説明

13族元素窒素化合物結晶の製造方法

【課題】酸素不純物が少なく高純度で良質なGaNを提供する。
【解決手段】ガリウムを主成分とする13族元素窒素化合物結晶の製造方法であって、少なくともガリウムを含む13族元素の金属及び/又は該金属の窒素化合物12を、アンモニア雰囲気下、酸素除去添加剤14の存在下で、加熱処理して結晶を得るステップを含み、ここで、該酸素除去添加剤14は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する前記製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸素不純物の少ない高純度で良質な13族元素窒素化合物結晶の製造方法に関する。
【背景技術】
【0002】
GaNを代表とする13族元素窒素化合物結晶は、発光ダイオード(LED)や半導体レーザー(LD)用途に用いられている。このような発光デバイスは、Al、Ga、Inなどの13族元素からなるAlN、GaN、InNなどの13族元素窒素化合物の結晶、又はおよび2若しくは3種の13族元素を含む混合型の13族元素の窒化物を使用している。発光デバイスの窒化物薄膜は、一般に、サファイア基板や炭化ケイ素基板にヘテロエピタキシャル成長で作製されるが、サファイア基板や炭化ケイ素基板の格子定数と窒化物膜の格子定数の間に差があるため、窒化物膜に転移欠陥などの欠陥が生じて、発光デバイスの特性を低下させている。純度の高い良質な13族元素窒素化合物結晶が得られれば、それを基板として用いることで、基板の上に格子定数差が無い薄膜成長が可能であり、13族元素窒素化合物結晶半導体の光デバイスの高効率化や、パワー半導体用途などへの展開も期待できる。
【0003】
バルク結晶の13族元素窒素化合物結晶、特にGaNバルク結晶を作製する方法として、高温高圧法、HPVE(Hydride Vapor Phase Epitaxy)法、フラックス法、昇華法などが報告されている。しかしながら、GaNを主とする13族元素窒素化合物結晶の育成が困難なことから、汎用されるには至っていない。HPVE法によるGaN基板の市販品も出てきているが、価格がかなり高い上に、GaNを成長させる基板との剥離方法やGaN基板自体の反りなどの問題があり、実用的なレベルに至っていない。
【0004】
GaNのバルク結晶は、以下の特許文献1に記載されている結晶シード上での選択的結晶化により、超臨界アンモニア含有溶液から得られている。また、以下の非特許文献1には、Yuji Kagamitaniらによって、アンモニアにハロゲン化アンモニウムを含ませた超臨界アンモニア含有溶液を用いて、GaNを結晶成長させる方法が報告されている。これらのアンモニア超臨界を用いた13族元素窒素化合物結晶の作製方法は、アモノサーマル法(Ammonothermal method)又は安熱法などと呼ばれて広まっている。
【0005】
バルクの13族元素窒素化合物結晶を光デバイスなどの半導体用途に用いるには、不純物を含まない窒化物を作ることが重要である。13族元素は、超臨界状態のような高温では、酸素と結合し易いので、酸素不純物を排除することが特に重要である。酸素不純物は、超臨界アンモニア含有溶液を用いる方法では、オートクレーブ容器やその内壁、原料の13族元素や13族窒素化合物、アルカリ金属アミドやハロゲン化アンモニウムなどの添加剤などから水、酸素、酸化物として混入するので、混入を防ぐのが難しい。
【0006】
【特許文献1】特表2004/533391号公報
【非特許文献1】Yuji Kagamitani, Dirk Ehrentraut, Akira Yoshikawa, Naruhiro Hoshino, Tsuguo Fukuda著、「Japanese Journal of Applied Physics」、Vol.45、No.5A、2006年、p. 4018−4020
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明が解決しようとする課題は、超臨界アンモニア含有溶液中でガリウムを含む13族金属又はび13族元素窒素化合物を原料として、ガリウムを主成分とする13族元素窒素化合物の結晶を作製するいわゆるアモノサーマル(Ammonothermal)法において、酸素不純物が少なく高純度で良質の13族窒素化合物結晶を製造する方法を提供することである。
【課題を解決するための手段】
【0008】
本発明者は、前記課題を解決するため、超臨界アンモニア含有溶液中において酸素を除去する酸素除去添加剤を種々検討し、中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤をアンモニア溶液に接触させて超臨界アンモニア溶液中で13族元素窒素化合物を結晶化させることにより、酸素が少なく高純度で良質な13族元素窒素化合物結晶を作製できることを発見し、本発明を完成するに至った。具体的には、本発明は以下の[1]〜[3]である:
【0009】
[1]ガリウムを主成分とする13族元素窒素化合物結晶の製造方法であって、少なくともガリウムを含む13族元素の金属及び/又は該金属の窒素化合物を、アンモニア雰囲気下、酸素除去添加剤の存在下で、加熱処理して結晶を得るステップを含み、ここで、該酸素除去添加剤は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する前記方法。
【0010】
[2]前記ガリウムを主成分とする13族元素の窒素化合物がGaNである、前記[1]に記載の方法。
【0011】
[3]前記[1]又は[2]に記載の方法により製造されたガリウムを主成分とする13族元素窒素化合物結晶。
【0012】
本発明で用いることができる酸素除去添加剤は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有することで、アンモニア中の酸素や酸素を含む水などの酸素含有化合物から酸素を除去する能力を有する。
【0013】
このような酸素除去添加剤をアンモニア中に入れると、アンモニア雰囲気でアンモニア中の酸素成分と反応して金属酸化物を作ったり、酸素成分を吸着したりするため、アンモニア中の酸素成分を酸素除去添加剤の表面に固定化することで酸素成分をアンモニアから除去することができる。この酸素除去添加剤が酸素と反応し又はまたは酸素を吸着する効果は、300℃〜700℃で顕著に現れるので、アンモニアをこの範囲の温度で使用すると効果が高い。よってこのような酸素結合性又は酸素吸着性の金属をアンモニア中に仕込むことで、酸素不純物が少ない高純度で良質な13族元素窒素化合物の結晶を製造することができる。
