説明

高速ダウンリンクにおける低ビットレートユーザのフロー制御

高速ダウンリンクパケットアクセス(HSDPA)を与える無線アクセスネットワークノード(28)は、1または2以上の優先待ち行列(50)とフローコントローラ(60)とを備える。優先待ち行列(50)は、移動端末(30)へエアーインターフェース(32)を通して高速ダウンリンク共有チャネル(HS‐DSCH)上で送信されるデータを格納する。データは、無線アクセスノードにより決定される容量割当にしたがって、上位ノードを有するインターフェースを通して優先待ち行列において受信される。フローコントローラ(60)は、優先待ち行列に対する容量割当の実際の活用を測定し、容量割当の実際の活用を使用して、容量割当を調節する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的に電気通信に関し、特に、(例えば)UMTS(Universal Mobile Telecommunications System:ユニバーサル移動体電気通信システム)地上波無線アクセスネットワーク(UMTS terrestrial radio access network:UTRAN)で操作されるような高速ダウンリンクパケットアクセス(High Speed Downlink Packet Access:HSDPA)システムに関する。
【背景技術】
【0002】
典型的なセルラー無線システムにおいて、移動端末(移動局および移動ユーザイクイップメントユニット(user equipment unit:UE)としても知られる)は無線アクセスネットワーク(radio access network:RAN)を介して1または2以上のコアネットワークと通信する。ユーザイクイップメントユニット(UE)は、携帯電話(「セルラー(cellular)」電話)や移動端末付ラップトップのような移動局であってもよいことから、例えば、無線アクセスネットワークで音声および/またはデータ通信するポータブル、ポケット、ハンドヘルド、コンピュータ内臓、または車載の移動体装置であってもよい。
【0003】
無線アクセスネットワーク(RAN)は、セル領域に分割される地理的領域をカバーし、各セル領域は基地局のサービスを受ける。セルは、基地局サイトにおける無線基地局イクイップメントにより無線カバー範囲が与えられる地理的領域である。各セルは固有アイデンティティにより識別され、固有アイデンティティはセル内にブロードキャストされる。基地局は、エアーインターフェース(例えば無線周波数)を通して、基地局の範囲内でユーザイクイップメントユニット(UE)と通信する。無線アクセスネットワークにおいて、いくつかの基地局は概して(地上通信線またはマイクロ波によるなどして)無線ネットワークコントローラ(radio network controller:RNC)に接続される。無線ネットワークコントローラは、時には基地局コントローラ(base station controller:BSC)と呼ぶこともあるが、無線ネットワークコントローラに接続された複数の基地局の様々な動作を管理および調整する。無線ネットワークコントローラは概して1または2以上のコアネットワークに接続される。
【0004】
ユニバーサル移動体電気通信システム(UMTS)は、GSM(Global System for Mobile Communications:移動体通信用グローバルシステム)から発展したものである第3世代移動体通信システムであり、広帯域符号分割多元接続(Wideband Code Division Multiple Access:WCDMA)アクセス技術に基づいて、改善された移動体通信サービスを提供するように意図されている。
【0005】
ワイヤレスインターネットサービスが一般的になるにつれ、様々なサービスがより高いデータレートおよびより高い容量を必要とする。UMTSはマルチメディアワイヤレスサービスを支援するように設計されてきたのだが、最大データレートは、必要とされるサービスの質を十分満たすものではない。
【0006】
3GPP(Third Generation Partnership Project:第3世代協同プロジェクト)として知られるフォーラムにおいて、電気通信事業者は、第3世代ネットワーク用の、具体的にはUTRAN用の規格を提案および同意し、データレートおよび無線容量の向上を研究する。フォーラムの研究の一成果が高速ダウンリンクパケットアクセス(HSDPA)である。例えば第3世代協同プロジェクトの3GPP TS 25.435V6.2.0(2005年6月)、技術仕様グループ無線アクセスネットワーク、共通伝送チャネルデータストリーム用UTRANIubインターフェースユーザプレーンプロトコル(リリース6)を参照のこと。当仕様書は高速ダウンリンクパケットアクセス(HSDPA)を議論するものであり、その全体を参照してここに組み入れる。同様にして、フォーラム作成であり、高速ダウンリンクパケットアクセス(HSDPA)またはここで説明するコンセプトにいくらか関係のある第3世代協同プロジェクトの3GPP TS 25.425V6.2.0(2005年6月)、技術仕様グループ無線アクセスネットワーク、共通伝送チャネルデータストリーム用UTRANIurインターフェースユーザプレーンプロトコル(リリース6)と、第3世代協同プロジェクトの3GPP TS 25.433V6.6.0(2005年6月)、技術仕様グループ無線アクセスネットワーク、UTRANIubインターフェースノードBアプリケーションパート(Node B Application Part:NBAP)信号送信(リリース6)とを、参照してここに組み入れる。
【0007】
高速ダウンリンクパケットアクセス(HSDPA)は、(例えば)2005年8月26日出願の国際出願PCT/SE2005/001247号、および2005年8月26日出願の国際出願PCT/SE2005/001248号において議論されている。
【0008】
HSDPAシステムは、例えば約10Mbpsの最大データレートを与える。図6は、高速共有チャネルコンセプトを説明しており、ここでは複数のユーザ1、2、および3が高速チャネル(high speed channel:HSC)コントローラへデータを提供しており、HSCコントローラは、高速スケジューラとして機能し、時間多重化区間(送信時間区間(transmission time interval:TTI)と呼ばれる)において全HS‐DSCH帯域幅にわたり送信するユーザ情報を多重化する。例えば、図6に示す第1の時間区間の中で、ユーザ3はHS‐DSCHを通して送信し、HS‐DSCHに割り当てられた帯域幅の全部を使用する場合がある。次の時間区間の中では、ユーザ1がHS‐DSCHを通して送信し、次の時間区間ではユーザ2が送信し、次の時間区間ではユーザ1が送信するというように続いていく。図6は単純化したものであり、1TTIにおいて2以上のユーザがスケジューリング可能である。
【0009】
HSDPAは、無線資源調整および管理の責任のいくつかを無線ネットワークコントローラから基地局へシフトすることで、より高いデータスピードを達成する。かかる責任は、以下のもの(各々簡単に以下で説明する)のうち1または2以上を含む。すなわち、共有チャネル送信、高次変調、リンク適合、無線チャネル依存スケジューリング、およびソフト組合せを用いる混成ARQを含む。
【0010】
共有チャネル送信において、無線資源、例えばCDMAをもとにする送信の場合の拡散符号スペースおよび送信電力は、時間多重化を用いてユーザ間で共有される。高速ダウンリンク共有チャネルが、共有チャネル送信の一例である。共有チャネル送信のある大きな利点は、専用チャネルと比べ、使用可能な符号資源をより効果的に活用できることである。低次変調よりも帯域幅効率が良い高次変調を用いることで、チャネル条件が好ましいときには、さらに高いデータレートも達成可能である。
