説明

2結晶法X線トポグラフィ装置

【課題】半導体ウェーハの大口径化に対応して、縦方向における発散角の拡大と共に、横方向の視野の拡大可能な2結晶法X線トポグラフィ装置を提供する。
【解決手段】回折X線を、試料である第2結晶2の表面を走査しながら所定の角度で入射し、試料である第2結晶の表面から得られる回折X線をX線フィルム4上に記録して、X線トポグラフィを得る2結晶法X線トポグラフィ装置において、X線源5と、コリメータ10と、所定の幅でX線を入射するスリット6とによってX線発生部を構成し、第1結晶1と第2結晶2、X線フィルム4上を含めてトポゴニオ部を構成し、トポゴニオ部を定盤3上に搭載すると共に、X線発生部を、定盤に対して移動可能な走査台7上に搭載し、もって、X線源5からのX線から第1結晶1を介して得られる回折X線を第2結晶2の表面上で走査する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線回折を利用した単結晶材料の“結晶の完全性評価法”として広く用いられているX線トポグラフィに関連し、特に、2結晶法X線トポグラフィ装置に関する。
【背景技術】
【0002】
X線トポグラフィは、単結晶中の格子欠陥や歪みをX線回折像として観察する方法であり、一般に、これにより得られたX線回折像をX線トポグラフと呼んでいる。従来、よく知られているように、試料結晶は、面間隔dを持った格子面が入射X線ビームの波長λに対し、所謂、ブラッグ条件2dsinθB=λを満たすように配置されたとき、回折を起こす。そして、このX線の照射野内に構造欠陥が存在すると、当該欠陥部分とそうでない部分との間で、回折X線強度に差が生じ、これがX線フィルム等に記録され、試料と1対1に対応するX線像が得られる。これがX線トポグラフである。
【0003】
更に、かかるX線トポグラフィには、ラング法、ベルクバレット法、2結晶法などの実験法がある。ラング法は、透過配置で撮影し、結晶内部の欠陥分布が調べられる方法であり、最も広く用いられている方法である。他方、結晶表面の欠陥観察には、反射配置で撮影するベルクバレット法が用いられる。また、2結晶法は、一旦、第1の結晶で回折させて単色・平行化したX線ビームを、第2の結晶である試料結晶に入射させる方法である。この方法も、同じく結晶表面の欠陥観察法であるが、但し、結晶面内の部分的な格子面の傾きや格子定数の変化に敏感な方法であり、ベルクバレット法に比べると、歪みに対する感度が高い。特に、第1結晶の格子面間隔と第2結晶の格子面間隔とが等しい(+,−)平行配置の2結晶法X線トポグラフィでは、結晶の格子歪みに対し非常に敏感となる。なお、この2結晶法は、ドーパントのコンセントレーションの違いによる格子定数変化や、転位の表面分布(転位が表面に達している否か)を調べることができる。
【0004】
本発明は、上述した各種のX線トポグラフィ装置の内、特に、2結晶法X線トポグラフィ装置の改良を提案するものである。
【0005】
ところで、2結晶法X線トポグラフィ装置は、1970年代初頭から1980年代位まで、主にSi結晶の結晶成長技術の発展の中で、結晶の完全性の評価法として盛んに用いられてきた。当初、2結晶法X線トポグラフの撮影面積は、縦方向20〜30mm、そして、その幅方向は、非対称反射で拡大できる程度の範囲、例えば、5〜20mm程度であり、比較的狭いものであった。但し、当時は、評価の対象であるSi結晶の口径は1インチ程度であり、十分な視野であった。しかしながら、Si結晶は大口径化の道を辿り、現在では、例えば、口径300mmのウェーハが生産されるに至っている。さらに将来的には、国際半導体技術ロードマップ(2005年度版)によれば、2012年には、一挙に口径450mmへと移行することが計画されている。
【0006】
なお、1970年代においても、かかるSi結晶の大口径化を見越し、例えば、以下の非特許文献1や2にも示されるように、2結晶法X線トポグラフィ装置の視野拡大のための工夫が、千川により提案されている。また、本発明者により提案された発明も、以下に特許文献1として示すように、既に、特許として成立している。
【0007】
【非特許文献1】Chikawa et al: Semiconductor Silicon,pp448-4458(1973)