ところがこのような酸素と結合し又は酸素を吸着するチタン、ジルコニウムなどの金属又は合金を、容器に仕込む段階で、空気中で取り扱うと、かかる金属又は合金の表面が、この段階で酸化されてしまい、アンモニア中の酸素と反応し又は酸素を吸着する能力がなくなてしまい、得られる13族元素窒素化合物結晶の酸素不純物を減らすことができない。
【0014】
そこで、発明者は、空気中で取り扱っても表面に酸素を取り込まないが、アンモニア超臨界条件下では、酸素と結合し又は酸素を吸着することで超臨界アンモニア溶液中の酸素を除去することができる酸素除去添加剤を検討した結果、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤を見出した。このように本発明の酸素除去添加剤は、その表層部が水素化物で覆われているため、通常の空気雰囲気で取り扱っても、酸素が該酸素除去添加剤中心部の金属又は合金と酸化物を作ることがない。よって、本発明の酸素除去添加剤を13族元素窒素化合物結晶製造用の超臨界アンモニア用圧力容器内に仕込むことにより、容器仕込み段階で酸素を取り込まずに、該酸素除去剤を13族元素窒素化合物結晶製造用圧力容器に収めることができる。
【0015】
次いで、この13族元素窒素化合物結晶製造用圧力容器にアンモニア液や結晶成長を促す鉱化剤を加え、該圧力容器を密封後にアンモニア含有溶液温度を300〜650℃にすることにより、該酸素除去添加剤の表層部に在る水素化物から水素が除かれて、該酸素除去添加剤の中心部を構成する金属又は合金と同一の金属又は合金が酸素除去添加剤の表面(表層部)に現れる。この段階で、表層部に現れた金属又は合金は、チタン、ジルコニウムなどの金属又は合金であり、酸素と反応し又は酸素を吸着して、高温高圧のアンモニア含有溶液から酸素を除去することができる。
【0016】
アモノサーマル法によるGaN結晶の製造では、アンモニア中の酸素成分を少なくすることでGaN結晶中の酸素を減らすことができる。この酸素が少ないGaN結晶は、酸素不純物が少ないことからX線回折法におる半値幅が小さく、単に結晶中の不純物が少ないだけでなくGaN結晶としての質が高く、半導体基板として有効である。
【発明の効果】
【0017】
本発明により、アンモニア雰囲気で加熱処理してガリウムを主成分とする13族元素窒素化合物結晶を製造する方法において、その中心部がチタン金属、ジルコニウム金属、チタン合金、ジルコニウム合金のいずれかからなり、その表層部が該中心部を構成する該金属又は合金の水素化物で覆われた複合構造の酸素除去添加剤をアンモニアに接触させてガリウムを主成分とする13族元素窒素化合物結晶を製造することにより、酸素含有量の少ない良質なガリウムを主成分とする13族元素窒素化合物結晶を提供することができる。また、本発明に係る酸素除去添加剤は、表層部(表面)が水素化物で覆われているため、空気中で取り扱っても酸素除去効化を損なうことが無いため、取り扱い性が良い。
【発明を実施するための最良の形態】
【0018】
13族元素としては、B、Al、Ga、In等が挙げられる。ガリウムを主成分とする13族元素窒素化合物結晶には、GaN以外に、BN、AlN、InNを含む13族元素窒素化合物の混晶などの結晶も挙げられる。
本明細書中、用語「ガリウムを主成分とする13族元素窒素化合物結晶」とは、GaNのモル数の割合が、70モル%以上100モル%以下の13族元素窒素化合物結晶をいい、GaNのモル数の割合が80モル%以上100モル%の13族元素窒素化合物結晶が好ましく、GaNのモル数の割合が90モル%以上100モル%以下の13族元素窒素化合物結晶がより好ましい。また、これらの13族元素窒素化合物結晶にドーピング材としてマグネシムや亜鉛、炭素、シリコン、ゲルマニウムなどを、Gaモル数に対して1/10〜1/1000000の範囲のごく微量含んだものも、ガリウムを主成分とする13族元素の窒素化合物の結晶に含まれる。
【0019】
アンモニア雰囲気とは、純粋なアンモニア、又はアンモニアが熱分解して窒素と水素を含んだもの、あるいは、そのアンモニア雰囲気にアルカリ性や酸性などのいわゆる鉱化剤を含んだものをいう。
本発明でいうアンモニア雰囲気で加熱処理してガリウムを主成分とする13族窒素化合物結晶を製造する方法は、高温のアンモニア雰囲気での超臨界結晶化法であり、前記した特許文献1や非特許文献1に記載されるような方法である。本明細書中、「ガリウムを含む13族元素の金属及び/又は該金属の窒素化合物」とは、ガリウムを主成分とする13族窒素化合物結晶を製造するための原料であり、ガリウム金属又はGaNを50重量%以上100重量%以下含むガリウムを含む13族元素の金属及び/又は窒素化合物が用いられ、GaNを70重量%以上100重量%以下含むガリウムを含む13族元素の金属及び/又は窒素化合物が好ましく、GaNを90重量%以上100重量%以下含むガリウムを含む13族元素の金属及び/又は窒素化合物がより好ましい。この原料であるガリウムを含む13族元素の金属及び/又は窒素化合物のガリウム以外の成分は、BN、AlN、InN又はこれらの混合物が、好ましく用いられる。また、この原料には、アルミニウムアミド、アルミニウムイミド、カリウムアミド、インジウムアミド、インジウムイミドなどが用いられる。これらの原料で用いるガリウムを含む13族元素を含む窒素化合物は、純度の高いものが好ましいが、使用の際、アンモニア溶媒に溶解させるので、結晶性が高い必要は無い。
【0020】
本発明においては、酸性鉱化剤、アルカリ性鉱化剤、ほぼ中性の金属塩鉱化剤を用いることができる。酸性鉱化剤としては、ハロゲン元素を含む化合物があり、塩化アンモニウム、ヨウ化アンモニウム、臭化アンモニウム、フッ化アンモニウムなどのハロゲン化アンモニウムなどが挙げられる。アルカリ性鉱化剤としては、アルカリ金属元素を含む鉱化剤が挙げられる。例えば、NaNH、KNH、LiNHなどのアルカリ金属アミドが挙げられる。ほぼ中性の金属塩鉱化剤には、MgCl、MgBrなどのハロゲン化マグネシウム、CaCl、BaBrなどのハロゲン化カルシウム、NaCl、NaBr、KCl、KBr、CsCl、CsBr、LiCl、LiBrなどのハロゲン化アルカリ金属化合物が挙げられる。
【0021】