【0011】
無線基地局は、高速ダウンリンク共有チャネル(high‐speed downlink shared channel:HS‐DSCH)のキャリア品質(carrier quality:CQI)を監視し、無線基地局に保管される優先待ち行列を管理する。基地局の優先待ち行列(priority queue:PQ)は、エアーインターフェースを通して移動端末へ高速ダウンリンク共有チャネル(HS‐DSCH)上で送信されるデータを格納する。加えて、基地局は、監視によりHS‐DSCHのキャリア品質を認知し、制御ノードがさらに多くのHS‐DSCHデータフレームを無線基地局へ送信することを承認するメッセージを制御ノードへ送信する。
【0012】
移動端末は、キャリア品質インジケータ(carrier quality indicator:CQI)をセルの担当無線基地局へ報告する。CQIは、各移動局(例えば各ユーザイクイップメントユニット(「UE」))により報告される共通パイロットCPICHの品質の測定である。キャリア品質インジケータ(CQI)は、移動端末の性能の式とともに、ビットレートに変換される。次にビットレートは、無線基地局に必要とされた場合、さらに減じられ、周期的におよび/または緊急遷移時など必要に応じて制御ノードへ送信される容量割当制御フレームの生成をもたらす。承認メッセージは、例えばビットレートまたはクレジットなどを用いて様々に表すことができる「容量割当」を含む。例えば、クレジットで表される容量割当は、無線ネットワークコントローラ(RNC)がMAC‐dフローとして送信可能とされる多くのMAC‐dPDUを表す場合がある。このような承認メッセージに応じて、制御ノードはさらなるHS‐DSCHフレームを無線基地局へ送信する。
【0013】
優先待ち行列内のデータは、制御ノードから無線基地局へプロトコルデータユニット(protocol data unit:PDU)で送信される。多くのPDUは、各高速ダウンリンク共有チャネル(HS‐DSCH)データフレームに含まれることが可能である。
【0014】
HSDPAは大いに議論すべき主題であって、容量割当を伝送するメッセージが規格化されてきたが、HSDPAに特定のフロー制御アルゴリズムが規格化されたことはない。例えば、第3世代協同プロジェクトの3GPP TS 25.435V6.2.0(2005年6月)、技術仕様グループ無線アクセスネットワーク、共通伝送チャネルデータストリーム用UTRANIubインターフェースユーザプレーンプロトコル(リリース6)を参照のこと。当仕様書を、HS‐DSCH容量割当に言及する§5.10および§6.3.3.11に限らず包括的に全体を参照して、ここに組み入れる。
【0015】
ある種のIubフロー制御を、RNCとRBSとの間に与えなければならないであろう。このようなIubフロー制御は、RNCへ送信される容量割当メッセージを計算し、それによりRNCは、容量割当(Capacity Allocation:CA)にしたがってHS‐DSCHデータフレームをRBSへ送信可能である。フロー毎に1つの容量割当がある(すなわち、優先待ち行列フロー(priority queue flow:PQF)毎に1つの容量割当)。このようなフロー制御アルゴリズムは、エンドユーザが知覚する良質なデータ送信を保証するものであるべきである。
【0016】
実ユーザビットレートが、容量割当制御フレームが認めるものであるということを、公称(nominal)Iubフロー制御アプローチが想定する。公称アプローチにおいて、無線基地局に対する全体のビットレートは、アクティブフロー毎に目いっぱいに割り当てられたビットレートの合計に等しい。フロー毎のビットレートは、公称アプローチにおいては、容量割当メッセージに認められる最大ビットレートとなると見なされるため、個々のフローに対するビットレートは、それぞれのフローに対する容量割当に設定される。
【0017】
HSDPAシステムにおいては、一般的に2つの障害がある。障害の1つは、無線基地局ノード(RBS)と移動局との間のエアーインターフェース(Uu)上のダウンリンクに関するものである。他の障害は、無線ネットワークコントローラノードと無線基地局ノードとの間のインターフェース(Iub)上のダウンリンクに関するものである。これらの障害は両方とも、フロー制御アルゴリズムで考慮されるべきものである。Iubインターフェースにわたる使用可能なHS帯域幅はかなり変動する。HSトラフィックIubにわたり過剰に割り当てられている場合、フレーム損失および長期遅延によりHSパケットデータパフォーマンスが低下する。HS‐DSCHデータフレームのエアーインターフェーススケジューリングはRBSにより制御される。
【0018】
優先待ち行列フロー(PQF)がその容量割当(CA)メッセージによるその容量割当を使用しない場合、Iub伝送ネットワークは十分活用されていないであろう。その理由は、使用可能な容量からのPQFの割当がPQFに予約されてはいるのだが、使用されてはいないためである。
【0019】
容量割当ビットレートが目いっぱい使用されない理由はいくつかあり得る。第1の理由として、無線ネットワークコントローラ(RNC)はRAB属性「Iu最大ビットレート」パラメータ(サブスクリプションタイプの関数としてオペレータにより設定され得るもので、例えばオペレータにより64、128、384kbps、またはそれ以外の値に設定される(これらの例はたまたまDCHビットレートによく似た限界値である))でHSDPA HS‐DSCHデータフレームビットレートを制限する場合がある。第2の潜在的理由として、アプリケーションサーバとSRNCとの間に障害がある場合があって、この障害は、ある期間、あるネットワークにおいて発生する可能性があるものである。第3の妥当な理由は、フローに関わるアプリケーションがある期間にある低ビットレートよりも多くを使用しない場合があるということである。第4のあり得る理由は、トラフィックがバースト性のものであることであり、例えば一度に1パケット(例えばウェブページから)が大きなビットレートの違いとともにダウンロードされるなどがある。
【0020】
低ビットレート障害が、HSDPAIubフロー制御アルゴリズムの「上方に(above)」、すなわち無線ネットワークコントローラ(RNC)の上方に発見されることを、図7は説明する。障害は、Iu最大ビットレートとして、アプリケーションサーバ内に、サービス中RNC(Serving RNC:SRNC)内にあるか、またはこれら2つのノードの中間のサービスネットワーク伝送ネットワークにある。
【0021】
このように、HSDPAフロー制御に対する公称アプローチは、実際には容量割当メッセージの認めるところよりもかなり低いビットレートをユーザが使用するという状況を考慮していない。例えば、1Mbpsの容量割当(CA)がRNCに送られている場合でも、ユーザは100kbpsしか使用しないこともあり得る。
【0022】
公称HSPDAフロー制御アプローチの問題は、容量割当(CA)がアクティブ優先待ち行列フローの容量割当の関数として削減されることである。全部のアクティブユーザに対する全容量割当(CA)ビットレートが使用可能なIubビットレートよりも高い場合、容量割当(CA)ビットレートは低下する。これは、ユーザが実際に最大容量割当(CA)ビットレート活用しているか否かにかかわらずに起こる。上述のように、容量割当(CA)ビットレートを使用しないユーザは、ビットレート制限されたアプリケーションを有するユーザである場合、「サーバ」とRBSとの間のどこかで障害をエクスペリエンスするユーザである場合、またはRAB属性Iu最大ビットレートにより制限されるユーザである場合がある。
【0023】