【非特許文献2】Topics in Applied Physics Vol.22:X-Ray Optics Springer-Verlag(1977) (特に、その一節 6. Live Topography において、W. Hartmann が千川の仕事として紹介している。)
【特許文献1】特許第2732311号(特願平1−288287号)「X線トポグラフィ装置」
【発明の開示】
【発明が解決しようとする課題】
【0008】
なお、これらの工夫は、基本的には、第1結晶と、試料でもある第2結晶とを、一つの走査台の上に配置し、固定された入射X線に対して走査台を第1結晶の周りで走査することにより、幅方向の観察視野を拡大するという考えに基づくものである(従来技術の種々の構成を示した添付の図9を参照)。このように、特に、走査を行うことによれば、X線源の強度の不均一(所謂、強度ムラ)を平均化する働きも期待できる。即ち、X線源の強度の不均一は、コイル状のフィラメントから発生する熱電子に密度の不均一(所謂、密度ムラ)が発生し、これが高電圧で加速されターゲットに当たる際、そのままコイルのピッチを周期としたX線輝度の不均一(輝度ムラ)となるものである。
【0009】
なお、このX線源の強度不均一は、トポグラフにも、強度の不均一として記録されることから、場合によっては有害である。即ち、かかる強度の不均一の原因は、試料結晶の格子定数の変化によって生じたものか、又は、X線自体の強度の不均一によるものかを区別できないからである。そこで、走査によって、X線源の強度の不均一を平均化することにより、X線自体の強度の不均一による影響を排除し、結晶だけによる情報を得ることが可能になる。
【0010】
また、これらの工夫によれば、その縦方向の視野については、X線の縦方向の発散角を大きくとることにより、広げることができる。これに対して、横方向の視野を広げることには、以下にも発明者の検討結果として詳細に述べるが、非常な困難があった。
【0011】
そこで、本発明では、上記従来技術における問題点に鑑みてなされたものであり、半導体ウェーハであるSi結晶の大口径化に対応して、X線の縦方向における発散角の拡大と共に、横方向の視野の拡大をも可能にすることが可能な2結晶法X線トポグラフィ装置を提供することをその目的とする。
【課題を解決するための手段】
【0012】
本発明によれば、上記の目的を達成するため、まず、X線源からのX線を第1結晶に入射して回折X線を得、当該得られた回折X線を、試料である第2結晶の表面を走査しながら所定の角度で入射し、当該第2結晶の表面から得られる回折X線を記録媒体上に記録し、もって、X線トポグラフィを得る2結晶法X線トポグラフィ装置であって、前記X線源と、当該X線源に連結されてX線を平行X線にするコリメータと、当該平行X線を所定の幅で前記第1結晶に入射するスリットとによってX線発生部を構成し、前記第1結晶及び前記第2結晶、そして、前記記録媒体を含めてトポゴニオ部を構成しており、前記トポゴニオ部を定盤上に搭載すると共に、前記X線発生部を、前記定盤に対して移動可能な走査台上に搭載し、もって、前記X線源からのX線から前記第1結晶を介して得られる回折X線を、前記第2結晶の表面上で走査する2結晶法X線トポグラフィ装置が提供される。
【0013】
なお、本発明では、前記に記載された2結晶法X線トポグラフィ装置において、前記走査台は、前記X線源から前記第1結晶に対するX線の入射方向を除いた方向に移動可能であることが好ましく、又は、前記走査台は、リニアガイド上に搭載されており、走査駆動手段により走査が可能であることが好ましい。
【0014】
また、本発明では、前記に記載された2結晶法X線トポグラフィ装置において、前記トポゴニオ部を搭載する前記定盤は、鋳鉄製の台から構成されていることが好ましい。
【0015】
更に、本発明では、前記に記載された2結晶法X線トポグラフィ装置において、前記試料である第2結晶は、口径が200mm以上の半導体の結晶板であり、又は、シリコンウェーハである。
【発明の効果】
【0016】
