カウント数が0.001cph/cm2以下に安定すると言える。
高純度錫合金の添加成分(合金成分)としては、銀、銅、亜鉛などを挙げることができるが、これらの元素に特に制限されない。また、通常添加量は0.1〜20wt%とするが、この量にも制限がない。同様に高純度の材料を使用することが必要である。
【発明の効果】
【0014】
本発明の高純度錫又は錫合金は、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、その中でも放射性元素であるU、Thのそれぞれの含有量が5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量が1ppm以下であることを特徴とし、半導体チップへのα線の影響を極力排除することができる。
そして、本発明の高純度錫又は錫合金は最終的には、溶解鋳造によって製造されるものであるが、その錫の鋳造組織を持つ高純度錫のα線カウント数が0.001cph/cm2以下とすることができるという優れた効果を有する。これにより、半導体装置のα線の影響によるソフトエラーの発生を著しく減少できる。
【発明を実施するための形態】
【0015】
原料錫としては、通常市販の2〜3Nレベルの錫を使用する。しかし、原料錫はこのような市販品に限定される必要はない。この原料錫を酸により浸出し、この浸出液を電解液とする。使用する酸としては、塩酸、硫酸等が好適である。
またアノードには2〜4NレベルのSnを用いる。次に、電解温度10〜80°C、電流密度0.1〜50A/dm2の条件で電解を行う。
電解液中には、酸化チタン、酸化アルミニウム、酸化錫等の酸化物、活性炭、カーボンを懸濁させて、不純物を吸着させる。特に、これはPb、Biの除去に有効である。
【0016】
以上の電解後の精製により、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とすることが可能となる。このように、Pb量及びBi量及びU、Th含有量が低減するのは、特に電解条件及び懸濁物によるものである。
この析出した電解錫を、250〜500°Cの条件で溶解鋳造し、錫インゴットとする。この温度範囲は、Po等の放射性元素の除去に有効である。250°C未満の融点直上では鋳造が難しく、500°Cを超えるとSnの蒸発が起こるので好ましくない。したがって、上記の温度範囲で溶解鋳造する。
この鋳造後の錫インゴットを不活性ガス雰囲気中又は真空減圧下で6ヶ月保管した。その6ヶ月経過後のα線量を調べると、α線カウント数が減少し、0.001cph/cm2以下とすることが可能となる。
錫合金の場合も同様であり、添加元素の材料として、特に放射性元素であるU、Thのそれぞれの含有量、放射線α粒子を放出するPb、Biのそれぞれの含有量が、錫合金とした場合に、本願発明の条件を満たす高純度材料を選択して、合金化する。製造工程は上記錫インゴットを製造する場合と同様である。
このようにして得た本願発明の高純度錫又は錫合金は、半導体装置のα線の影響によるソフトエラーの発生を著しく減少できるという優れた効果を有する。
【実施例】
【0017】
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
【0018】
(実施例1)
原料錫を硫酸で浸出し、この浸出液を電解液とした。またアノードには3NレベルのSnを用いた。これを電解温度20°C、電流密度1A/dm2という条件で電解を行った。原料錫の分析値を表1に示す。
また、電解液中には、酸化チタン(TiO2)を50g/L入れ、懸濁させた。以上の電解後の精製により、Pb量は0.7ppm、Bi量は0.1ppmとなった。また、U、Thのそれぞれの含有量が<5ppbとなった。このように、Pb量及びBi量及びU、Th含有量が低減したのは、不純物であるPb、Biの減少は懸濁させた酸化チタンへの吸着によるものであり、また不純物であるU、Thの減少は電解によるものである。
この析出した電解錫を、260°C温度で溶解・鋳造し、錫インゴットとした。この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.0007cph/cm2となった。精製後の錫の分析値を同様に表1に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0019】
【表1】

【0020】
(実施例2)
原料錫を硫酸で浸出し、この浸出液を電解液とした。またアノードには実施例1と同じ3NレベルのSnを用いた。これを電解温度25°C、電流密度3A/dm2という条件で電解を行った。
また、電解液中には、活性炭を10g/L入れ、懸濁させた。以上の電解後の精製により、Pb量は0.1ppm、Bi量は0.05ppmとなった。また、U、Thのそれぞれの含有量が<5ppbとなった。このように、Pb量及びBi量及びU、Th含有量が低減したのは、不純物であるPb、Biの減少は懸濁させた活性炭への吸着によるものであり、また不純物であるU、Thの減少は電解によるものである。
この析出した電解錫を、500°Cの温度で溶解・鋳造し、錫インゴットとした。この鋳造後の錫インゴットを窒素雰囲気中で10ヶ月保管した。その10ヶ月経過後のα線量を調べた結果、α線カウント数が0.0005cph/cm2となった。精製後の錫の分析値を同様に表1に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0021】