図8A〜図8Dは、公称HSDPAフローアプローチに関する問題を説明するシミュレーション例を反映している。シミュレーションにおいては、3セルRBSに10ユーザおり、全ユーザは大きなファイルをダウンロードしている。システムのユーザの数が10となるまで新しいユーザが20秒毎に到来する。ユーザ0、3、6、9は第1セルにおり、ユーザ1、4、7は第2セルにおり、一方その他のユーザは同RBSの第3セルにいる。ユーザ0および5を除く全ユーザは、Iu最大ビットレート100kbpsで制限されている。RBSは無線ネットワークコントローラ(RNC)にE1リンクを用いて接続されている。
【0024】
図8Aは、配分される伝送ネットワーク資源の量と、全優先待ち行列に割り当てられる容量割当(CA)レートの合計(sumCAR)とを示す。図8BはRBSにおける入出PDUレートを示す。後のユーザがシステムに加入するまでは高い初期Iubビットレート活用が行われるが、後のユーザはその認められる容量割当(CA)を目いっぱい使用しない。図8Bは、RBSへの着信PDUレート(inAll)と、RBSからの発信PDUレート(out)とを示す。非アクティブユーザの着信ビットレートも示されてはいるが、このシミュレーションの場合は零である。はじめレートはその後よりもずっと高いということが、図8Bから分かる。割り当てられた帯域幅を使用しないユーザにより、伝送ネットワーク活用の後の劣化が引き起こされる。シミュレーション中は伝送ネットワークの平均活用も測定され、62%となった。
【0025】
図8Cは、優先待ち行列0における容量割当(CA)ビットレート活用を示す。図8Cおよび図8Dにおいて、所定のユーザに割り当てられた容量と、所定のユーザに使用される容量(着信PDUビットレート)とを、ユーザ0および4についてそれぞれ示す。ユーザ4は、たとえ100kbpsよりもずっと大きな容量が割り当てられていても、それより大きな容量を使用しないことが分かる。他方で、ユーザ0は、その容量割当に制限されている容量のうち割り当てられている全容量を使用する。
【0026】
公称HSDPAフロー制御アプローチは、一部のユーザがその割当帯域幅を使用しない場合には伝送ネットワーク資源を活用不可能であるということを、前述のシミュレーションは説明する。
【0027】
したがって、必要なもの、およびここで提示される課題は、一部のユーザがその割当帯域幅を使用しない場合に伝送ネットワーク資源を高速ダウンリンク共有チャネル(HS‐DSCH)に効果的に活用する手段、方法、および技術である。
【発明の開示】
【0028】
高速ダウンリンクパケットアクセス(HSDPA)を与える無線アクセスネットワークノードは、1または2以上の優先待ち行列とフローコントローラとを備える。優先待ち行列は、移動端末へエアーインターフェースを通して高速ダウンリンク共有チャネル(HS‐DSCH)上で送信されるデータを格納する。データは、無線アクセスノードにより決定される容量割当にしたがって、上位ノードを有するインターフェースを通して優先待ち行列において受信される。フローコントローラは、優先待ち行列に対する容量割当の実際の活用を測定し、容量割当の実際の活用を使用して、容量割当を調節する。
【0029】
一実施形態例において、優先待ち行列に対する容量割当の実際の活用を測定するフローコントローラは、所定の時間内での優先待ち行列に対する到着プロトコルデータユニット(PDU)の数を検知するように構成され、到着プロトコルデータユニット(PDU)の数を、所定の時間での優先待ち行列に対する容量割当と比較するようにさらに構成される。
【0030】
操作の別側面において、容量割当を調節するために、フローコントローラは、伝送ネットワーク資源を複数の異なる優先待ち行列間で分割するようにも構成される。伝送ネットワーク資源のこの分割は、一実施例においては、所定の優先待ち行列の資源使用を、優先待ち行列に対する容量割当の実際の活用と掛け合わせるにより成し遂げられる。
【0031】
別の側面においては、フローコントローラは、優先待ち行列に対する容量割当の実際の活用の測定量を平均し、それにより、データフローの異なるデューティサイクルを考慮する問題を回避する。
【発明を実施するための最良の形態】
【0032】
本発明における前述の、そしてその他の課題、特徴、および効果は、添付図面に示す好適な実施形態についての以下のより具体的説明から明らかとなる。添付図面において、いくつかの図面にわたり、参照文字は同等の部分を示している。図面は必ずしも縮尺どおりではなく、本発明の原理を説明するにあたり、強調してある部分もある。
【0033】
以下の説明において、限定ではなく説明を目的として、本発明が徹底的に理解されるように、特定のアーキテクチャやインターフェース、技術などのような具体的な詳細を説明する。しかしながら、当業者には、このような具体的詳細からは逸れる他の実施形態にも本発明が実施可能であることは明らかであろう。つまり、ここでは明示的に説明したり、示したりしていなくとも、本発明の原理を具体化し、本発明の意図および範囲に含まれる様々な改編が、当業者であれば考案可能である。ある場合には、周知の装置、回路、および方法の詳細な説明は、本発明の説明が不要な詳細で不明瞭とならないように、省略する。本発明の原理、側面、実施形態、および本発明の特例を説明するこの記述すべては、構造および機能上の両方における本発明の均等物を包含するよう意図している。加えて、そのような均等物は、現在周知の均等物と、将来開発される均等物、すなわち構造にかかわらず同等に機能するよう開発された如何なる要素との両方を含むということも意図している。
【0034】
このように、例えばここでのブロック図は、本技術原理を具体化する例示的回路の概念図を表している場合があるということが、当業者には了解されるであろう。同様に、フローチャート、状態遷移図、疑似符号などは、コンピュータ読出可能媒体において実質的に表され、コンピュータまたはプロセッサにより実質的に実行され得る様々な処理を表していることも、たとえそのようなコンピュータまたはプロセッサが明示されていなくとも了解されるであろう。
【0035】
「プロセッサ」または「コントローラ」とラベルされる機能的ブロックを含む様々な要素の機能は、専用ハードウェア、およびソフトウェアを実行可能であり適切なソフトウェアに関連するハードウェアを用いて与えられてもよい。プロセッサにより与えられる場合、その機能は、単一の共有プロセッサにより与えられてもよいし、複数の個別のプロセッサにより与えられてもよく、複数の個別のプロセッサは一部が共有されたり分配されたりしていてもよい。さらに、「プロセッサ」または「コントローラ」という言葉の明示的使用は、ソフトウェアを実行可能なハードウェアを排他的に表すと解釈されるべきものではなく、限定するわけではないが、デジタル信号プロセッサ(digital signal processor:DSP)ハードウェア、格納ソフトウェアに対し読出専用メモリ(read only memory:ROM)、ランダムアクセスメモリ(random access memory:RAM)、および不揮発性ストレージを含んでもよい。
【0036】
図1は、非限定的な電気通信システムの一例を示しており、ここでは無線アクセスネットワーク20が、1または2以上の外部(例えばコア)ネットワーク22に接続されている。例えば、公衆交換電話網(Public Switched Telephone Network:PSTN)および/または統合サービスデジタル通信網(Integrated Services Digital Network:ISDN)のような接続指向ネットワーク、および/または(例えば)インターネットのような無接続外部コアネットワークを、外部ネットワーク22は含んでもよい。1または2以上の外部ネットワークは、図示していないサービス中ノードを有しており、例えば、ゲートウェイGRPS支援ノード(Gateway GRPS Support Node:GGSN)と連動して機能する移動交換センター(Mobile Switching Center:MSC)ノードおよびサービス中汎用パケット無線サービス支援ノード(Serving General Packet Radio Service(GPRS) Support node:SGSN)などを有している。