前記酸性鉱化剤、アルカリ性鉱化剤又はほぼ中性の金属塩鉱化剤は、アンモニア溶媒に溶解させて用い、原料の窒素化合物の溶解を促進させる働きがある。これらの鉱化剤の使用割合は、鉱化剤/アンモニアモル比が通常0.0001〜0.2となる範囲であり、鉱化剤/アンモニアモル比が0.001〜0.1となる範囲が好ましく、鉱化剤/アンモニアモル比が0.005〜0.05となる範囲がさらに好ましい。
【0022】
本発明において、アンモニア雰囲気の温度は、通常300℃から800℃、好ましくは400℃から700℃、さらに好ましくは450℃から650℃である。アンモニア雰囲気の温度が300℃より低い場合には、13族元素窒素化合物結晶の成長速度が遅すぎて製造には向かない。アンモニア雰囲気の温度は、300℃から700℃程度までは温度が高いほど13族元素窒素化合物結晶の結晶成長速度が大きく製造に適している。しかしながらオートクレ−ブ(圧力容器)の耐温の要求も高くなり、オートクレーブの材質上、耐圧も要求されるので、アンモニア雰囲気温度が800℃を超えるのは製造上適当ではない。
【0023】
アンモニア雰囲気の圧力条件は、通常50MPa〜500MPa、好ましくは90MPa〜300MPa、より好ましくは100MPa〜350MPaである。圧力が50MPaより低いと、13族元素窒素化合物結晶の成長速度が遅すぎて、製造には向かない。一方、圧力が500MPaを超えると、大きい容積のオートクレーブ(圧力容器)を製造することが困難であるため、製造には向かない。
【0024】
本発明に係るその中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤は、中心部(内部)がチタン金属でその表層部(表面)がチタン水素化物で覆われているもの、内部がジルコニウムでその表面がジルコニウム水素化物で覆われているもの、内部がチタン合金でその表面がチタン合金の水素化物で覆われているもの、内部がジルコニウム合金でその表面がジルコニウム合金の水素化物で覆われているものが挙げられる。
【0025】
内部がチタン合金でその表面がチタン合金の水素化物からなる酸素除去添加剤のチタン合金のチタン含有割合は、30重量%以上100重量%未満であることが好ましく、チタン含有割合が50重量%以上100重量%未満であることがより好ましく、チタン含有割合が70重量%以上100重量%未満であることがさらに好ましい。内部がジルコニウム合金でその表面がジルコニウム合金の水素化物で覆われている酸素除去添加剤のジルコニウム合金のジルコニウム含有割合は、30重量%以上100重量%未満であることが好ましく、ジルコニウム含有割合が50重量%以上100重量%未満であることがより好ましく、ジルコニウム含有割合が70重量%以上100重量%未満であることがさらに好ましい。
【0026】
チタンやジルコニウムは、酸素と結合または吸着する能力が大きく、また、表面に安定な水素化物を作りやすいので、これらの合金を用いた場合にも、チタンやジルコニウムの含有率が高い方が、酸素除去の効果が大きい。チタンやジルコニウムの含有率が20重量%より少ないと、酸素除去の効果が少ない。また、チタンやジルコニウムを酸素除去添加剤として用いても、得られる13族元素窒素化合物結晶中に不純物として取り込まれにくいので、高純度で良質な13族元素窒素化合物結晶が得られる。
【0027】
本発明に係るその中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤の製造方法は、特に限定しないが、チタン金属、ジルコニウム金属、チタン合金、ジルコニウム合金を水素雰囲気で熱処理することで、該酸素除去添加剤を作製することができる。板状や粒状のチタン金属、ジルコニウム金属、チタン合金、ジルコニウム合金を、真空中500〜900℃で数時間処理して、その表面に存在する酸化物を除去し、その後、水素雰囲気で300〜800℃にて数時間処理することで該表面をチタンやジルコニウムの水素化物又はチタンやジルコニウムを含む合金の水素化物で覆うことができる。水素化物の厚さは、内部の金属の酸化を抑制することができる程度であれよい。
【0028】
酸素除去添加剤の形状は、特に限定しないが、粒状のものや板状のものなどが使い易い。粒状の酸素除去添加剤を用いる場合には、平均粒子径が1μm以下のものは、細かすぎて扱いにくいので、1μm以上の粒子径が好ましい。また、酸素除去添加剤の粒子径は、13族元素窒素化合物結晶を製造する容器より小さい必要がある。板状の酸素除去添加剤を用いる場合には、板厚みが1μm以下のものは、薄すぎて扱いにくいので、板厚み1μm以上のものが好ましい。また、酸素除去添加剤の板の大きさは、13族元素窒素化合物結晶を製造する容器より小さい必要がある。
【0029】
酸素除去添加剤の水素化物の厚さは、上記のように内部の金属の酸化を抑制できる程度である限り特に限定されないが、10nm〜1mmの範囲であれば、本発明の酸素除去添加剤の機能を有する。酸素除去添加剤の水素化物の厚さは、100nm以上100μm以下であることが好ましく、1μm以上50μm以下であることがさらに好ましく、1μm以上20μm以下であることがさらに好ましい。酸素除去添加剤の水素化物の厚さは、酸素除去添加剤の切断面を走査型電子顕微鏡観察することで求めることができる。酸素除去添加剤の水素化物の厚さが10nmより薄いと、空気中で酸素除去添加剤が酸化されてしまい、酸素除去添加剤の効果が弱まる。一方、酸素除去添加剤の水素化物の厚さは、厚ければ厚いほど、空気中で酸素除去添加剤を扱っても酸素除去添加剤が酸化されにくくなるが、酸素除去添加剤の水素化物の厚さが1mmを超えると、13族元素窒素化合物結晶を製造する際の450℃から650℃の高温アンモニア雰囲気において水素化物が脱離してしまい、チタンやジルコニウムの金属が表面に現れにくくなるため、酸素除去添加が低下する。
【0030】
酸素除去添加剤の使用量は、オートクレーブのサイズや容器表面の酸素濃度、鉱化剤の種類や濃度、アンモニアやGaN原料自体の酸素濃度などによって変動する。酸素除去添加剤の使用量を種々検討したところ、オートクレーブなどのオートクレーブ内のアンモニア充填量に対する酸素除去添加剤の割合が、重量%で0.003重量%以上43重量%以下であることが好ましく、0.03重量%以上10重量%以下であることがより好ましいことが判明した。酸素除去添加剤の量が0.003重量%より少ないと、酸素除去添加剤の量が少なすぎて酸素除去の効果が少ない。一方、酸素除去添加剤の量は、10重量%程度までは多ければ多いほどできたGaN結晶中の酸素濃度は減少するが、10重量%を超えるとそれ以上添加してもGaN結晶中の酸素濃度の減少効果は少ない。