以上からも明らかなように、本発明の2結晶法X線トポグラフィ装置によれば、X線の縦方向における発散角の拡大と共に、横方向の視野の拡大をも可能にすることが出来ることから、広い面積の2結晶トポグラフを撮影することが可能となる。特に、近年における口径が200mm以上のSiウェーハについても、2結晶トポグラフが撮影でき、その際、走査によりX線源からのX線強度の不均一を平均化して2結晶トポグラフへの悪影響を排除して結晶情報だけを取り出すことが可能となることから、微小歪みによるコントラストの低下もなく、大口径化に対応して、その結晶全体の転位の分布を検出することも可能になるという、極めて優れた効果を発揮する。
【発明を実施するための最良の形態】
【0017】
以下、本発明の実施の形態について、添付の図面を参照して詳細に説明する。
【0018】
まず、添付の図1には、本発明になる2結晶法X線トポグラフィ装置の構成原理について、その平面図を参照して説明する。
【0019】
この図1からも明らかなように、2結晶法X線トポグラフィ装置を構成する第1結晶1と第2結晶2は、例えば、極めて安定な状態で搭載された、所謂、定盤3上において、所定の位置に固定される。なお、この例では、上記の第1結晶1と第2結晶2に加えて、更に、試料でもある上記第2結晶2と1対1に対応するX線像が記録されてX線トポグラフが得られる記録媒体4、即ち、X線フィルム等も、同様に、上記定盤3上の所定の位置に固定される。
【0020】
一方、上記第1結晶1にX線を入射するためのX線源5を、スリット6と共に、移動可能な走査台7上に配置し、もって、入射X線を上記第1結晶の周りで走査(スキャン:図の矢印を参照)することを可能としている。即ち、相対的に、上述した従来の構造の逆の構造を採用したものである。
【0021】
加えて、図に破線8で示すように、定盤3と走査台7との間には、特に、走査台側からの振動などが定盤側に伝播しないように、所謂、機械的絶縁処理が施されている。
【0022】
なお、ここで、本発明になる2結晶法X線トポグラフィ装置における構成原理について、更に詳細に説明すると、上述したように、2結晶法X線トポグラフィ装置において観察視野を拡大する場合、その縦方向の視野については、X線の縦方向の発散角を大きくとることにより、広げることができるが、他方、横方向の視野を広げるためには、従来の構造において、例えば、入射X線(X線コリメータ部)と第1結晶部とを固定して、第2結晶だけを走査することも考えられ、そして、ある程度は、その実用化も可能ではあろう。
【0023】
しかしながら、特に、Si結晶の2結晶法トポグラフィでは、ロッキングカーブの半値幅を秒程度の狭さに保ち、かつ、その撮影に際しては、第1結晶と第2結晶の平行性を0.1秒以下に保つ必要がある。そのため、現実的には、それらの平行性を保存したまま、第2結晶だけを単独で走査することは、機械精度の観点かも、実現することは出来ない。なお、このことに関し、上述した従来技術の構造においても、第1結晶と第2結晶は一つの走査台の上に配置されている。しかしながら、かかる従来技術の構造では、当該走査台を駆動するモータを発生源とする振動が問題となる。発明者の検討によれば、このモータ駆動の振動は微弱ではあっても、特に、Si結晶の2結晶法トポグラフィのように、第1結晶と第2結晶の平行性を0.1秒以下に保ちたい立場からは有害である。
【0024】
また、微細ではあるが、これらの第1結晶と第2結晶を走査台の上に搭載した状態で移動することは、風を切って移動すること、換言すれば、空気を押しのけることから、空気圧による影響を全く無視することは出来ない。特に、このことは、上記の結晶がブロック状である場合には、その影響は非常に小さく、無視できる程度のものであろうが、しかしながら、上述したように、Si結晶などのウェーハ状の試料は、扁平な円盤状の形状から、その影響を受けやすく、特に、その口径が大きくなる程、微弱な振動や風の影響を受けやすい。実際に、発明者が行った実験によれば、ウェーハ状の試料に対し、走査台上の第1結晶と第2結晶とを走査をしながら撮影した2結晶トポグラフ写真と、これらを停止して撮影した2結晶トポグラフ写真とを比較すると、明らかに、走査をしている状態で撮影されたトポグラフ写真では、微小歪みに対するコントラストが低下していることが確認されている。
【0025】