(実施例3)
原料錫を塩酸で浸出し、この浸出液を電解液とした。またアノードには、実施例1と同一の3NレベルのSnを用いた。これを電解温度50°C、電流密度10A/dm2という条件で電解を行った。
また、電解液中には、カーボンを40g/L入れ、懸濁させた。以上の電解後の精製により、Pb量は0.9ppm、Bi量は0.3ppmとなった。また、U、Thのそれぞれの含有量が<5ppbとなった。このように、Pb量及びBi量及びU、Th含有量が低減したのは、不純物であるPb、Biの減少は懸濁させたカーボンへの吸着によるものであり、また不純物であるU、Thの減少は電解によるものである。
この析出した電解錫を、350°Cの温度で溶解・鋳造し、錫インゴットとした。この鋳造後の錫インゴットを真空中で20ヶ月保管した。その20ヶ月経過後のα線量を調べた結果、α線カウント数が0.0009cph/cm2となった。精製後の錫の分析値を同様に表1に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0022】
(実施例4)
原料錫を塩酸で浸出し、この浸出液を電解液とした。またアノードには、実施例1と同一の3NレベルのSnを用いた。これを電解温度40°C、電流密度15A/dm2という条件で電解を行った。
また、電解液中には、酸化錫を50g/L入れ、懸濁させた。以上の電解後の精製により、Pb量は0.06ppm、Bi量は0.01ppmとなった。また、U、Thのそれぞれの含有量が<5ppbとなった。このように、Pb量及びBi量及びU、Th含有量が低減したのは、不純物であるPb、Biの減少は懸濁させた酸化錫への吸着によるものであり、また不純物であるU、Thの減少は電解によるものである。
この析出した電解錫を、400°Cの温度で溶解・鋳造し、錫インゴットとした。この鋳造後の錫インゴットをデシケータ中で50ヶ月保管した。その50ヶ月経過後のα線量を調べた結果、α線カウント数が0.0005cph/cm2未満となった。精製後の錫の分析値を同様に表1に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0023】
(比較例1)
原料錫を硫酸で浸出し、この浸出液を電解液とした。またアノードには実施例1と同じ3NレベルのSnを用いた。これを実施例1と同一の条件、すなわち電解温度25°C、電流密度3A/dm2という条件で電解を行った。
また、電解液中には、懸濁材を入れなかった。以上の電解後の精製により、Pb量は200ppm、Bi量は20ppmとなった。また、U、Thのそれぞれの含有量が0.01ppb、0.006ppbとなった。これは原料と大差ない不純物レベルであった。
この析出した電解錫を、240°Cの条件下で溶解鋳造し、錫インゴットとした。この鋳造後の錫インゴットをアルゴン雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が8.0cph/cm2となった。精製後の錫の分析値を同様に表1に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標に達することはできず。これにより、半導体装置の製造に不適であった。
【0024】
(実施例5)
(0.5%Cu-3%Ag-残部Snからなる錫合金)
実施例1で製造した高純度錫を準備した。本実施例の錫合金の添加元素は、市販の銀及び銅を電解により高純度化し、5N5-Ag及び6N-Cuとした。これらを前記高純度錫に添加し、不活性雰囲気中、260°C温度で溶解・鋳造し、0.5%Cu-3%Ag-残部SnからなるSn-Cu-Ag合金インゴットを製造した。
この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.0007cph/cm2となった。錫合金の分析値を表2に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0025】
(実施例6)
(3.5%Ag-残部Snからなる錫合金)
実施例1で製造した高純度錫を準備した。本実施例の錫合金の添加元素である銀は、市販のAgを硝酸により溶解し、これにHClを添加してAgClを析出させ、これをさらに水素還元して5N-Agの高純度Agを得た。これを前記高純度錫に添加し、不活性雰囲気中、260°C温度で溶解・鋳造し、3.5%Ag-残部SnからなるSn-Ag合金インゴットを製造した。
この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.0005cph/cm2となった。錫合金の分析値を表2に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0026】
(実施例7)
(9%Zn-残部Snからなる錫合金)
実施例1で製造した高純度錫を準備した。本実施例の錫合金の添加元素は、市販の銀及び亜鉛を電解により高純度化し6N-Znとした。これらを前記高純度錫に添加し、不活性雰囲気中、260°C温度で溶解・鋳造し、9%Zn-残部SnからなるSn-Zn合金インゴットを製造した。