【0031】
図1は、本発明に係るガリウムを主成分とする13族元素窒素化合物結晶の製造方法に用いることができるオートクレーブを含む製造装置の概略断面図である。
図1中、バッフル板9は、結晶成長部8と原料部11を区画するものであり、開口率が1%〜25%であることが好ましく、3%〜15%であることがより好ましい。また、バッフル板表面の材質は、耐侵食性を向上させるために、白金、金、イリジウム、ルテニウム、ロジウム、パラジウムなどの金属又はこれらの合金が好ましい。
【0032】
13族元素窒素化合物結晶の製造は、先ず、オートクレーブ内に、鉱化剤、酸素除去添加剤、13族金属元素を含む原料を入れ、バッフル板とシードをセットして、オートクレーブ内にアンモニア溶媒を導入して、オートクレーブを封止する。オートクレーブ内にアンモニアを導入する前に、オートクレーブ内を脱気して真空に保ち、酸素や水分を除去することが好ましい。オートクレーブにアンモニアを導入するときには、オートクレーブをアンモニアの沸点以下に冷やすと、アンモニアの蒸気圧が低いため、オートクレーブを封止するのが容易である。
【0033】
13族元素窒素化合物結晶の製造は、オートクレーブ中で実施する。本発明に用いる容器は、13族元素窒素化合物結晶を成長させるときの高温高圧条件に耐えうるものの中から選択する。本発明に用いるオートクレーブは、耐圧性と耐侵食性を有する材料で構成されているものがこのましく、Inconel625(Inconelは、The International Nickel Company, Inc. の登録商標)、Rene41(Reneは、Alvac Metals Company の登録商標)、Udimet520(Udimetは、Special Metals, Inc.の登録商標)が好ましい。
オートクレーブの耐侵食性を向上させるために、アンモニアに触れる部分を白金、金、イリジウム、ルテニウム、ロジウム、パラジウムなどの金属又はこれらの合金でライニング又はコーティングすることが好ましい。特に、白金やイリジウム又はそれらの合金をライニングしたオートクレーブが特に好ましい。
13族窒素化合物結晶の製造方法における結晶成長時間としては、1日以上が好ましく、より好ましくは、2日以上である。
【実施例】
【0034】
以下、本発明を非制限的な実施例により具体的に説明する。
[実施例1〜6]
内部がチタン金属で表面がチタン水素化物からなる酸素除去添加剤Aを作製するために、粒子径が0.5mmの球状の粒状高純度チタンを用いた。この粒状高純度チタンをアルミナ製ルツボに入れ、加熱炉に仕込み、チタン表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を400℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で4時間熱処理を行い、内部がチタン金属で表面が水素化物からなる酸素除去添加剤Aを得た。酸素除去添加剤Aは、湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Aの内部状態を観察するため、酸素除去添加剤Aを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタン金属粒子の表面を水素化物が厚さ3〜5μmで万遍なく覆っていることが判った。
【0035】
図1に示す装置を用いてGaNの結晶成長を行った。
Inconel(登録商標)625製で内径が10mm、長さ200mm、容量約16mlの白金を内張りしたオートクレーブ5を用いた。オートクレーブ5の底部に酸素除去剤Aを、置いて使用した。酸素除去添加剤Aの使用量は、実施例1では0.003gを、実施例2では0.03gを、実施例3では0.3gを、実施例4では1.0gを、実施例5では2.0gを、実施例6では3.0gを用いた。この酸素除去添加剤Aは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、1〜2時間であった。それぞれの実施例で用いた酸素除去添加剤Aの量を、以下の表1に酸素除去添加剤の使用量として示す。
【0036】
【表1】

【0037】
その後、鉱化剤として乾燥させた純度99.99%のNHCl粉体0.3gを置いた。次いで、白金製網13の上に、HVPE法で作製したGaN多結晶塊3.5gを白金製網の入れ物に入れた原料部12をセットし、その上部に底から100mmの位地にバッフル板9をセットし、その上にHPVE法で作製した3mm角のGaNシードを設置した後、オートクレーブの蓋を閉じて蓋を含んだ状態のオートクレーブの重さを量った。このGaNシードは、3mm角のC面を有しc軸方向の厚みが、50μmである。
【0038】
一旦オートクレーブ内を窒素ガスで置換した後、バルブ4の先に真空脱気装置をつなぎバルブ1とバルブ4を開けて、オートクレーブ内を真空で排気した。その後、バルブ4とバルブ1を閉じて真空状態を維持した状態で、オートクレーブ5をドライアイスメタノール溶媒によって冷却し、バルブ1側からアンモニアをオートクレーブ5内に充填した。アンモニアの流量を測定して、アンモニア量が−33℃の液体アンモニア状態でオートクレーブ内の容積の65%になるように、オートクレーブ5内にアンモニアを充填した。アンモニア充填後に、バルブ1とバルブ4を閉じて、室温に戻し、再びオートクレーブの重さを測定して、アンモニアの充填量が適切であることを確認した。
【0039】
アンモニア雰囲気で加熱処理してGaN結晶成長を行わせるために、オートクレーブ5を上下に2分割したヒーターで構成された電気炉6内に置いた。オートクレーブの下部の外面温度が550℃、オートクレーブ上部の外面温度が500℃になるように8時間かけて昇温し、その温度で96時間保持し、GaN結晶成長を行った。オートクレーブ5内の圧力は、150MPaであった。また、保持中の外面温度の温度幅は、オートクレーブの下部の外部温度と上部外部温度ともに±5℃以内であった。その後、オートクレーブを12時間かけて60℃まで降温し、さらに室温になるまで、放置した。オートクレーブの温度がほぼ室温になっていることを確認して、オートクレーブ5を電気炉6から外して、バルブ4をゆっくり開放して、オートクレーブ5内のアンモニアを排出させた。