そこで、本発明では、第1結晶1と第2結晶2とを、一つの台、特に、その安定性に優れた定盤3上に配置し、他方、上記第1結晶1にX線を入射するためのX線源5等を走査台7上に搭載したものである。これによれば、第1結晶と第2結晶は、安定した同一の定盤3上に搭載されていることから、両者間の相対的位置は、走査台7の走査(移動)によっても、何ら影響を受けないこととなる(即ち、変化しない)。また、かかる構成によれば、後に説明するが、走査台7を駆動するモータは、第1結晶部と第2結晶部から、より具体的には、これらを搭載した定盤4から遠く離して配置することも可能であり、その振動の影響を最小限にする(除去する)ことができる。そして、第1結晶と第2結晶は基台である定盤4に固定されることから、従来にように、その移動の際に風圧を受けて、そのウェーハ状の結晶板が揺らぐことはない。
【0026】
なお、上述した2結晶法X線トポグラフィ装置の構成において、X線源5を搭載した走査台7の走査(移動)の方向では、当該X線源から照射されるX線ビームに直交する方向だけとは限らず、その他、例えば、第1結晶1の表面に平行に走査しても良い。即ち、当該X線源から照射されるX線ビームに平行な方向を除いて、照射されるX線ビームと第1結晶の表面とが所定の関係(入射角度が一定)に維持される平行移動である限り、この走査(移動)の方向は、X線ビームと平行な方向以外の、任意の方向に取ることが出来る。
【0027】
なお、ここで、本発明になる2結晶法X線トポグラフィ装置の産業上での利用性について説明すると、2結晶法X線トポグラフィ装置は、今までに、口径6インチのSi結晶にまで対応できる装置が製作されている。一方、Si結晶は、上述したように、その後も大口径化し、現在では、口径8インチ(200mm),口径300mmが生産されるようになった。ところが、トポグラフィ装置では、これらの大口径化に対応して、ラング法に基づく透過トポグラフィ装置が製作されたことから、口径8インチ(200mm),口径300mm用の2結晶法X線トポグラフィ装置の要求はなく、そのため、装置製作は途絶えていたのが現状である。
【0028】
しかしながら、最近になって、口径8インチ(200mm),口径300mm用の2結晶法X線トポグラフィ装置に対する要求が出てきた。それは、2結晶法X線トポグラフィ装置によれば、熱処理によって発生する転位の表面分布を観察することが可能であることによる。即ち、上述したラング法では、結晶全体の転位分布を検出することは出来るが、しかしながら、その表面だけを見たいという要求には応えられないことによる。なお、欠陥の表面分布を撮影する方法には、本発明が関わる2結晶法X線トポグラフィに加え、ベルクバレット法があるが、しかしながら、特に、本発明が観察の対象とするSi結晶の観察で問題となるシングルディスロケーションが表面に突き抜けている様子は、全く検出することができない。これに対して、2結晶法X線トポグラフィを適用することによれば、鮮明に観察することが可能となる。
【0029】
特に、Si結晶メーカーやデバイスメーカーでは、ウェーハの熱処理は、日常的に行われている。それに伴い、結晶に欠陥が導入されないよう、熱処理条件やサポート法の改良を行っている。即ち、Si結晶メーカーでは、通常の鏡面研磨基板の他に、エピタキシー基板やSOI基板を作るとき、高温処理を行うこととなるが、その際、転位が表面に達している場合には、製品として販売することが出来なくなる。一方、デバイスメーカーでは、LSI製作の前工程において、トランジスタ構造を作るため、酸化、熱拡散、CVDによる膜付けなどの高温熱処理が行われているが、上述した転位が表面のデバイス形成領域に入ると、得られる素子の電気特性に悪影響を及ぼすことから、問題となる。
【0030】
なお、これらの熱処理では、例えば、Siウェーハの裏面の周辺部を石英ボートに乗せる、又は、当該裏面を4点ピン支えるなど、Siウェーハを保持しながら熱処理を施している。そして、この高温の熱処理では、特に、その接触部分において温度勾配ができ易く、その歪みを原因として転位が発生する。なお、この転位が発生しても、当該転位線が結晶内部に入り込み、裏面に抜けてくれれば害がない。これは、半導体デバイスは表面に形成されるからである。
【0031】
