説明

ZnO蒸着材の製造方法

【課題】蒸着材に用いられるZnO焼結体において、希土類元素群から選ばれた1種の元素を含む希土類元素酸化物の偏析を抑制し、組成均一性に優れたZnO蒸着材を提供するとともに、蒸着膜の組成が均一なZnO膜が得られるZnO蒸着材を提供する。
【解決手段】バレルスパッタリング法により、ZnO粉末11の表面を、希土類元素群から選ばれた1種の元素を含む希土類元素酸化物13で被覆して粒状体14とする。粒状体14又はこれを仮焼後に解砕して得る仮焼粉末を用いて、第1造粒粉末15又は第2造粒粉末21を作製し、成形、焼結を経て、ZnO焼結体からなるZnO蒸着材17を作製する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば太陽電池などに用いられる透明導電膜や、液晶表示装置、エレクトロルミネッセンス表示装置、タッチパネル装置の透明圧電センサーの透明電極、また表示装置を構成するアクティブマトリックス駆動装置、帯電防止導電膜コーティング、ガスセンサー、電磁遮蔽パネル、圧電デバイス、光電変換装置、発光装置、薄膜型二次電池などに用いられる導電膜を成膜するために用いられるZnO蒸着材の製造方法に関するものである。
【背景技術】
【0002】
近年、太陽電池などの光電変換装置などを製造する場合には、透明導電膜が不可欠である。従来の透明導電膜としては、ITO膜(錫をドープしたインジウム酸化物膜)が知られている。ITO膜は、透明性に優れ、低抵抗であるという利点を有する。
【0003】
一方、太陽電池や液晶表示装置等にあっては、その低コスト化が求められている。しかし、インジウムが高価なことから、ITO膜を透明導電膜として用いると、その太陽電池も必然的に高価なものになってしまう難点があった。また、太陽電池などを製造する場合などには、透明導電膜上にアモルファスシリコンをプラズマCVD法により成膜することになるが、その際に、透明導電膜がITO膜であると、プラズマCVD時の水素プラズマにより、ITO膜が劣化するという問題点もあった。
【0004】
これらの点を解消するために、一層安価に作製することのできるAl、B、Si、Ge、Sc、Y、La、Ce、Pr、Nd、Pm、Smなどの導電活性元素をドープした酸化亜鉛系膜を太陽電池等の透明導電膜として使用することが提案され、この酸化亜鉛系膜を蒸着により形成するための酸化亜鉛系蒸着材が開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−088544号公報(請求項1、明細書[0005] 〜[0008])
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記特許文献1に示されたZnO蒸着材は、図7に示すようにZnO粉末1と導電性を向上するための添加物粉末2とを混合して原料混合粉末3とし、この粉末から成形体5を得た後、ZnO蒸着材となる焼結体6を作製している。ここでZnO粉末1と導電性を向上するための添加物粉末2との混合が不十分であると、添加物2が偏析することがあり、添加物粉末の凝集体4が僅かな比率で存在する。このような添加物粉末の分布が不均一な原料混合粉末3を用いて成形体5を作製し、この成形体5により作製した焼結体6では、その焼結組織中には添加物の偏析7が存在することになる。組成分布が不均一な焼結体6を電子ビーム蒸着やプラズマ蒸着などの蒸着材に用いて成膜を行うと、膜組成が一定にならず、膜の組成制御が困難になる。また、膜中の添加元素濃度が低くなる問題も発生する。更に、添加物が偏析すると蒸発が不安定となってスプラッシュが発生する。スプラッシュが発生した場合の膜組織は不均一となり、それに伴い膜の比抵抗も上昇することになる。
【0007】
本発明の目的は、ZnO原料粉末に添加される、希土類元素を1種含む希土類元素酸化物の偏析を抑制し、組成均一性に優れたZnO蒸着材の製造方法を提供することにある。本発明の別の目的は、膜組成が均一なZnO膜が得られるZnO蒸着材の製造方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明の第1の観点は、純度が98%以上のZnO粉末を希土類元素酸化物で被覆してなる粒状体から第1造粒粉末を作製し、上記第1造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して上記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、上記希土類元素酸化物が希土類元素群から選ばれた1種の元素を含み、バレルスパッタリング法により上記ZnO粉末の表面を上記希土類元素酸化物で被覆して上記粒状体を得る工程と、上記粒状体により上記第1造粒粉末を作製する工程とを含むことを特徴とする。
【0009】