【0040】
オートクレーブ内のアンモニアを完全に排出させるために、一旦バルブ4を閉め、バルブ1側から、1MPaの圧力で高純度窒素を封入し、バルブ4側から窒素を排出させる操作を10回繰り返した。その後、バルブ4を開放して、オートクレーブの蓋を開け、内部のGaNシード上に成長したGaN結晶を確認した。
【0041】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例1〜6のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例1〜6のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
【0042】
得られたC面上に成長したGaN結晶の酸素濃度を、CAMECA社製IMS−7f型
二次イオン質量分析計で測定した結果を表1に示す。この二次イオン質量分析計によるGaN結晶中の酸素濃度は、高純度のHPVE法で作製したGaN基板に酸素をインプラントした酸素濃度既知のGaN標準資料を用いて定量した。この二次イオン質量分析計によるGaN結晶の酸素濃度は、一次イオンとしてCs+を用い、GaN結晶表面からc軸方向に1μmの深さの位置おいて、一次加速電圧14.5kV、検出領域30μmφにて、測定した値である。この二次イオン質量分析計によるGaN結晶の酸素濃度は、GaN結晶cm当たりの酸素原子数を原子数/cmとして表している。
表1から分かるように、内部がチタン金属で表面が水素化物からなる酸素除去添加剤Aを用いた実施例1〜6では、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ大幅に減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Aの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Aを使用した場合においても、表1と同様の結果が得られた。
【0043】
[実施例7〜11]
内部がジルコニウム金属で表面がジルコニウム水素化物からなる酸素除去添加剤Bを作製するために、粒子径が0.5mmの球状の粒状高純度ジルコニウムを用いた。この粒状高純度ジルコニウムをアルミナ製ルツボに入れ、加熱炉に仕込み、チタン表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を500℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン金属で表面が水素化物からなる酸素除去添加剤Bを得た。酸素除去添加剤Bは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Bの内部状態を観察するため、酸素除去添加剤Bを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、ジルコニウム金属粒子の表面を水素化物が厚さ2〜4μmで万遍なく覆っていることが判った。
【0044】
実施例7〜11は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Bに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Bの使用量は、実施例7では0.03gを、実施例8では0.3gを、実施例9では1.0gを、実施例10では2.0gを、実施例11では3.0gを用いた。この酸素除去添加剤Bは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Bの量を、以下の表2に酸素除去添加剤の使用量として示す。
【0045】
【表2】

【0046】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例7〜11のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例7〜11のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
【0047】
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表2に示す。
表2から分かるように、内部がジルコニウム金属で表面がジルコニウムの水素化物からなる酸素除去添加剤Bを用いた実施例7〜11においては、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ大幅に減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Bの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Bを使用した場合においても、表2と同様の結果が得られた。
【0048】
[実施例12〜16]
内部がチタン50%ジルコニウム50%の合金で表面がチタンとジルコニウムの水素化物からなる酸素除去添加剤Cを作製するために、粒子径が0.5mmの球状の高純度チタン50%と高純度ジルコニウム50%の合金を用いた。このチタン50%とジルコニウム50%の合金は、チタン50重量部とジルコニウム50重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン50%ジルコニウム50%の合金で表面がチタンとジルコニウムの水素化物からなる酸素除去添加剤Cを得た。酸素除去添加剤Cは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Cの内部状態を観察するため、酸素除去添加剤Cを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとジルコニウムの合金粒子の表面を水素化物が厚さ3〜5μmで万遍なく覆っていることが分かった。
【0049】
実施例12〜16は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Cに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Cの使用量は、実施例12では0.03gを、実施例13では0.3gを、実施例14では1.0gを、実施例15では2.0gを、実施例16では3.0gを用いた。この酸素除去添加剤Cは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Cの量を、以下の表3に酸素除去添加剤の使用量として示す。