【0037】
コアネットワークサービスノードの各々は、適当なインターフェースを通して無線アクセスネットワーク(RAN)20に接続する。図1に示す特定の非限定的な例において、無線アクセスネットワーク(RAN)20はUMTS地上波無線アクセスネットワーク(UTRAN)であり、外部ネットワークとのインターフェースは、Iuインターフェースを通る。無線アクセスネットワーク(RAN)20は、1または2以上の無線ネットワークコントローラ(RNC)と、1または2以上の無線基地局(RBS)28とを含む。単純化のため、図1の無線アクセスネットワーク(RAN)20は、2つのRNCノード、具体的にはRNC26およびRNC26のみを有するように示してある。各RNC26は、Iubインターフェースを通して1または2以上の基地局(BS)28に接続される。例えば、同様に単純化のため、2つの基地局ノードが各RNC26に接続されているように示してある。これに関して、RNC26は基地局281−1と基地局281−2とにサービスを行い、一方RNC26は基地局282−1と基地局282−2とにサービスを行う。異なる数の基地局が各RNCによりサービスが行われる場合があり、RNCは同数の基地局にサービスを行う必要はないということが了解されるであろう。さらに図1は、RNCがIurインターフェースを通してUTRAN24における1または2以上の他のRNCに接続可能であるということも示している。さらに当業者であれば、当技術分野においては時に基地局を無線基地局、ノードB、またはBノードと表すことも了解するであろう。図1の例においては、無線ネットワーク制御ノードは、無線基地局ノードよりも「上位(superior)」ノードと見なされる。
【0038】
少なくとも1つ、おそらくはより多くの無線アクセスネットワークのRNCが、1または2以上のコアネットワークへのインターフェースを有するということが理解されるべきである。さらに、無線アクセスネットワークにおける異なるRNCに制御されるセル間をUEが移動する場合に、確立された接続の連続を支援するために、信号送信ネットワーク(例えば信号送信システム第7番)が、必要なRNC‐RNC信号送信をRNCが行うことを可能にする。
【0039】
図示する実施形態において、単純化のために、各基地局28はサービス中の1つのセルとして示す。例えば基地局281−2に対し、セルは丸で表される。しかしながら、1つより多くのセルに対するエアーインターフェースにわたって通信するサービスを基地局が行うことを、当業者は了解するであろう。例えば、2つのセルは、同じ基地局サイトに位置する資源を活用してもよい。さらに、各セルは1または2以上のセクタに分割されてもよく、各セクタは1または2以上のセル/キャリアを有する。
【0040】
図1に示すように、移動端末(MT)30は、1または2以上のセルと、または1または2以上の基地局(BS)28と無線またはエアーインターフェース32を通して通信する。異なる実施形態においては、移動端末(MT)30は、例えばワイヤレス端末、移動局すなわちMS、ユーザイクイップメントユニット、ハンドセット、またはリモートユニットなど、異なる名称で知られる場合がある。各移動端末(MT)は、携帯電話、携帯ノートパソコン、ポケットベル、携帯情報端末または他の同等の移動体装置、SIP電話、マイクロソフトネットミーティングやプッシュツートーククライアントなどのリアルタイムアプリケーションを装備した固定コンピュータおよびノートパソコン、無数の装置または部品のいずれであってもよい。少なくとも無線アクセスネットワーク(RAN)20のUTRANの実施形態に対し、無線アクセスは広帯域符号分割多元接続(WCDMA)に基づいており、個々の無線チャネルはCDMA拡散符号を用いて割り当てられていることが好ましい。言うまでもなく、他のアクセス方法も使用可能である。
【0041】
図1は、さらに単純化した形で、基地局28の1つと移動端末(MT)30との間に異なる種類のチャネルが制御およびユーザデータの伝送用に存在する場合があることを示している。例えば、フォワードまたはダウンリンク方向には、数種のブロードキャストチャネル、1または2以上の制御チャネル、1または2以上の共通トラフィックチャネル(common traffic channel:CCH)、専用トラフィックチャネル(dedicated traffic channel:DPCH)、およびここで特に関心のある高速ダウンリンク共有チャネル(HS‐DSCH)がある。ダウンリンク専用物理チャネル(downlink dedicated physical channel:DPCH)は、専用物理データチャネル(Dedicated Physical Data Channel:DPDCH)と専用物理制御チャネル(Dedicated Physical Control Channel:DPCCH)の両方を搬送する。
【0042】
RNC26は、HSDPAを支援するようにセルを構成する。その後、それぞれのTTI送信に必要な電力と符号の量とを割り当てるのはRBS28が従事する。
【0043】
高速ダウンリンクパケットアクセス性能を与えられた基地局は、高速ダウンリンクパケットアクセスコントローラを有し、例えば、信号送信の目的で活用される高速ダウンリンク共有チャネル(HS‐DSCH)および高速共有制御チャネルの割当および活用を司るHSDPAスケジューラ40または同等のチャネルマネージャなどを有する。HSDPAコントローラは一般にHSDPAスケジューラ40とも呼ぶ。HS‐SCCHは、移動端末へ送信される情報を含み、そのため移動端末は、HS‐PDSChチャネルで受信すべきデータを有するか否かを認知する。高速ダウンリンク共有チャネル(HS‐DSCH)と高速共有制御チャネル(HS‐SCCH)は別々のチャネルである。当業者が理解するように、高速共有制御チャネル(HS‐SCCH)により搬送される信号送信は、対応するHS‐DSCH TTIの前に、HS‐SCCH TTIを2スロット送信することで行われる。
【0044】
HSDPAスケジューラ40は、RBSノードの全体オペレーション/調整の責任を担うノードコントローラなどに備えられているか、または別々である。さらに、HSDPAスケジューラ40を実施するには、個別のハードウェア回路を用いてもよいし、適切にプログラムされた1または2以上のデジタルマイクロプロセッサまたは汎用コンピュータと併せてソフトウェアプログラムおよびデータを用いてもよいし、特定用途向け回路網(application specific circuitry:ASIC)を用いてもよいし、および/または1または2以上のデジタル信号プロセッサ(digital signal processor:DSP)を用いてもよい。
【0045】
HSDPAスケジューラ40と、ここでは説明しない無線基地局28のHSDPA関連実体との様々な機能性は、2004年12月30日出願の米国特許出願第11/024942号、発明の名称「FLOW CONTROL AT CELL CHANGE FOR HIGH‐SPEED DOWNLINK PACKET ACCESS(高速ダウンリンクパケットアクセスのためのセル変換時のフロー制御)」を参照して理解されるものであり、また当出願を参照してここに組み入れる。図示した技術の構成要素のうち、無線基地局28は複数のトランシーバ(Rx/Tx)46を有する。
【0046】
さらに図1に示されるように、無線基地局(RBS)28は、優先待ち行列(PQ)50から50を含むユーザデータ待ち行列50の組を備え、高速ダウンリンク共有チャネル(HS‐DSCH)に適用される場合にユーザデータは(優先待ち行列(PQ)フロー(PQF)として)ユーザデータ待ち行列50を通る。ユーザデータ待ち行列50(i=1,……,j)を監視することにより、無線基地局(RBS)28は、ユーザiがどれだけのデータを各自のユーザデータ待ち行列50に有しているかを認知する。