本発明の第2の観点は、純度が98%以上のZnO粉末を希土類元素酸化物で被覆してなる粒状体から第2造粒粉末を作製し、上記第2造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して上記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、上記希土類元素酸化物が希土類元素群から選ばれた1種の元素を含み、バレルスパッタリング法により上記ZnO粉末の表面を上記希土類元素酸化物で被覆して上記粒状体を得る工程と、上記粒状体を大気、窒素ガス、還元性ガス、不活性ガス又は真空の雰囲気中、800〜1200℃で仮焼することにより仮焼体を得る工程と、上記仮焼体を解砕することにより仮焼粉末を作製する工程と、上記仮焼粉末により上記第2造粒粉末を作製する工程とを含むことを特徴とする。
【0010】
本発明の第3の観点は、第1又は第2の観点に基づく発明であって、更に上記希土類元素群から選ばれた1種の元素がSc、Y、La、Ce、Pr、Nd、Pm又はSmであることを特徴とする。
【0011】
本発明の第4の観点は、第1又は第2の観点に基づく発明であって、更に原料となるZnO粉末の平均粒径が0.1〜10μmであることを特徴とする。
【0012】
本発明の第5の観点は、第1又は第2の観点に基づく発明であって、更に粒状体における、希土類元素酸化物薄膜の厚さが10〜1000nmであることを特徴とする。
【0013】
本発明の第6の観点は、第1又は第2の観点に基づく発明であって、更にバレルスパッタリング法により、上記ZnO粉末の表面を上記希土類元素酸化物薄膜で被覆して粒状体を得る工程におけるスパッタリングターゲットが、純度が98%以上の希土類元素酸化物からなるスパッタリングターゲットであることを特徴とする。
【0014】
本発明の第7の観点は、第1ないし第6の観点の方法で製造されたZnO蒸着材をターゲット材として真空成膜法により形成されたZnO膜である。
【発明の効果】
【0015】
本発明の第1ないし第6の観点の方法によれば、バレルスパッタリング法によりZnO粉末を希土類元素酸化物薄膜で被覆してなる粒状体を作製することによって、希土類元素酸化物の分散性が向上し、これを用いて作製するZnO焼結体中の希土類元素酸化物の分散性は向上する。その結果、希土類元素の偏析が抑制され組成均一性に優れたZnO焼結体であるZnO蒸着材が得られる。更に、ZnO粉末を希土類元素酸化物薄膜で被覆してなる粒状体を仮焼、解砕して仮焼粉末とし、この時にZnOと希土類元素酸化物とが擬似固溶体を形成することによって、更に希土類元素の分散性が向上するため、組成均一性が更に向上したZnO蒸着材が得られる。本発明の第3の観点の蒸着材を用いると、成膜されるZnO膜が広い温度範囲にわたって良好な導電性を有する。とりわけCeは、高い導電率が得られる。本発明の第1ないし第6の観点の蒸着材を用いると、安定した蒸着が可能となり、膜組成が均一で、成膜時の膜組成変化も少なく、所望の導電性及び可視光透過性を有するZnO膜が得られる。この素材は、透明導電膜の形成用に限らず、ガスセンサー、電磁遮蔽パネル、圧電デバイスなどの導電膜の形成用としても用いることが可能である。
【図面の簡単な説明】
【0016】
【図1】本発明第1及び第2の実施形態における、各工程を示す図である。
【図2】本発明第1及び第2の実施形態における、粒状体の微視的な構造を示す模式図 である。
【図3】本発明第1の実施形態における、第1造粒粉末の微視的な構造を示す模式図で ある。
【図4】本発明第2の実施形態における、第2造粒粉末の微視的な構造を示す模式図で ある。
【図5】本発明第1の実施形態における、第1造粒粉末から焼結体までの微視的な構造 を示す模式図である。
【図6】本発明第2の実施形態における、第2造粒粉末から焼結体までの微視的な構造 を示す模式図である。
【図7】従来の方法における、原料混合粉末からZnO焼結体までの微視的な構造を示 す模式図である。
【発明を実施するための形態】
【0017】
次に本発明を実施するための形態を図面に基づいて説明する。
【0018】
A.第1の実施形態
<バレルスパッタリング法によりZnO粉末を希土類元素酸化物で被覆する工程>
まず、本発明に用いるバレルスパッタリング装置について説明する。真空チャンバー内部には、円筒状又は多角柱状のバレル容器が横置きに設けられる。このバレル容器はほぼ水平方向に延びる回転軸を有し、成膜中に回転させることによりバレルの内容物を運動させることができる。バレル容器の中心軸上には、希土類元素酸化物からなるスパッタリングターゲットが設置される。スパッタリング中にバレル容器が回転するため内容物が運動し、その表面に均一な厚さの膜が形成される。スパッタリングガスは、アルゴンが用いられるが、アルゴンに酸素を加えても良い。この場合には、酸化性の雰囲気で成膜が可能となり、アルゴンと酸素の混合比を制御することにより酸素分圧を制御することができる。また、バレル容器にヒーターを設置することが好ましい。この場合には、加熱しながら成膜することも可能である。