【0050】
【表3】

【0051】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例12〜16のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例12〜16のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
【0052】
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表3に示す。
表3から分かるように、内部がチタン50%ジルコニウム50%の合金で表面がチタンとジルコニウムの水素化物からなる酸素除去添加剤Cを用いた実施例12〜16においては、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ大幅に減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Cの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Cを使用した場合においても、表3と同様の結果が得られた。
【0053】
[実施例17〜21]
内部がチタン50%ニッケル50%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Dを作製するために、粒子径が0.5mmの球状の高純度チタン50%と高純度ニッケル50%の合金を用いた。このチタン50%とニッケル50%の合金は、チタン50重量部とニッケル50重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン50%ニッケル50%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Dを得た。酸素除去添加剤Dは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Dの内部状態を観察するため、酸素除去添加剤Dを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとニッケルの合金粒子の表面を水素化物が厚さ1〜3μmで万遍なく覆っていることが分かった。
【0054】
実施例17〜21は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Dに置き換えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Dの使用量は、実施例17では0.03gを、実施例18では0.3gを、実施例19では1.0gを、実施例20では2.0gを、実施例21では3.0gを用いた。この酸素除去添加剤Dは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Dの量を、以下の表4に酸素除去添加剤の使用量として示す。
【0055】
【表4】

【0056】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例17〜21のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例17〜21のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
【0057】
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表4に示す。
表4から分かるように、内部がチタン50%ニッケル50%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Dを用いた実施例17〜21では、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Dの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Dを使用した場合においても、表4と同様の結果が得られた。
【0058】
[実施例22〜26]
内部がジルコニウム50%ニッケル50%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Eを作製するために、粒子径が0.5mmの球状の高純度ジルコニウム50%と高純度ニッケル50%の合金を用いた。このジルコニウム50%とニッケル50%の合金は、ジルコニウム50重量部とニッケル50重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がジルコニウム50%ニッケル50%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Eを得た。酸素除去添加剤Eは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Eの内部状態を観察するため、酸素除去添加剤Eを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、ジルコニウムとニッケルの合金粒子の表面を水素化物が厚さ1〜3μmで万遍なく覆っていることが分かった。
【0059】
本実施例22〜26は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Eに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Eの使用量は、実施例22では0.03gを、実施例23では0.3gを、実施例24では1.0gを、実施例25では2.0gを、実施例26では3.0gを用いた。この酸素除去添加剤Eは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Eの量を、以下の表5に酸素除去添加剤の使用量として示す。
【0060】
【表5】

【0061】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例22〜26のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例22〜26のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表5に示す。