【0047】
各優先待ち行列(PQ)50に対し、無線基地局は容量割当制御フレームを生成し、容量割当制御フレームは、無線ネットワーク制御ノード(RNC)26へ周期的におよび/または緊急遷移時など必要に応じて送信されるものである。これらの承認メッセージは、「容量割当」を含む。これらの承認メッセージに応じて、および容量割当に特に応じて、無線ネットワーク制御ノード(RNC)26は(「上位」ノードとして)さらなるHS‐DSCHフレームを無線基地局へIubインターフェースを通して送信する。
【0048】
また図1に示すように、無線基地局(RBS)28は、HSDPAフロー制御処理を含みおよび/または実行し、この意味で(HSDPA)フローコントローラ60としても知られる。HSDPAフローコントローラ60は、とりわけ、上述の容量割当承認メッセージを生成する。また上述のとおり、いくつかの優先待ち行列は承認容量割当を完全には活用しない場合がある。この状況を改正するため、HSDPAフローコントローラ60は、HSDPAに関するアクティブ優先待ち行列50毎に平均容量割当活用を計算する計算機62と、推定装置64と、容量割当調節器65とを備える。次に推定装置64は、RBS実ビットレート推定装置66と、待ち行列容量割当更新/推定装置68とを備える。
【0049】
計算機62は、無線基地局(RBS)28に処理されるアクティブ優先待ち行列(PQ)毎に平均容量割当活用を計算するようにはたらく。図示する非限定例示的実施形態において、パラメータavgCaUtil(PQF)は、優先待ち行列に対する平均容量割当活用を表す。図2は、計算機62の一実施形態例のイベント、入力、および出力を示す。計算機62への入力は、パラメータdeltaCaUtil70と、として知られる変数iubCongestionIndicationFlag72と、変数caCreditsBitrate74と、評価期間に優先待ち行列(PQ)に格納されるPDUビットの数76を含む。計算機62の出力、例えば上述の優先待ち行列に対する平均容量割当活用(avgCaUtil(PQF))は、図2において参照番号78で表す。
【0050】
推定装置64は2つの推定を行う。第1の推定(変数例estUuRateで図示)は、現無線条件を想定した、エアーインターフェース上で優先待ち行列(PQ)が有し得る推定ビットレートである。この第1の推定(例えばestUuRate)は、容量割当(CA)ビットレートを調節することにとって重要な因数である。第2の推定(変数例rbsEstUuRateで図示)は、アクティブ状態にある全部の優先待ち行列(PQ)、すなわち全アクティブ優先待ち行列に対する推定ビットレート(すなわちestUuRate)の合計である。
【0051】
図3は、一実施形態例による推定装置64のイベント、入力、および出力を示す。推定装置64への入力は、計算機62により計算される優先待ち行列変数(avgCaUtil(PQF)78)に対する上述の平均容量割当活用と、pqtCoeff(PQF毎に:per PQF)80として知られる変数と、averageUuRate(PQF毎に)として知られる変数と、pqfState(PQF毎に)として知られる変数とを(優先待ち行列(PQ)毎に)含む。推定装置64の出力は、変数rbsEstUuRate86(任意に)と、変数estUuRate(PQF毎に)を含む。
【0052】
図4は、例示的計算機62により行われる計算ルーチンの基本的な非限定的ステップ、イベントまたは動作の例を示す。計算機62は、新しい変数avgCaUtil78を生成して、推定装置64へフィードするが、その目的は、推定装置64が、推定装置64により出力された変数rbsEstUuRate86の値を下げるように実行され、それにより、SRNCへ送られる容量割当に認められるよりも低いビットレートを使用するユーザによる未活用分を反映することである。図4の議論を確かめることにより、各優先待ち行列(PQ)フロー(PQF)はそれ自体の変数組を有するということが理解されるであろう。
【0053】
図4の計算処理論理例のステップ4‐1は、計算機62はPQF評価期間に情報を処理する用意があるという事実を反映している。優先待ち行列(PQ)毎に、評価期間は約1QPF100ms評価期間として続き、評価は、各PQFが通常100ms毎に評価されるところのRBS実施形態と提携する。図4の説明において、単純化のため、全アクティブ優先待ち行列(PQ)が基本的には同時に処理されることが想定されている。しかしながら、処理は優先待ち行列に対してゆらぎ、処理負担を平均する歪み関連の他のPQFが、同期間で有効であるCaCreditsBitrate値で割られるということが理解されるであろう。
【0054】
図4の計算論理は、アクティブ優先待ち行列(PQ)毎別々に平均容量割当活用を計算するようにはたらく。この目的にむけて、計算論理はステップ4‐2から4‐10のループを含み、ループの適切なステップは、HSDPAに関する無線基地局(RBS)28の優先待ち行列(PQ)毎に実行される。ループの第1の実行は、優先待ち行列(PQ)50のような第1の優先待ち行列に対するものであり、ループの第2の実行は、優先待ち行列(PQ)50のような第2の優先待ち行列に対するものであり、以下全優先待ち行列が処理されるまで同様に実行されていく。ループの各実行において、「当優先待ち行列(PQ)」と言った場合、対応するループ実行に関する優先待ち行列(PQ)を意味する。
【0055】
評価期間に優先待ち行列(PQ)に対してPDUが受信されなかったということがステップ4‐1において判定される場合、処理はステップ4‐10に続き、それで全優先待ち行列が処理されたかどうかのチェックが行われる。全優先待ち行列が処理されていなければ、実行は、別の優先待ち行列(PQ)に対する別のループ実行のため、ステップ4‐1へ戻る。
【0056】
ステップ4‐2のように、当処理期間に(例えば、当ループ実行に影響を受ける優先待ち行列(PQ)に対する)PQF毎に受信されるビットの数がカウントされ、さもなければ取得される。このように100ms期間に受信されるビットの数と比較可能であるカウントは、したがって図2における「PQに格納されるPDUビットの数」パラメータ76により反映される。
【0057】
ステップ4‐3のように、計算論理は変数CaCreditsBitrateの最終送信値をチェックする。変数CaCreditsBitrateの最終送信値の値が零に等しければ、ステップ4‐4のように計算論理は、当優先待ち行列(PQ)に対する容量割当活用(変数caUtilで図示)を1に設定する。変数CaCreditsBitrateの最終送信値が零以外であれば、ステップ4‐5のように計算論理は、当優先待ち行列(PQ)に対する容量割当活用(caUtil)の計算を行う。
【0058】
一実施形態例において、PQF100ms評価期間での無線基地局(RBS)におけるアクティブPqf毎のステップ4‐5の計算は、式1を用いて計算される。
【0059】
式1:
caUtil=100ms期間におけるビットの受信数/(CaCreditsBitrate0.1)
【0060】
式1において、100ms期間におけるビットの受信数は、図2におけるパラメータ76(評価期間において優先待ち行列(PQ)に格納されるPDUビットの数)により反映される。ビットの受信数は、100ms毎に優先待ち行列に格納されるPDU毎に正しく受信された336ビットまたは656ビットである。
【0061】