【0019】
次いで、このバレルスパッタリング装置を用いた、ZnO粉末を希土類元素酸化物で被覆する工程を説明する。図1に示すように、純度98%以上のZnO粉末11を所定量計量し、バレル容器内に投入して真空状態にする。好ましくは、純度が99.9%以上のZnO粉末を用いる。到達真空度5×10−5〜2×10−3Paとした後に、全圧が5×10−3〜8×10−2Paとなるまでアルゴン又はアルゴンに酸素を加えた混合ガスを導入する。バレル容器を10〜200rpmで回転させ、ZnO粉末を流動状態にする。この状態で純度98%以上の、希土類元素を1種含む希土類元素酸化物からなるスパッタリングターゲットとチャンバー間に高周波電力を印加してグロー放電を行って、スパッタリングする。好ましくは、純度が99.9%以上の希土類元素酸化物からなるスパッタリングターゲットを用いる。これにより、ZnO粉末11の表面を希土類元素酸化物13で被覆し、粒状体14を作製する。スパッタリング中にバレル容器内部のZnO粉末11が流動するため、その粒子表面に比較的均一な厚さの薄膜が形成される。希土類元素酸化物薄膜の厚さは、投入電力、成膜時間、ガス圧、酸素分圧、温度等により制御することができる。ZnOと希土類元素酸化物の合計質量を100質量%として、希土類元素を0.1〜15質量%、好ましくは3〜6質量%の割合で含むように粒状体14の組成を制御するためには、ZnO粉末11の投入量、粒度、上記バレルスパッタリング条件を制御する。粒状体14の組成を上記範囲に制御することにより、ZnO蒸着材に含まれる希土類元素の含有量を0.1〜15質量%の範囲に制御することができる。
【0020】
図2に示すように、上記粒状体14は、ZnO粉末11を核として、その表面に上記希土類元素酸化物13の薄膜が形成される。この希土類元素酸化物薄膜は、全てのZnO粉末表面にほぼ均一に形成される。用いるZnO粉末11の平均粒径は、0.1〜10μmが好ましく、0.1〜5μmが特に好ましい。これは、0.1μm未満であると粒子の凝集が顕著になり、粒子表面の完全な被覆が困難になるためであり、10μmを越えると焼結した時に、十分な焼結密度が得られないからである。これらの粉末の平均粒径は、レーザー回折・散乱法(マイクロトラック法)に従い、日機装社製(FRA型)を用い、分散媒としてヘキサメタりん酸Naを使用し、1回の測定時間を30秒として3回測定した値を平均化した。
【0021】
また、希土類元素酸化物薄膜の厚さは10〜1000nmが好ましい。これは、10nm未満であると擬似固溶体を形成する効果が十分に得られず、また所望の希土類元素の濃度が達成できないからである。また1000nmを越えるとZnO粉末に付着した希土類元素酸化物が剥離し易くなるからである。なお、ZnO粉末の平均粒径は、レーザー回折・散乱法により測定し、希土類元素酸化物薄膜の厚さは、粒状体を樹脂に埋め込み研磨し、電子顕微鏡観察により、任意の5個の粒子について、ランダムに5点の測定を行い平均値を求めることにより測定する。
【0022】
<造粒工程>
図1に示すように、上記粒状体14と、有機溶媒と、バインダとを混合して、濃度が30〜75質量%のスラリーを調製する。好ましい濃度は40〜65質量%である。スラリーの濃度を30〜75質量%に限定したのは、75質量%を越えると上記スラリーが非水系であるため、安定した混合造粒が難しい問題点があり、30質量%未満では均一な組織を有する緻密なZnO焼結体が得られないからである。粒状体14の平均粒径は0.1〜6μmの範囲内にあることが好ましい。上記範囲内に規定したのは、0.1μm未満であると粉末が細かすぎて凝集するため、粉末のハンドリングが悪くなり、高濃度スラリーを調製することが困難となる問題点があり、6μmを越えると、微細構造の制御が難しく、緻密な焼結体が得られない問題点があるからである。
【0023】
有機溶媒としてはエタノールやプロパノール等を用いることが好ましく、バインダとしてはポリエチレングリコールやポリビニルブチラール等が好ましい。このバインダの添加量は0.2〜5.0質量%であることが好ましい。また、粒状体14とバインダと有機溶媒との湿式混合は、撹拌ミルを用いることが好ましい。次に上記スラリーを噴霧乾燥して平均粒径が0.1〜5mm、好ましくは0.5〜2mmの第1造粒粉末15を得る。上記噴霧乾燥はスプレードライヤを用いて行われることが好ましい。この第1造粒粉末の平均粒径は、前述したZnO粉末の平均粒径の測定と同一の方法により測定して得られた値である。
【0024】
図3に示すように、上記第1造粒粉末15は、ZnO粉末11を核とする、希土類元素酸化物13で被覆された粒状体14の複数個が、バインダにより結合され集合したものである。
【0025】