【0062】
表5から分かるように、内部がジルコニウム50%ニッケル50%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Eを用いた実施例22〜26では、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Eの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Eを使用した場合においても、表5と同様の結果が得られた。
【0063】
[比較例1]
比較例1は、酸素除去添加剤を使用しない例である。比較例1は、酸素除去添加剤を用いない以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、C面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を以下の表6に示す。
【0064】
【表6】

【0065】
比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmは表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度は高くなかった。
【0066】
[比較例2、3]
比較例2と3は、表面が水素化物でないチタン金属からなる酸素除去添加剤Kを用いた場合の比較例である。酸素除去添加剤Kとして、実施例1〜6と同様の粒子径が0.5mmの球状の粒状高純度チタンを、製造後窒素封入したものを保管して用いた。
本比較例2と3は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Kに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Kの使用量は、比較例2では1.0gを、比較例3では3.0gを用いた。この酸素除去添加剤Kは使用直前で窒素封入から開放して使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Kの量を、表6に酸素除去添加剤の使用量として示す。
【0067】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例2と3のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例2と3のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例2と3のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度は高くなかった。
【0068】
[比較例4、5]
比較例4と5は、表面が水素化物でないジルコニウム金属からなる酸素除去添加剤Lを用いた場合の比較例である。酸素除去添加剤Lとして、実施例7〜11と同様の粒子径が0.5mmの球状の粒状高純度ジルコニウムを、製造後窒素封入したものを保管して用いた。
比較例4と5は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Lに置き換えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Lの使用量は、比較例4では1.0gを、比較例5では3.0gを用いた。この酸素除去添加剤Lは使用直前で窒素封入から開放して使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Lの量を、表6に酸素除去添加剤の使用量として示す。
【0069】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例4と5のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例4と5のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例4と5シード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度が高くなかった。
【0070】
[比較例6、7]
比較例6と7は、表面が水素化物でないチタン50%とジルコニウム50%の合金からなる酸素除去添加剤Mを用いた場合の比較例である。酸素除去添加剤Mとして、実施例12〜16と同様の粒子径が0.5mmの球状の高純度チタン50%と高純度ジルコニウム50%の合金を、製造後窒素封入したものを保管して用いた。
比較例6と7は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Mに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Mの使用量は、比較例6では1.0gを、比較例7では3.0gを用いた。この酸素除去添加剤Mは使用直前で窒素封入から開放して使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Mの量を、表6に酸素除去添加剤の使用量として示す。
【0071】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例6と7のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例6と7のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例6と7のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度が高くなかった。
【0072】
[比較例8、9]