このように、シリコンメーカーやデバイスメーカーでは、日常的にこれら熱処理の条件やサポート法の改良をしており。その結果、ウェーハ表面の転位がないことを調べたいのである。そこで、一旦は途絶えた評価法であるが、2結晶法X線トポグラフィが注目されるようになった。
【実施例】
【0032】
続いて、上述した大口径Siウェーハ表面の結晶状態を観察するため、上記本発明の原理構造により構成された2結晶法X線トポグラフィ装置の実施例について、以下に詳細に説明する。
【0033】
まず、添付の図2は、本発明の一実施例になる2結晶法X線トポグラフィ装置の平面図を示している。この図において、上記図1と同様に、符号1と2は、上記第1結晶1と第2結晶2を示しており、符号4’は、ここでは、上記のX線フィルム4を含め、X線カメラ(X-ray Vision Camera)などからなるX線検出器を示している。そして、これら第1結晶と第2結晶等を含めてトポゴニオ部を構成しており、このトポゴニオ部は、例えば鋳鉄製のしっかりした台である定盤3の上に配置されており、もって、機械的安定性を保持することができる。また。このトポゴニオ部は、かかる定盤3上に配置されと共に、その周辺には、架台により防X線カバー9が設けられている。
【0034】
一方、上記X線源5を含むX線発生部側では、当該X線源5の出射窓にX線コリメータ部(真空パス)10を取り付け、その先端部に、上記スリット6を含む入射スリットボックス6’を取り付けている。そして、このX線源5を含むX線発生部は、当該X線発生部がその上に配置される面(例えば、テーブル)上において、上述した走査(移動)可能な走査台7上に配置されており、更には、上記と同様に、その周辺には、架台により防X線カバー11が設けられている。
【0035】
なお、上述のX線コリメータ部10は、その真空パスや入射スリット6を介して、上記X線源5からのX線を水平面内で平行化して取り出し、もって、第1結晶に導くために用いられる。そして、このX線コリメータ部10は、上記X線源5と同様に、移動可能な一つの走査台7上に配置されており、もって、X線源5からのX線の取り出し方向に対して直交する方向に走査(スキャン)できる。なお、X線コリメータ部10において真空パスを用いるのは、X線の空気による吸収を避けるためである。
【0036】
即ち、上記の構成によれば、上述したトポゴニオ部とX線発生部の二つの部分は、機械的に絶縁されることなる。そして、X線発生部とトポゴニオ部の二つの部分は、機械的に絶縁されているので、X線コリメータ部10の走査(スキャン)に伴うモータの振動の影響は、第1結晶1や第2結晶2により構成されるトポゴニオ部には及ばない。
【0037】
次に、添付の図3は、上記図2に示したX線コリメータ部10と第1結晶1を中心とした、正面図である。この図の右方において、先端に入射スリットボックス6’を配した真空パスからなるX線コリメータ部10とX線源5は、テーブル12上に配置されたリニアガイド13、13の上に載せられた一つの走査台7上に、それぞれ、サポート部材14、15を介して載せられており、もって、上記リニアガイド13、13と、送りねじ付きの駆動モータ71との働きにより、所定の方向(上記図2の矢印を参照)に走査(スキャン)することが出来る。なお、この走査機能は、2結晶法X線トポグラフの観察視野の横幅を広げる目的と共に、X線源の強度の不均一(ムラ)を平均化するために用いられる。なお、この走査機能を達成するために設けられた駆動モータ71は、他方、振動発生の原因ともなることから、その悪影響を低減するため、出来る限り、上記第1結晶1及び第2結晶2を含むポゴニオ部から離れた位置(図では、右側)に配置することが好ましい。
【0038】
一方、上記図3の左方において、上記第1結晶1は、例えば、添付の図4にその側面構造を示す取り付け板(ホルダ)16により、面内の方位を調整し、かつ、歪みの無い状態で固定されており、鋳鉄製のしっかりした台である上記定盤3の上に設けられた1軸ゴニオメータ17の上面に保持される。即ち、この1軸ゴニオメータ17の回転設定により、上記X線源5からX線コリメータ部10とスリット6を介して入射されるX線の、上記第1結晶1への入射角を、自由に、設定することが出来る。また、図中の符号18は、上記1軸ゴニオメータ17の側面に取り付けられ、上記第1結晶1で回折されずに通過するX線を吸収するトラップを示している。