なお、この造粒工程は、噴霧乾燥造粒の代わりに流動層造粒装置、攪拌型造粒装置、転動型造粒装置などを用いる造粒でも構わない。
【0026】
<成形工程>
図1に示すように、上記第1造粒粉末15を所定の型に入れて所定の圧力で成形し、成形体16を作製する。所定の型は一軸プレス装置又は冷間静水圧成形装置(CIP(Cold Isostatic Press)成形装置)が用いられる。また、タブレットマシンやブリケットマシン等を用いてもよい。一軸プレス装置では、第1造粒粉末15を750〜2000kg/cm(73.5〜196.1MPa)、好ましくは1000〜1500kg/cm(98.1〜147.1MPa)の圧力で一軸加圧成形し、CIP成形装置では、第1造粒粉末15を1000〜3000kg/cm(98.0〜294.2MPa)、好ましくは1500〜2000kg/cm(147.1〜196.1MPa)の圧力でCIP成形する。圧力を上記範囲に限定したのは、成形体の密度を高めるとともに焼結後の変形を防止し、後加工を不要にするためである。
【0027】
<焼結工程>
図1に示すように、上記成形体16を所定の温度で焼結し、ZnO焼結体(ZnO蒸着材)17を作製する。焼結は大気、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上、好ましくは1200〜1400℃の温度で1〜10時間、好ましくは2〜5時間行う。これにより相対密度が90%以上のペレットが得られる。上記焼結は大気圧下で行うが、ホットプレス(HP)焼結や熱間静水圧プレス(HIP、Hot Isostatic Press)焼結のように加圧焼結を行う場合には、不活性ガス、真空又は還元ガス雰囲気中で1000℃以上の温度で1〜5時間行うことが好ましい。また、一軸プレスにより板状の焼結体としても良い。
【0028】
図5は、第1造粒粉末15、成形体16、ZnO焼結体17の微視的な構造を模式的に示した図である。図5に示すように、粒状体14はZnO粉末の表面に希土類元素酸化物を被覆したものであるため、この粒状体の造粒粉末、成形体及びZnO焼結体中では、希土類元素酸化物が均一に分散している。従って、図7に示すように、ZnO粉末と希土類元素酸化物粉末の混合粉末を原料として作製したZnO焼結体に見られるような希土類元素酸化物の凝集体が存在しない。このようにして、組成均一性に優れたZnO焼結体(ZnO蒸着材)17を得ることができる。
【0029】
<成膜工程>
このようにして得られたZnO焼結体(ZnO蒸着材)17を蒸着源として、真空成膜法により基板表面にZnO膜を形成する。上記ZnO膜を形成するための真空成膜法としては、電子ビーム蒸着法、反応性プラズマ蒸着法、イオンプレーティング法又はスパッタリング法などが挙げられる。
【0030】
希土類添加元素が3価又は4価であって、これがZnO膜中に添加された場合、2価であるZnに対して過剰のキャリア電子を発生させるため、広い温度範囲にわたってZnO膜の導電率を向上させることができる。
【0031】
B.第2の実施形態
<バレルスパッタリング法によりZnO粉末を希土類元素酸化物で被覆する工程>
図1及び図2に示すように、バレルスパッタリング法により、ZnO粉末11を希土類元素酸化物13で被覆する。その方法は、第1の実施形態に準ずる。
【0032】
<粒状体を仮焼する工程>
図1に示すように、粒状体14の仮焼を行い、仮焼体18を作製する。仮焼は大気、窒素、還元性ガス、不活性ガス又は真空の雰囲気中で行う。好ましい雰囲気は、大気である。その仮焼温度は800℃以上、好ましくは1000〜1200℃の温度である。保持時間は、1〜10時間、好ましくは2〜5時間である。仮焼の目的は、ZnO粉末11と、その表面に被覆された希土類元素酸化物13との界面で反応を起こし、ZnOと希土類元素酸化物との擬似固溶体20を形成することである。この反応性は焼結温度により制御することが可能である。これにより、ZnOマトリックスに対する希土類元素の分散性が向上する効果が期待できる。
【0033】
<仮焼体を解砕する工程>
図1に示すように、上記仮焼により得られた仮焼体18を機械的に解砕し、仮焼粉末19を作製する。解砕装置には、ジョークラッシャ、ロールクラッシャ、ハンマークラッシャ、ディスククラッシャ、スタンプミル、ボールミル、ビーズミル、振動ミル、ジェットミル等を用いる。平均粒径が0.05〜5μm、好ましくは0.1〜5μmの範囲に入るまで解砕する。この範囲に平均粒径を制御したのは、0.05μm未満では粉末の凝集が著しくなり、5μmを越えると希土類元素酸化物との擬似固溶体を形成する効果が十分に得られないからである。特に好ましい仮焼粉末の平均粒径は0.1〜3μm、更には0.3〜3μmである。
【0034】
図4に示すように、この仮焼粉末19は、ZnOと希土類元素酸化物との間で擬似固溶体20が形成され、希土類元素の分散性が向上している。
【0035】