比較例8と9は、内部がチタン20%とニッケル80%の合金で表面がそのチタンとニッケルの水素化物からなる酸素除去添加剤からなる酸素除去添加剤Nを用いた場合の比較例である。内部がチタン20%ニッケル70%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Nを作製するために、粒子径が0.5mmの球状の高純度チタン20%と高純度ニッケル80%の合金を用いた。このチタン20%とニッケル80%の合金は、チタン20重量部とニッケル80重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン20%ニッケル80%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Nを得た。酸素除去添加剤Nは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Nの内部状態を観察するため、酸素除去添加剤Nを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとニッケルの合金粒子の表面を水素化物が厚さ1〜2μmで覆っていることが分かった。
【0073】
比較例8と9は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Nに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Nの使用量は、比較例8では1.0gを、比較例9では3.0gを用いた。この酸素除去添加剤Nをオートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Nの量を、表6に酸素除去添加剤の使用量として示す。
【0074】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例8と9のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例8と9のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例8と9のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度が高くなかった。
【0075】
[比較例10、11]
比較例10と11は、内部がジルコニウム20%とニッケル80%の合金で表面がそのジルコニウムとニッケルの水素化物からなる酸素除去添加剤からなる酸素除去添加剤Oを用いた場合の比較例である。内部がジルコニウム20%ニッケル70%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Oを作製するために、粒子径が0.5mmの球状の高純度ジルコニウム20%と高純度ニッケル80%の合金を用いた。このジルコニウム20%とニッケル80%の合金は、ジルコニウム20重量部とニッケル80重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がジルコニウム20%ニッケル80%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Oを得た。酸素除去添加剤Oは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Oの内部状態を観察するため、酸素除去添加剤Oを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとニッケルの合金粒子の表面を水素化物が厚さ1〜2μmで覆っていることが分かった。
【0076】
本比較例10と11は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Oに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Oの使用量は、比較例10では1.0gを、比較例11では3.0gを用いた。この酸素除去添加剤Oをオートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Oの量を、表6に酸素除去添加剤の使用量として示す。
【0077】
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例10と11のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例10と11のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度は高くなかった。
【産業上の利用可能性】
【0078】
本発明では、アンモニア雰囲気で加熱処理して13族窒素化合物結晶を得るいわゆるアモノサーマル法における製造方法において、内部が金属及びび/又は合金で表面が該金属及びび/又は合金の水素化物で覆われている酸素除去添加剤をアンモニアに接触させて13族元素窒素化合物結晶を製造することにより、酸素含有量の少ない良質な13族元素窒素化合物結晶を提供することができる。また、本発明に係る酸素除去添加剤は、表面が水素化物で覆われているため、空気中で取り扱っても酸素除去効果を損なうことが無いため、取扱い易い酸素除去添加剤である。酸素不純物の少ない高純度な良質のGaN結晶などの13族元素窒素化合物結晶を得ることができ、産業上有用であり、産業上の利用可能性が極めて高い。
【図面の簡単な説明】
【0079】
【図1】本発明の13族元素窒素化合物結晶製造装置の概略断面図。
【符号の説明】
【0080】
1 バルブ1
2 配管
3 圧力計
4 バルブ4
5 オートクレーブ
6 電気炉
7 シード
8 結晶成長部
9 バッフル板
10 熱電対
11 原料部
12 原料
13 白金金網
14 酸素除去添加剤

【特許請求の範囲】
【請求項1】
ガリウムを主成分とする13族元素窒素化合物結晶の製造方法であって、少なくともガリウムを含む13族元素の金属及び/又は該金属の窒素化合物を、アンモニア雰囲気下、酸素除去添加剤の存在下で、加熱処理して結晶を得るステップを含み、ここで、該酸素除去添加剤は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する前記製造方法。
【請求項2】
前記ガリウムを主成分とする13族元素の窒素化合物がGaNである、請求項1に記載の方法。
【請求項3】
請求項1又は2に記載の方法により製造されたガリウムを主成分とする13族元素窒素化合物結晶。

【図1】
image rotate


【公開番号】特開2010−155751(P2010−155751A)
【公開日】平成22年7月15日(2010.7.15)
【国際特許分類】
【出願番号】特願2008−335283(P2008−335283)
【出願日】平成20年12月26日(2008.12.26)
【出願人】(000000033)旭化成株式会社 (901)
【Fターム(参考)】