式1の項CaCreditsBitrateは、図2に示すCaCreditsBitrate変数74を用いる。CaCreditsBitrateを用いる理由は、これがRNCへ信号送信されるビットレートで、ユーザが使用可能な最大ビットレートだからである。受信された実ビットレートがCaCreditsBitrateと比較される。別の理由は、「CaCalcBitrate」と「CaCreditsBitrate」との「間に」ヒステリシスがあるからである。ステップ4‐3に関して上述のように、最終送信CaCreditsBitrateが0である場合、caUtilは1である。CaCreditsBitrateが有する単位は毎秒ビットであり、したがって因子「0.1」は100ms期間に合わせるために用いられている。
【0062】
このように、パラメータcaUtilはステップ4‐5において式1を用いて計算される。一実施形態例において、パラメータCaUtilは、例えば0<=caUtil<=1のような上限と下限との間など、特定の範囲に制限される。caUtilが0よりも低い場合(もしそのようなことがあればの話であるが)、caUtilは0に設定すべきであり、1よりも高い場合には(これは頻繁にあるであろうが)、1に設定されるべきである。範囲限界は設定可能(例えば異なって選択される)なものであってよい。
【0063】
CaCreditsBitrateは、受信ビットがカウントされる間の100ms評価期間において有効である容量割当制御フレームを反映すべきである。「当」時点に送信され得るものではなく、以前送信の容量割当(CA)がCaCreditsBitrateとして用いられるべきである。現時点の前の100ms期間が評価されるのである。経過したばかり100ms期間の最初は有効であるCaCreditsBitrate(RBSからRBCへ送信されるCAメッセージ)が用いられることになり、容量割当(CA)は100……1000ms前に送信されたものである。当方法は、たとえcaUtilが平均されていようとも、ビット数と有効容量割当(CA)との間により良い環形、より小さな歪みを与える。
【0064】
計算機62の次の目的は、当優先待ち行列(PQ)に対する平均容量割当活用(avgCaUtil)を計算することである。かかる計算を行う前に、計算論理はステップ4‐6およびステップ4‐7において2つの予備チェックを行う。ループ実行に関する優先待ち行列(PQ)がその状態をアクティブに変化させる(例えば状態遷移を行う)と、計算機62は通知される。当通知は、図2においてpqfStateがその状態をactivePqfへ変化とラベルするイベントにより反映される。当ループ実行に関する優先待ち行列(PQ)に対するpqfStateがその状態をactivePqfへ変化させたばかりである(したがって「遷移」フラグが設定される)ことが計算論理のステップ4‐6において判定される場合、ステップ4‐7において計算論理は、当優先待ち行列(PQ)に対する平均容量割当活用が1になることを決定する。
【0065】
ステップ4‐6のチェックは、pqfStateがactivePqfへ変化した後の第1の100ms評価期間時点においてはavgCaUtilが計算可能でないため行われる。その理由は、pqfState遷移が100msPQF時点の前はいつでも起こり得るからであり、したがって第1時点前はビットの受信数は関連しない。
【0066】
ステップ4‐8において計算論理はiubCongestionIndicationFlag(iub輻輳表示フラグ)72をチェックする。iubCongestionIndicationFlag72が設定されていると判定されると、ステップ4‐7が行われ、当優先待ち行列(PQ)に対する平均容量割当活用を1に設定する。ステップ4‐7(100ms評価期間においてiubCongestionIndicationFlagが1に設定される場合)においてavgCaUtilが1に設定される理由は、avgCaUtil計算を保護するためである。iubCongestionIndicationFlagが設定されている場合にcaUtilが1に設定されていないと、多くのフレーム損失が起こり、受信ビットレートが減少していると認識される場合に、caUtilがあまりに低くなってしまう。これは誤表示であろう。
【0067】
iubCongestionIndicationFlag72も設定されず、当評価期間において当優先待ち行列(PQ)に対してpqfStateもactivePqfへ変化しない場合、ステップ4‐9のように計算論理は、当優先待ち行列(PQ)に対する平均容量割当活用を計算する。ステップ4‐9の計算は、式2(RBSにおけるactivePqf毎に、およびPQF100ms評価期間に、別々に評価される)のような式を用いて行われることが好ましい。
【0068】
式2:
avgCaUtil=(1−deltaCaUtil)latest100mscaUtil+deltaCaUtilpreviousavgCaUtil
【0069】
先述の議論から理解されるとおり、パラメータcaUtilは式1から得られる。パラメータdeltaCaUtil70は、以下のように定数として(ユーザ)設定されるのが好ましい。
【0070】
平均化「時間定数」deltaCaUtilは2分の1レベルにあるべきである。これにより、ユーザビットフローの異なる「バースト性」構造に対してアルゴリズムが強固になる。時間定数が十分長い場合には、ユーザトラフィックのバースト性が考慮される必要はない。実用的想定は、パラメータdeltaCaUtilが、例えば(100ms区間を用いて)約1秒の時間定数を与える0.9という値などに設定可能であるということである。
【0071】
このように、計算機62が優先待ち行列(PQ)対する平均容量割当活用(avgCaUtil)をどのように得るのかを前述した。このような計算は計算機62によりアクティブ優先待ち行列(PQ)毎に行われる。ステップ4‐1からステップ4‐10のループ実行に関する特定の優先待ち行列(PQ)に対する計算を行った後(全待ち行列が基本的に同時に評価されていると想定すると)、基地局(RBS)に対する全アクティブ優先待ち行列が計算されたかどうかのチェックがステップ4‐10において行われる。全アクティブ優先待ち行列(PQ)が計算されていなければ、処理は次の優先待ち行列(PQ)に対する別のループ実施のためにステップ4‐1へ戻る。全アクティブ優先待ち行列(PQ)が計算されていれば、図4のステップ4‐11に反映されるように、計算機62は推定装置64へ実行を引き渡す。図4の計算論理を用いた計算機62の実行を考慮すると、アクティブ優先待ち行列(PQ)毎のavgCaUtilの計算がリフレッシュされており、そのためHSDPAフローコントローラ60は、estUuRateおよびrbsEstUuRateのその推定を更新するために推定装置64を実行する用意がここでできている。優先待ち行列(PQ)のユーザのうち1つが、割り当てられているものよりも小さいビットレートを使用しているならば、rbsEstUuRate値はより低いrbsEstUuRate値に更新されることとなり、したがって容量割当(CA)はより効率が良いものとなる場合がある。
【0072】
図示する一実施形態例において、rbsEstUuRateの計算(無線基地局の全アクティブ優先待ち行列にわたり、アクティブ優先待ち行列毎の、エアーインターフェースにわたる優先待ち行列の平均容量割当活用と推定ビットレートとの積の合計)は、式3にしたがって推定装置64の一部であるRBS実ビットレート推定装置66により行われる。
【0073】
式3:
rbsEstUuRate=sum(avgCaUtilestUuRate)
【0074】
式3において、優先待ち行列(PQ)毎のagvCaUtilは、計算機62から得られる(図2における計算機62の出力78、および図3における推定装置64への入力78を参照のこと)。変数estUuRateは、所定の優先待ち行列の、推定される将来のエアーインターフェースサービスレートである。変数estUuRateは、過去のスケジューリング履歴と現無線条件と現優先待ち行列充填レベルとに基づいて、フロー制御アルゴリズムおよびエアーインターフェーススケジューラにより推定される。