<仮焼粉末を造粒する工程>
図1に示すように、上記仮焼粉末19を噴霧乾燥造粒して第2造粒粉末21を作製する。その方法は、第1の実施形態に準ずる。
【0036】
上記第2造粒粉末21の平均粒径は0.1〜5mmが好ましく、更に好ましくは0.5〜2mmである。この第2造粒粉末の平均粒径は、レーザー回折・散乱法により測定した値である。
【0037】
図4に示すように、第2造粒粉末21は、仮焼粉末19の複数個が、バインダにより結合され集合したものである。
【0038】
なお、この造粒工程は、噴霧乾燥造粒の代わりに流動層造粒装置、攪拌型造粒装置、転動型造粒装置などを用いる造粒でも構わない。
【0039】
<成形工程>
図1に示すように、第2造粒粉末21を用いて成形体22を作製する。その方法は、第1の実施形態に準ずる。
【0040】
<焼結工程>
図1に示すように、成形体22を焼結してZnO焼結体(ZnO蒸着材)23を作製する。その方法は、第1の実施形態に準ずる。
【0041】
図6は、第2造粒粉末21、成形体22、ZnO焼結体23の微視的な構造を模式的に示した図である。図6に示すように、仮焼粉末19では、ZnOと希土類元素酸化物とが擬似固溶体20を形成しているため、この仮焼粉末の造粒粉末、成形体及びZnO焼結体中では、希土類元素酸化物が均一に分散している。従って、図7に示すように、ZnO粉末と希土類元素酸化物粉末の混合粉末を原料として作製したZnO焼結体に見られるような希土類元素酸化物の凝集体が存在しない。このようにして、組成均一性に優れたZnO焼結体(ZnO蒸着材)23を得ることができる。
【0042】
<成膜工程>
第2の実地形態により作製したZnO焼結体(ZnO蒸着材)23を蒸着源とするZnO膜の作製は、第1の実施形態に準ずる。
【実施例】
【0043】
次に本発明の実施例を比較例とともに詳しく説明する。
【0044】
<実施例1>
先ず、純度が99.7%、平均粒径が2.0μmのZnO粉末を所定量計量し、バレルスパッタリング装置のバレル容器内に投入し、バレル容器内を到達真空度2×10-4Paとした後、全圧が2×10-2Paとなるまでアルゴンに酸素を加えた混合ガスを導入した。次にバレル容器を100rpmで回転させ、ZnO粉末を流動状態とし、この状態で純度99.5%のCeO2からなるスパッタリングターゲットとチャンバー間に高周波電力を印加してグロー放電を行ってスパッタリングすることにより、ZnO粉末の表面をCeO2で被覆した。これにより、厚さが30nmの希土類元素酸化物薄膜を有し、平均粒径が2.1μmの粒状体を作製した。ZnO粉末の投入量や、バレルスパッタリング条件は、粒状体の組成について、ZnOと希土類元素酸化物との合計質量を100質量%としたとき、希土類元素の割合が2質量%になるように制御し、また、希土類元素酸化物薄膜の厚さが30nmになるように制御した。
【0045】
次に、上記作製した粒状体と、有機溶媒と、バインダとを混合して、濃度が50質量%のスラリーを調製した。有機溶媒としてはエタノールを用い、バインダとしてはポリビニルブチラールを用いた。また、バインダの添加量は0.5質量%とした。粒状体とバインダと有機溶媒との湿式混合は、撹拌ミルにより行った。
【0046】
次に、上記スラリーを、スプレードライヤを用いて噴霧乾燥し、平均粒径が200μmの第1造粒粉末を得た。
【0047】
次に、この第1造粒粉末を一軸プレス装置(理研精機社製 型式名:CD型)を用いて、圧力1000kg/cm2(98MPa)にて一軸加圧成形することにより成形体を作製した。
【0048】
最後に、大気焼成炉により、上記成形体を大気雰囲気中、1200℃の温度で5時間焼結することにより、ZnO焼結体(ZnO蒸着材)を得た。
【0049】
<実施例2>
次の表1に示すように、希土類元素の割合を5質量%としたこと、希土類元素酸化物薄膜の厚さを60nmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0050】
<実施例3>
次の表1に示すように、希土類元素の割合を10質量%としたこと、希土類元素酸化物薄膜の厚さを100nmとしたこと、粒状体の平均粒径を2.2μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0051】
<実施例4>
次の表1に示すように、希土類元素の割合を15質量%としたこと、希土類元素酸化物薄膜の厚さを120nmとしたこと、粒状体の平均粒径を2.6μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0052】
<実施例5>
次の表1に示すように、平均粒径が0.5μmのZnO粉末を用いたこと、希土類元素酸化物薄膜の厚さを20nmとしたこと、粒状体の平均粒径を0.5μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0053】