【0039】
なお、上記の図4からも明らかなように、上記取り付け板(ホルダ)16は、基部161から上方に伸びたサポート部162の上端部に、回転可能な部材163(所謂、φ回転プリセット機構)を介して取り付けられた保持板164を備えており、この保持板164の上下に設けられた、断面略V字状の固定用のアクリルバネ165、165を利用して、上記第1結晶1を面内の方位を調整し、かつ、歪みの無い状態で固定することが出来る。
【0040】
更に、添付の図5を用い、上記第2結晶2とその周辺(第2結晶部)の詳細な構成について説明する。なお、この第2結晶部は、2θ回転板21とω回転板22を含む、所謂、2軸ゴニオメータ(トポゴニオ)を中心に構成されている。なお、この2軸ゴニオメータ(トポゴニオ)も、上記第1結晶1を含む第1結晶部と同様に、鋳鉄製の定盤3上に配置されており、即ち、機械的な安定性を保っている。
【0041】
上述した2軸ゴニオメータ(トポゴニオ)、また、一次X線(即ち、X線源5からの入射X線)と平行な方向に移動可能な移動機構(例えば、リニアガイド)23、23上に搭載されており、位置設定用ボタン24の回転により、その位置を自在(図の矢印を参照)に設定することが出来るようになっている。これは、上記第1結晶1からの回折ビームとω/2θ軸とを一致させるための移動設定機構を構成するものである。また、第1結晶1を別の反射指数の結晶に交換したときにも、この機構により設定することが可能である。
【0042】
また、図5からも明らかなように、上記2θ回転板21上には、測定試料である上記第2結晶2の表面からの回折X線を検出するX線検出器4’が、その保持台31の上に配置されており、更に、第2結晶2とX線検出器4’の間には、上記X線フィルム3を含むフィルムカセット4”が配置されている。
【0043】
また、上記ω回転板22上には、試料ホルダ25が所定の位置に配置されている。なお、この試料ホルダ25は、添付の図6(A)及び(B)に示すように、例えば、560mm×560mmの鉄板からなる試料取り付け板251を備えている。そして、添付の図6(C)に示すように、例えば、マグネットMGを埋め込んだ厚さ2mm程度のアクリル板にウェーハの径と同じ径の円弧に加工したサポートSUでウェーハの下端を支え、上端は三角形の紙や高分子シートSHをカール(湾曲)させ、その弱いバネ力でウェーハを試料取り付け板251に押し付け、保持用マグネットMGで固定することにより、ウェーハを略無歪みで保持することが出来る。例えば、口径300mmのSiウェーハ等を、その上下端で固定することにより、その表面上の所望の位置に固定することが出来る。そして、この試料ホルダ25は、駆動モータ252を含め、試料面内のφ回転機構253、更には、試料の厚さ調正機構254などを備えて構成されている。また、図5に戻り、図中の符号29は、散乱X線を遮蔽するための遮蔽板を示している。
【0044】
続いて、上記に詳細構造を示した2結晶法X線トポグラフィ装置において、試料の取り付けから2結晶法X線トポグラフの撮影までの手順は、次の通りである。
【0045】
先ず、調整した試料である上記第2結晶2を、上記図6に示した試料ホルダ25の試料取り付け板251上に取り付ける。その後、X線検出器4’を用い、ω回転板22を回転して調整しながら、回折線を捕らえる。次に、試料面内の回転機構253を調整すると共に、上記ω回転板22の微調整を交互に繰り返し、試料全面から回折が起きるように調整して、所謂、軸縦作業を完了する。
【0046】
ところで、ω角対回折X線強度のグラフを「ロッキングカーブ」と呼ぶが、このロッキングカーブの半値幅は、数秒程度と極めて狭い。上述した装置を用いた2結晶法X線トポグラフ撮影は、このロッキングカーブのピーク位置ではなく、スロープの急な肩の位置で行われる。なお、このロッキングカーブの肩の位置では、0.1秒程度のω角の変化があると、10%程度の強度変化となる。もし、部分的にΔd/d=〜10-7の格子定数の変化(格子歪み)が存在すると、それに応じて強度が変化することとなる。また、部分的に0.1秒程度の格子面の傾きがある場合にも、やはり、強度の変化を生ずるのである。表面転位の検出ができるのは、転位の周りに格子面の傾きがあるからである。従って、撮影中は、第1結晶と第2結晶の相対角度関係は、0.1秒以下の範囲内で、安定的に静止していることが要求される。