【0075】
このように、公称HSDPAフローアプローチとは異なり、推定装置64の一部であるRBS実ビットレート推定装置66の出力rbsEstUuRateは、RNCへ送信される容量割当制御フレームにより与えられるできる限り最大のビットレートよりもむしろ、実ビットレート使用法を反映する。各優先待ち行列の平均容量活用(例えばavgCapUtil)をrbsEstUuRateについての計算に含むことにより、全優先待ち行列の割当は、ユーザがその容量割当全体を使用していなかった状況において、増加するであろう。
【0076】
一動作モード例において、容量割当ビットレートは容量割当調節器65により調節される。優先待ち行列(i)に対する容量割当ビットレート調節は、式4に示す項などのような項の関数として行われる。式4において、「BNA」はIub障害近似因子(Iub Bottleneck Approximator)(kbpsを単位とし、使用可能なIub伝送ネットワーク容量を近似する値)である。このように、rbsEstUuRateが低下すると、伝送ネットワークのIubインターフェースが制限される場合には優先待ち行列PQ(i)に対するCAビットレートが上昇するであろう。
【0077】
式4:
CAPQ(i)=f(estUuRate(i)/rbsEstUuRateBNA)
【0078】
pqIubRateとして知られるパラメータの決定またはチェックと併せての場合で、特にパラメータpqIubRateの決定において活用される因子targetHsRate/rbsEstUuRateが1より小さい(それによりIub障害を反映する)場合には、公称HSDPAフローアプローチはestUuRateパラメータの値の低下を許可するのみであった。しかし本HSDPAフローコントローラ60はパラメータcaUtilを導き、そのため変数rbsEstUuRateは低い値まで低下可能である。Iubにわたりいずれか単一のユーザに使用可能なものより高いビットレートを割り当てることを避けるため、pqIubRateの計算は式5のようになるよう変化する。この変化は、例えば、アプリケーションサーバ障害により制限されるユーザが、異なるアプリケーションサーバから突然ダウンロードを開始する場合に起こり得る。このIubフロー制御アルゴリズムの欠点は避けるべきである。
【0079】
式5:
pqIubRate=min(1,estUuRate/rbsEstUuRate)
【0080】
HSDPAフローコントローラ60を考慮すると、特定の優先待ち行列(PQ)に使用されていない帯域幅を他の1または2以上の優先待ち行列(PQ)に割り当てることがこのように可能である。このような再割当を考慮すると、伝送ネットワークはより良く活用され、一方で輻輳制御はなおインターフェースに対してはたらく。
【0081】
図5A〜図5Dはあるシミュレーションを反映しており、ここでは図2、図3、および図4のステップ(caUtilの計算を含む)と関連して上述したHSDPAフローコントローラ60が、図8A〜図8Dのシミュレーションと基本的に同様の事実状況へ適用されている。
【0082】
図5Aは、targetHSRateと全容量割当(CA)レートの合計とを示す。図5Aにおいて、分配される伝送ネットワーク資源の量(tHSRate)と、全PQに対し割り当てられる容量割当(CA)レートの合計(sumCAR)とを図示する。図8Aと比較すると、図5Aにおいて全PQに割り当てられるCAレートの合計のほうがずっと高いということが分かる。このように、caUtil計算結果を導くことにより、任意のPQが使用していない容量を他のPQに割り当てることになる。
【0083】
図5Bは、RBSにおける発着PDUレートを示している。図5Bにおいて、使用可能な伝送ネットワーク資源がずっと良く活用されているということが分かる。図5Bは、RBSへの着信PDUレート(inAll)と、RBSからの発信PDUレート(out)とを示している。パッシブフロー(inP)が図5Bには描かれているが、本提案の範囲外のものである。シミュレーション中の伝送ネットワークの平均活用も測定し、結果は92%となった。
【0084】
図5Cおよび図5Dにおいて、所定のユーザに割り当てられた容量(caCreditsRateLast)と、所定のユーザに使用される容量(着信PDUビットレート)とを、ユーザ0および4について示す。図5Cおよび図5Dにおいて黒線はavgCaUtil値を図示する。
【0085】
図5Cにおいて、識別子0を有するユーザは以前よりもずっと高いレートでダウンロード可能であるということが分かる。図5Dにおいて、識別子4を有するユーザに対し割り当てられている容量は、識別子0を有するユーザに対し割り当てられている容量と同等であるが、識別子4を有するユーザはその容量よりもずっと少ない容量を使用するため、そのavgCaUtil値は小さい。caUtil解法の導入および使用は、伝送ネットワークの活用を大きく増大した(62%から92%まで)。
【0086】
このように、優先待ち行列(PQ)フローが、容量割当により割り当てられた容量を使用しない場合に、ここで説明したHSDPAフロー制御論理が効果的に使用可能である。認められている量よりもはるかに小さい容量を優先待ち行列(PQ)フローが使用する場合に、ここで説明したフロー制御論理を使用することは、Iub伝送ネットワークの劣化を縮小する、または防止するまでにいたる。ここで説明した論理および方法は、各優先待ち行列(PQ)に割り当てられている容量の活用を検知し、それにより容量割当(CA)メッセージの計算方法を調節する。
【0087】
ここで説明したHSDPAフロー制御論理は、ユーザ(例えばその優先待ち行列(PQ)フロー)があまり頻繁には最大許容ビットレートを使用しないと見なしている。アクティブユーザが有する実ビットレートが、認められた容量割当(CA)ビットレートと単に比較されるかわりに、targetHsRateと比較されるということが、ここで提供する新しい機能性である。認められた容量割当(CA)ビットレートとは、可能な最大ビットレートである。結果としては、認められた容量割当よりも多くの実ビットレートが低い場合、容量割当は減じられない。これにより、認められた容量割当(caCreditsBitrate)がtargetHsRateよりも高い場合、IubHSDPAビットレート活用が改善される。このように、IubHS帯域幅活用はより良いものとなる。
【0088】
ここで説明した技術は、上位ノードが有するインターフェース上、例えば無線基地局と無線制御ノードとの間のIubインターフェース上の帯域幅が制限されていることを想定している。これらの技術は、優先待ち行列に活用される実際の容量割当が低いと、容量割当ビットレートを乏しいインジケータとみなす。したがってHSDPAフローコントローラ60は実ビットレート(「活用(utilized)」ビットレートまたは容量割当)を測定し、Iubビットレートと比較する場合、活用を用いて容量割当を調節する。HSDPAフローコントローラ60は、活用容量割当(例えばcaUtil)用いて、伝送ネットワーク資源を分割するために、基準(例えばrbsEstUuRate)を減少させる。これにより、HSDPAフローコントローラ60は、容量割当活用が高い場合、同資源を1回より多く分割する。
【0089】
様々な実施形態を図示し、詳細に説明してきたのだが、いずれの特定の実施形態または例にも、特許請求の範囲は限定されるものではない。上述のいかなる説明も、特定のいかなる要素、ステップ、範囲、または機能が本質的であるということを示していると読み取られるべきものではない。本発明は、開示する実施形態に限定されると理解されるものではなく、反対に、様々な変更および均等配列を含むことを意図されるものである。
【図面の簡単な説明】
【0090】