<実施例6>
次の表1に示すように、平均粒径が0.5μmのZnO粉末を用いたこと、希土類元素の割合を5質量%としたこと、希土類元素酸化物薄膜の厚さを40nmとしたこと、粒状体の平均粒径を0.6μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0054】
<実施例7>
次の表1に示すように、平均粒径が0.5μmのZnO粉末を用いたこと、希土類元素の割合を10質量%としたこと、希土類元素酸化物薄膜の厚さを60nmとしたこと、粒状体の平均粒径を0.6μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0055】
<実施例8>
先ず、実施例2と同様の方法及び同条件で作製した粒状体について、大気雰囲気中、1000℃の仮焼温度で、3時間仮焼を行い、仮焼体を作製した。次に、作製した仮焼体を、ハンマークラッシャによって機械的に解砕することにより、平均粒径が0.5μmの仮焼粉体を得た。次に、この仮焼粉体について、実施例1と同様の方法及び同条件で、噴霧乾燥造粒することにより、平均粒径が200μmの第2造粒粉末を作製した。更に、この第2造粒粉末を用いて、実施例1と同様の方法及び同条件で成形体を作製し、焼結してZnO焼結体(ZnO蒸着材)を得た。
【0056】
<実施例9>
次の表1に示すように、平均粒径が10.0μmのZnO粉末を用いたこと、ZnO蒸着材中の希土類元素の割合を5質量%としたこと、希土類元素酸化物薄膜の厚さを200nmとしたこと、粒状体の平均粒径を10.0μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0057】
<実施例10>
次の表1に示すように、実施例9と同様の方法及び同条件で作製した粒状体を用いたこと、仮焼粉体の平均粒径を1.0としたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0058】
<実施例11>
次の表1に示すように、平均粒径が0.1μmのZnO粉末を用いたこと、希土類元素の割合を5質量%としたこと、希土類元素酸化物薄膜の厚さを10nmとしたこと、粒状体の平均粒径を0.1μmとしたこと以外は、実施例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0059】
<実施例12>
次の表1に示すように、ZnO粉末の表面をSc23で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0060】
<実施例13>
次の表1に示すように、実施例12と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0061】
<実施例14>
次の表1に示すように、ZnO粉末の表面をY23で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0062】
<実施例15>
次の表1に示すように、実施例14と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0063】
<実施例16>
次の表2に示すように、ZnO粉末の表面をLa23で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0064】
<実施例17>
次の表2に示すように、実施例16と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0065】
<実施例18>
次の表2に示すように、ZnO粉末の表面をPr611で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0066】
<実施例19>
次の表2に示すように、実施例18と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0067】
<実施例20>
次の表2に示すように、ZnO粉末の表面をNd23で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0068】
<実施例21>
次の表2に示すように、実施例20と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0069】
<実施例22>
次の表2に示すように、ZnO粉末の表面をPm23で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0070】
<実施例23>
次の表2に示すように、実施例22と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0071】
<実施例24>