【0047】
更に、図7を用いて、上記2結晶法X線トポグラフィ装置を用いてトポグラフ撮影を行う際の、入射X線の移動と、当該入射X線の移動に伴う回折X線の移動の関係について説明する。なお、図7(A)は、上記装置内におけるX線源、第1結晶と第2結晶、X線フィルム等を中心とした配置見取り図(斜視図)であり、図7(B)は、その上面図である。
【0048】
なお、上記の構成において、第1結晶1には、非対称反射を用いるのが普通である。これによれば、図7(B)にも示すように、第1結晶1の結晶表面からδだけ傾いた格子面を回折面に選ぶと、入射角αで回折条件を満足して回折線が生じ、測定試料である第2結晶2上に入射する。そして、この第2結晶を、図面の紙面に垂直な回転軸の周りの回転、即ち、ω回転を適宜に調整すると、第2結晶2の表面からも回折X線が生じ、当該回折X線がX線フィルム4に入射して記録される(図7(B)の実線を参照)。
【0049】
その後、この状態で、入射X線を矢印方向に平行移動すると、上記第1結晶1及び第2結晶2からの回折線も、それぞれ、矢印方向に平行移動することになる(図7(B)の破線を参照)。即ち、図7(B)において実線と破線で示すように、入射X線が実線から破線へ平行移動すると、それに伴って、第1結晶及び第2結晶からの回折線も、その位置を移動することとなる。従って、広い面積にわたって、試料結晶(即ち、第2結晶)に対応した回折X線像が、上記X線フィルム4上に撮影されることとなる。
【0050】
なお、上記図7(A)及び(B)では、非対称反射の利用によるX線ビームの幅の広がりや発散角については、これを無視して説明したが、更に。添付の図8を用いて、非対称反射の利用によるX線ビームの幅の広がりや発散角について、説明を加える。
【0051】
ここでは、第1結晶として、次の、3種類を用意した場合について、(+,−)平行配置2結晶法の諸パラメータを、以下の表1に示す。なお、試料結晶は(100)ウェーハの場合について計算した値である。
【0052】
【表1】

【0053】
3種の第1結晶の仕様は:
Si(422)用:(100)方位結晶を利用,入射角8.75°回折角88.0°、
Si(511)用:(111)方位結晶を利用,入射角8.53°回折角95.0°、
Si(440)用:(100)方位結晶を利用,入射角8.35°回折角106.7°、
である。
【0054】
図8に、非対称反射(+,−)平行配置の2結晶法の配置を示した。この図において、FWはX線源の見掛けの幅を示しており、通常の場合、1mmである。また、入射スリットの幅も1mmである。この幅は、第1結晶の非対称反射で広がり、幅Wの回折X線束となる。
【0055】
また、図中のLは試料上のX線照射幅(=撮影幅)である。更に、図中のωh,ωoは、それぞれ、第1結晶の発散角、第2結晶の受け入れ幅である。期待されるロッキングカーブの半値幅(FWHM)はこれらを用いて、以下の式により示される程度の幅が期待できる。
【0056】
【数1】

【0057】
なお、このロッキングカーブの半値幅は、その値が小さい程、歪みに対して敏感になる。即ち、上記の3つの配置の中では、Si[(511),-(511)]が最も歪みに敏感な配置である。また、Si[(422),-(422)]とSi[(440),-(440)]の配置は、同程度の半値幅であるが、ウェーハ面内の回転位置で45°方位が異なるので、面内で観察方位を変えたい時に、選択することが出来る。
【0058】
更に、上記の図8において入射X線がSだけ移動した場合、回折ビームの移動量Tは、上記幅Wの計算と同様に、FWをSに置き換えることで行うことができる。なお、以上で用いたX線は、CuKα線(波長1.54オングストローム)である。
【0059】