【図1】HSDPAフローコントローラが効果的に使用可能であるところの移動体通信システム例の概略図である。
【図2】図1のHSDPAフローコントローラの計算機のイベント、入力、および出力のダイアグラムである。
【図3】図1のHSDPAフローコントローラの推定装置のイベント、入力、および出力のダイアグラムである。
【図4】図2の計算機により行われるステップまたは動作の基礎的な代表例を示すフローチャートである。
【図5】図5A〜図5Dは、改善されたHSDPAフロー制御処理のシミュレーションを示すグラフである。
【図6】高速共有チャネルコンセプトのダイアグラムである。
【図7】公称HSDPAIubフロー制御アプローチの低ビットレート障害を示すグラフである。
【図8】図8A〜図8Dは、の公称HSDPAフロー制御アプローチのシミュレーションを示すグラフである。

【特許請求の範囲】
【請求項1】
高速ダウンリンクパケットアクセス(HSDPA)を与える無線アクセスネットワークノード(28)において、
移動端末(30)へエアーインターフェース(32)を通して高速ダウンリンク共有チャネル(HS-DSCH)上で送信されるデータを受信および格納する優先待ち行列(50)と、前記優先待ち行列(50)は、容量割当にしたがって上位ノード(26)を有するインターフェースを通して前記データを受信することと、
を備え、
前記優先待ち行列(50)に対する前記容量割当の実際の活用を測定し、前記実際の活用に応じて前記容量割当を調整するように構成されるフローコントローラ(60)
を有することを特徴とする無線アクセスネットワークノード(28)。
【請求項2】
前記無線アクセスネットワークノード(28)は、複数のデータフローそれぞれに対する複数の優先待ち行列(50i)を備え、また、フローコントローラ(60)は、容量割当の実際の活用を前記複数優先待ち行列(50i)毎に別々に測定する、請求項1に記載の装置。
【請求項3】
前記優先待ち行列(50)に対する前記容量割当の実際の活用を測定する前記フローコントローラ(60)は、所定の時間内での前記優先待ち行列(50)に対する到着プロトコルデータユニット(PDU)の数を検知するように構成され、前記到着プロトコルデータユニット(PDU)の数を前記所定の時間での前記優先待ち行列(50)に対する前記容量割当と比較するようにさらに構成される、請求項1に記載の装置。
【請求項4】
前記フローコントローラ(60)は、伝送ネットワーク資源を複数の異なる有線待ち行列(50i)間で分割することにより前記容量割当を調節し、前記伝送ネットワーク資源の分割は、所定の優先待ち行列(50)の資源使用を、前記優先待ち行列(50)に対する前記容量割当の実際の活用と掛け合わせることに関する、請求項1に記載の装置。
【請求項5】
前記フローコントローラ(60)は、前記優先待ち行列(50)に対する前記容量割当の実際の活用の測定量を平均する、請求項1に記載の装置。
【請求項6】
無線アクセスネットワークノード(28)を操作する方法において、
高速ダウンリンク共有チャネル(HS‐DSCH)上に高速ダウンリンクパケットアクセス(HSDPA)を与えることと、
容量割当にしたがって上位ノード(26)からインターフェースを通して受信され、移動端末(30)へエアーインターフェース(32)を通して前記高速ダウンリンク共有チャネル(HS‐DSCH)上で送信されるデータを、前記ネットワークのノードにおける優先待ち行列(50)に格納することと
を含み、
前記優先待ち行列(50)に対する前記容量割当の実際の活用を測定するステップと、
前記実際の活用に応じて前記優先待ち行列(50)に対する前記容量割当を調節するステップと
を有することを特徴とする方法。
【請求項7】
前記ノードにおける複数の優先待ち行列(50i)の各々に対し前記容量割当の実際の活用を測定することをさらに含み、前記複数の優先待ち行列(50i)は、複数のデータフローそれぞれに対する前記エアーインターフェース(32)を通して送信されるデータを格納する、請求項7に記載の方法。
【請求項8】
前記優先待ち行列(50)に対する前記容量割当の実際の活用を測定するステップは、
所定の時間内での前記優先待ち行列(50)に対する到着プロトコルデータユニット(PDU)の数を検知することと、
前記到着プロトコルデータユニット(PDU)の数を前記所定の時間での前記優先待ち行列(50)に対する前記容量割当と比較することと
を含む、請求項7に記載の方法。
【請求項9】
伝送ネットワーク資源を複数の異なる有線待ち行列(50i)間で分割することをさらに含み、前記伝送ネットワーク資源の分割は、所定の優先待ち行列(50)の資源使用を、前記優先待ち行列(50)に対する前記容量割当の実際の活用と掛け合わせることに関する、請求項7に記載の方法。
【請求項10】
前記優先待ち行列(50)に対する前記容量割当の実際の活用の測定を、前記優先待ち行列(50)に対する容量割当を再計算することに使用することをさらに含む請求項7に記載の方法。
【請求項11】
前記優先待ち行列(50)に対する前記容量割当の実際の活用の測定量を平均することをさらに含む請求項7に記載の方法。
【請求項12】
高速ダウンリンクパケットアクセス(HSDPA)を与える無線アクセスネットワーク(28)において、
前記高速ダウンリンクパケットアクセス(HSDPA)により活用される高速ダウンリンク共有チャネル(HS‐DSCH)を構成する制御ノード(26)と、
容量割当にしたがって制御ノードインターフェースを通して受信され、移動端末(30)へ前記高速ダウンリンク共有チャネル(HS‐DSCH)上で送信されるデータを格納する優先待ち行列(50)
を備える基地局ノード(28)と、
を備え、
前記優先待ち行列(50)に対する容量割当の実際の活用を測定し、前記実際の活用にしたがって前記優先待ち行列(50)に対する容量割当を調整するように構成されるフローコントローラ(60)
を有することを特徴とするネットワーク。
【請求項13】
前記基地局ノード(28)は、複数のデータフローそれぞれに対する複数の優先待ち行列(50i)を備え、また、前記フローコントローラ(60)は、前記容量割当の実際の活用を前記複数の優先待ち行列(50i)毎に別々に測定する、請求項13に記載の装置。
【請求項14】
前記優先待ち行列(50)に対する容量割当の実際の活用を測定する前記フローコントローラ(60)は、所定の時間内での前記優先待ち行列(50)に対する到着プロトコルデータユニット(PDU)の数を検知するように構成され、前記到着プロトコルデータユニット(PDU)を前記所定の時間での前記優先待ち行列(50)に対する容量割当と比較するようにさらに構成される、請求項13に記載の装置。
【請求項15】
前記フローコントローラ(60)は、また、所定の優先待ち行列(50)の資源使用を前記優先待ち行列(50)に対する容量割当の実際の活用と掛け合わせることにより、伝送ネットワーク資源を複数の異なる優先待ち行列(50i)間で分割する、請求項13に記載の装置。
【請求項16】
前記フローコントローラ(60)は、前記優先待ち行列(50)に対する容量割当の実際の活用の測定量を平均する、請求項13に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate


【公表番号】特表2009−517968(P2009−517968A)
【公表日】平成21年4月30日(2009.4.30)
【国際特許分類】
【出願番号】特願2008−543240(P2008−543240)
【出願日】平成18年11月23日(2006.11.23)
【国際出願番号】PCT/SE2006/050504
【国際公開番号】WO2007/064292
【国際公開日】平成19年6月7日(2007.6.7)
【出願人】(598036300)テレフオンアクチーボラゲット エル エム エリクソン(パブル) (2,266)
【Fターム(参考)】