次の表2に示すように、ZnO粉末の表面をSm23で被覆したこと以外は、実施例2と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0072】
<実施例25>
次の表2に示すように、実施例24と同様の方法及び同条件で作製した粒状体を用いたこと以外は、実施例8と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0073】
【表1】

【0074】
【表2】

<比較例1>
先ず、純度が99%、平均粒径が2μmのZnO粉末と、希土類元素酸化物粉末として純度が99%、平均粒径が2.5μmのCeO2粉末と、有機溶媒と、バインダとを撹拌ミルにより混合し、濃度が30質量%のスラリーを調製した。有機溶媒としてはエタノールを用い、バインダとしてはポリビニルブチラールを用いた。また、バインダの添加量は10質量%とした。また、ZnO粉末とCeO2粉末との配合比率は、最終的に得られるZnO蒸着材中のZnOと希土類元素酸化物との合計質量を100質量%としたとき、希土類元素が5質量%含まれるように調整した。
【0075】
次に、スプレードライヤを用いて上記スラリーを噴霧乾燥して平均粒径が250μmの造粒粉末を得た。次いで、この造粒粉末を用い、実施例1と同じ装置を用いて成形体を作製し、最後にこの成形体を実施例1と同様の方法及び同条件で焼結することにより、ZnO焼結体(ZnO蒸着材)を得た。
【0076】
<比較例2>
次の表3に示すように、最終的に得られるZnO蒸着材中の希土類元素が10質量%含まれるようにスラリーを調製したこと以外は、比較例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0077】
<比較例3>
次の表3に示すように、最終的に得られるZnO蒸着材中の希土類元素が20質量%含まれるようにスラリーを調製したこと以外は、比較例1と同様に、ZnO焼結体(ZnO蒸着材)を得た。
【0078】
<比較例4>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてSc23粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0079】
<比較例5>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてY23粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0080】
<比較例6>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてLa23粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0081】
<比較例7>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてPr611粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0082】
<比較例8>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてNd23粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0083】
<比較例9>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてPm23粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0084】
<比較例10>
次の表3に示すように、CeO2粉末の代わりに希土類元素酸化物粉末としてSm23粉末を使用したこと以外は、比較例1と同様に、ZnO蒸着材を得た。
【0085】
【表3】

<比較試験及び評価>
実施例1〜25及び比較例1〜10で得られたZnO蒸着材を用いて、ガラス基板の上に、電子ビーム蒸着法により、所定の膜厚のZnO膜を形成した。成膜条件は、到達真空度が1.0×10-4Paであり、酸素ガス分圧が1.0×10-2Paであり、基板温度が200℃であり、成膜速度が0.5nm/秒であった。形成されたZnO膜について、それぞれ膜厚、透過率及び比抵抗を評価した。これらの結果を次の表4〜表6に示す。
【0086】
膜厚は、ULVAC社製のDektak6M型接触式膜厚計で測定した。透過率は、測定器として株式会社日立製作所社製の分光光度計U−4000を用い、380〜780nmの可視光波長域について、成膜後の基板を測定光に対して垂直に設置して測定した。また、比抵抗は、三菱化学社製のロレスタ(HP型、MCP−T410、プローブは直列1.5mmピッチ)を用い、雰囲気が25℃の所謂常温において定電流印加による4端子4探針法により測定した。体積抵抗の測定可能範囲は1.0×10-6〜1.0×108Ω・cmである。