以上に詳述した本発明になる2結晶法X線トポグラフィ装置によれば、X線の発散角の拡大と共に、視野の拡大をも可能にすることが出来ることから、広い面積での2結晶トポグラフの撮影が可能となる。特に、口径が200mm以上のSiウェーハについても、2結晶トポグラフが撮影でき、その際、走査によりX線源からのX線強度の不均一を平均化して2結晶トポグラフへの悪影響を排除して結晶情報だけを取り出すことが可能となることから、微小歪みによるコントラストの低下もなく、大口径化に対応して、その結晶全体の転位の分布を検出することも可能になる。
【図面の簡単な説明】
【0060】
【図1】本発明になる2結晶法X線トポグラフィ装置の構成原理を説明する平面図である。
【図2】本発明の一実施例になる2結晶法X線トポグラフィ装置の平面図である。
【図3】上記本発明の実施例になる2結晶法X線トポグラフィ装置における、X線コリメータ部と第1結晶を中心とした正面図である。
【図4】上記本発明の実施例における取り付け板(ホルダ)の側面構造を示す側面図である。
【図5】上記2結晶法X線トポグラフィ装置における、第2結晶とその周辺の詳細な構成について説明する平面図である。
【図6】上記2結晶法X線トポグラフィ装置における、試料ホルダの詳細構造を示す図である。
【図7】上記装置を用いてトポグラフ撮影を行う際の、入射X線の移動と、当該入射X線の移動に伴う回折X線の移動の関係について説明する図である。
【図8】上記装置を用いてトポグラフ撮影を行う際の、非対称反射の利用によるX線ビームの幅の広がりや発散角について説明する図である。
【図9】従来技術における2結晶法X線トポグラフィ装置の各種の構造を示す図である。
【符号の説明】
【0061】
1…第1結晶
2…第1結晶(試料)
3…定盤
4…X線フィルム
5…X線源(発生装置)
6…スリット
7…走査台
10…コリメータ。

【特許請求の範囲】
【請求項1】
X線源からのX線を第1結晶に入射して回折X線を得、当該得られた回折X線を、試料である第2結晶の表面を走査しながら所定の角度で入射し、当該第2結晶の表面から得られる回折X線を記録媒体上に記録し、もって、X線トポグラフィを得る2結晶法X線トポグラフィ装置であって、
前記X線源と、当該X線源に連結されてX線を平行X線にするコリメータと、当該平行X線を所定の幅で前記第1結晶に入射するスリットとによってX線発生部を構成し、
前記第1結晶及び前記第2結晶、そして、前記記録媒体を含めてトポゴニオ部を構成しており、
前記トポゴニオ部を定盤上に搭載すると共に、前記X線発生部を、前記定盤に対して移動可能な走査台上に搭載し、もって、前記X線源からのX線から前記第1結晶を介して得られる回折X線を、前記第2結晶の表面上で走査することを特徴とする2結晶法X線トポグラフィ装置。
【請求項2】
前記請求項1に記載された2結晶法X線トポグラフィ装置において、前記走査台は、前記X線源から前記第1結晶に対するX線の入射方向を除いた方向に移動可能であることを特徴とする2結晶法X線トポグラフィ装置。
【請求項3】
前記請求項1に記載された2結晶法X線トポグラフィ装置において、前記走査台は、リニアガイド上に搭載されており、走査駆動手段により走査が可能であることを特徴とする2結晶法X線トポグラフィ装置。
【請求項4】
前記請求項1に記載された2結晶法X線トポグラフィ装置において、前記トポゴニオ部を搭載する前記定盤は、鋳鉄製の台から構成されていることを特徴とする2結晶法X線トポグラフィ装置。
【請求項5】
前記請求項1に記載された2結晶法X線トポグラフィ装置において、前記試料である第2結晶は、口径が200mm以上の半導体の結晶板であることを特徴とする2結晶法X線トポグラフィ装置。
【請求項6】
前記請求項1に記載された2結晶法X線トポグラフィ装置において、前記試料である第2結晶である半導体の結晶板は、シリコンウェーハであることを特徴とする2結晶法X線トポグラフィ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−82939(P2008−82939A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2006−264731(P2006−264731)
【出願日】平成18年9月28日(2006.9.28)
【出願人】(000250339)株式会社リガク (206)
【Fターム(参考)】