この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.0008cph/cm2となった。錫合金の分析値を表2に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標を充足するものであった。これにより、半導体装置の製造に適合する高純度錫材料を得ることができた。
【0027】
(比較例2)
(0.5%Cu-3%Ag-残部Snからなる錫合金)
実施例1で製造した高純度錫を準備した。本実施例の錫合金の添加元素は、市販の3Nレベルの銀及び銅を用いた。これらを前記高純度錫に添加し、不活性雰囲気中、260°C温度で溶解・鋳造し、0.5%Cu-3%Ag-残部SnからなるSn-Cu-Ag合金インゴットを製造した。
この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.1cph/cm2となった。錫合金の分析値を表2に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明の目標に達することはできず。これにより、半導体装置の製造に不適であった。
【0028】
(比較例3)
(3.5%Ag-残部Snからなる錫合金)
実施例1で製造した高純度錫を準備した。本実施例の錫合金の添加元素である銀は、市販の3NレベルのAgを前記高純度錫に添加し、不活性雰囲気中、260°C温度で溶解・鋳造し、3.5%Ag-残部SnからなるSn-Ag合金インゴットを製造した。
この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.03cph/cm2となった。錫合金の分析値を表2に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明に達することはできず。これにより、半導体装置の製造に不適であった。
【0029】
(比較例4)
(9%Zn-残部Snからなる錫合金)
実施例1で製造した高純度錫を準備した。本実施例の錫合金の添加元素は、市販の3Nレベルの銀及び亜鉛を用いた。これらを前記高純度錫に添加し、不活性雰囲気中、260°C温度で溶解・鋳造し、9%Zn-残部SnからなるSn-Zn合金インゴットを製造した。
この鋳造後の錫インゴットをアルゴンガス雰囲気中で6ヶ月保管した。その6ヶ月経過後のα線量を調べた結果、α線カウント数が0.5cph/cm2となった。錫合金の分析値を表2に示す。
これは、放射性元素であるU、Thのそれぞれの含有量を5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量を1ppm以下とし、さらにα線カウント数が0.001cph/cm2以下とする本願発明に達することはできず。これにより、半導体装置の製造に不適であった。
【0030】
【表2】

【産業上の利用可能性】
【0031】
上記の通り、本発明は、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、その中でも放射性元素であるU、Thのそれぞれの含有量が5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量が1ppm以下、さらにはその錫の鋳造組織を持つ高純度錫のα線カウント数を0.001cph/cm2以下とすることができるので、半導体チップへのα線の影響を極力排除することができる。したがって、半導体装置のα線の影響によるソフトエラーの発生を著しく減少できので、はんだ材等錫を使用する箇所の材料として有用である。

【特許請求の範囲】
【請求項1】
U、Thのそれぞれの含有量が5ppb以下、Pb、Biのそれぞれの含有量が1ppm以下であり、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であることを特徴とする高純度錫又は錫合金。
【請求項2】
高純度錫のα線カウント数が0.001cph/cm2以下であることを特徴とする請求項1記載の高純度錫又は錫合金。
【請求項3】
原料となる錫を酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着材を懸濁させ、原料Snアノードを用いて電解精製を行い、U、Thのそれぞれの含有量が5ppb以下、Pb、Biのそれぞれの含有量が1ppm以下であり、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)である高純度錫を得ることを特徴とする高純度錫の製造方法。
【請求項4】
吸着材として、酸化物、活性炭、カーボンを用いることを特徴とする請求項3記載の高純度錫の製造方法。
【請求項5】
電解精製によって得られた高純度錫を250〜500°Cで溶解鋳造し、この鋳造したインゴットの6ヶ月以上経過した後のα線カウント数が0.001cph/cm2以下であることを特徴とする請求項3又は4記載の高純度錫の製造方法。

【公開番号】特開2010−156052(P2010−156052A)
【公開日】平成22年7月15日(2010.7.15)
【国際特許分類】
【出願番号】特願2010−17939(P2010−17939)
【出願日】平成22年1月29日(2010.1.29)
【分割の表示】特願2007−523392(P2007−523392)の分割
【原出願日】平成18年6月14日(2006.6.14)
【出願人】(591007860)日鉱金属株式会社 (545)
【Fターム(参考)】