【0087】
【表4】

【0088】
【表5】

【0089】
【表6】

表1〜表6から明らかなように、実施例2〜4,6,7と比較例1〜3をそれぞれ比較すると、希土類元素を同じ割合で含んでいるにもかかわらず、バレルスパッタリングによって希土類元素酸化物薄膜を形成した実施例2〜4では、希土類元素酸化物をそのまま添加した比較例1〜3よりも、比抵抗がそれぞれ低くなり、導電性の高い蒸着膜を成膜できることが確認された。
【0090】
また、希土類元素酸化物薄膜を形成した後、仮焼を行った実施例8、実施例10においても、それぞれ仮焼を行わない実施例2、実施例9と同様に、導電性の高い蒸着膜を成膜できることが確認された。
【0091】
また、実施例8〜25と、比較例1,4〜10について、同種の希土類元素を含むもの同士をそれぞれ比較すると、同種の希土類元素を同じ割合で含んでいるにも拘わらず、バレルスパッタリングによって希土類元素酸化物薄膜を形成、又はその後仮焼を行った実施例8〜25では、希土類元素酸化物をそのまま添加した比較例1,比較例4〜10よりも、比抵抗がそれぞれ低くなり、導電性の高い蒸着膜を成膜できることが確認された。
【0092】
更に、実施例1〜25では、比較例1〜10と同等の高い透過率が得られることが確認された。
【符号の説明】
【0093】
11 ZnO粉末
12 希土類元素群から選ばれた1種の元素を含む希土類元素酸化物からなるスパッタ リングターゲット
13 希土類元素群から選ばれた1種の元素を含む希土類元素酸化物
14 粒状体
15 第1造粒粉末
16 成形体
17 ZnO焼結体(ZnO蒸着材)
18 仮焼体
19 仮焼粉末
20 ZnOと希土類元素酸化物との擬似固溶体
21 第2造粒粉末
22 成形体
23 ZnO焼結体(ZnO蒸着材)

【特許請求の範囲】
【請求項1】
純度が98%以上のZnO粉末を希土類元素酸化物で被覆してなる粒状体から第1造粒粉末を作製し、前記第1造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して前記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、
前記希土類元素酸化物が希土類元素群から選ばれた1種の元素を含み、
バレルスパッタリング法により前記ZnO粉末の表面を前記希土類元素酸化物で被覆して前記粒状体を得る工程と、
前記粒状体により前記第1造粒粉末を作製する工程と
を含むことを特徴とするZnO蒸着材の製造方法。
【請求項2】
純度が98%以上のZnO粉末を希土類元素酸化物で被覆してなる粒状体から第2造粒粉末を作製し、前記第2造粒粉末をペレット状、タブレット状又は板状に成形した後、この成形体を焼結して前記希土類元素を0.1〜15質量%含むZnO蒸着材を製造する方法であって、
前記希土類元素酸化物が希土類元素群から選ばれた1種の元素を含み、
バレルスパッタリング法により前記ZnO粉末の表面を前記希土類元素酸化物で被覆して前記粒状体を得る工程と、
前記粒状体を大気、窒素、還元性ガス、不活性ガス又は真空の雰囲気中、800〜1200℃で仮焼することにより仮焼体を得る工程と、
前記仮焼体を解砕することにより仮焼粉末を作製する工程と、
前記仮焼粉末により前記第2造粒粉末を作製する工程と
を含むことを特徴とするZnO蒸着材の製造方法。
【請求項3】
希土類元素群から選ばれた1種の元素がSc、Y、La、Ce、Pr、Nd、Pm又はSmである請求項1又は2記載のZnO蒸着材の製造方法。
【請求項4】
ZnO粉末の平均粒径が0.1〜10μmである請求項1又は2記載のZnO蒸着材の製造方法。
【請求項5】
粒状体における、希土類元素酸化物薄膜の厚さが10〜1000nmである請求項1又は2記載のZnO蒸着材の製造方法。
【請求項6】
バレルスパッタリング法により、前記ZnO粉末の表面を前記希土類元素酸化物で被覆して粒状体を得る工程におけるスパッタリングターゲットが、純度が98%以上の希土類元素酸化物からなるスパッタリングターゲットである請求項1又は2記載のZnO蒸着材の製造方法。
【請求項7】
請求項1ないし6のいずれか1項に記載の方法で製造されたZnO蒸着材をターゲット材として真空成膜法により形成されたZnO膜。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−185133(P2010−185133A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【出願番号】特願2010−2916(P2010−2916)
【出願日】平成22年1月8日(2010.1.8)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】