説明

Fターム[2G001BA13]の内容

Fターム[2G001BA13]に分類される特許

1 - 20 / 23


【課題】識別するための標識物質の組み合わせが事実上無制限であり、微量の標識物質を用いるのみで識別でき、対象物の素材や製品形状、物性によらずに適用することができる放射線を用いる識別方法を提供する。
【解決手段】カーボンナノチューブを構成する物質以外の物質を標識物質として、ナノチューブの中空部分に内包した内包カーボンナノチューブ、あるいはナノサイズの細孔を有する多孔体を構成する物質以外の物質を、標識物質として細孔に内包した内包多孔体を、識別材料として識別対象物に付与し、対象物に放射線を照射し、標識物質から放射される2次放射線を検知して、識別材料が付与された対象物を識別する識別方法。 (もっと読む)


【課題】放射光装置(高エネルギー電子蓄積リング)等の大がかりな装置を用いることなく、比較的簡易な連続X線光源を用い、被測定物に含有される各元素の平均密度、全量等を非破壊で測定することのできる定量分析方法、及び、そのような定量分析方法を実施することのできる元素別定量分析装置を提供する。
【解決手段】炭素系冷陰極電子源、チタンよりも原子番号の小さい導電性の軽元素からなり、冷陰極電子源から放出された電子が入射面に入射され、入射方向に対して前方にX線を放出するターゲット、及び、該ターゲットで発生したX線以外のX線を遮蔽する遮蔽部材を具備する連続X線光源と、エネルギー弁別型検出器とを用いて、被測定物のX線吸収スペクトルにおける含有各元素の吸収端ジャンプ量を求め、あらかじめ標準試料等で決定した元素別の質量吸収端ジャンプ係数と前記含有各元素の吸収端ジャンプ量に基づき、被測定物に含有される各元素について同時にX線透過経路上の面密度を測定することを特徴とする。 (もっと読む)


【課題】様々な性状の試料の特定部分のみを非破壊かつ高精度で微量元素まで定量分析することができる定量分析方法を提供する。
【解決手段】試料中に含まれる特定の元素を定量分析する方法であって、試料に対してX線を波長掃引しながら照射し、XAFSスペクトルを得るスペクトル取得工程と、得られたXAFSスペクトルを用いて仮想高エネルギー領域曲線を作成する仮想高エネルギー領域曲線作成工程と、得られたXAFSスペクトルを用いて仮想バックグラウンド曲線を作成する仮想バックグラウンド曲線作成工程と、仮想高エネルギー領域曲線と、仮想バックグラウンド曲線との差を用いて特定の元素を定量する解析工程とを含むことを特徴とする定量分析方法である。 (もっと読む)


【課題】高エネルギーの電子蓄積リングのような大がかりな装置を用いることなく、所定値以上のエネルギー領域において特性X線の無い連続X線を発生することのできるX線放射装置を提供する。
【解決手段】X線放射装置は、炭素系冷陰極電子源、チタンよりも原子番号の小さい導電性軽元素ターゲットからなり、冷陰極電子源から放出された電子を入射するターゲット、及び、該ターゲットで発生したX線以外のX線を遮蔽する遮蔽部材を具備し、電子の入射方向に対して前方に放出するX線を利用することを特徴とする。 (もっと読む)


【課題】画像合成時の画像上の被検査物の位置ズレを低減し、異物検出能力の低減を防ぐことができるX線異物検出装置を提供すること。
【解決手段】搬送路上を搬送される被検査物Wに互いに異なる強度のX線を照射するX線管12a、12bと、被検査物Wの搬送方向に配置され、異物判定に必要な解像度より高解像度であるとともにX線管12a、12bから照射され被検査物Wを透過するX線に応じた画像データをそれぞれ出力するX線ラインセンサ50、60と、X線ラインセンサ50、60からの画像データを合成して被検査物Wに対応する1つの画像データとして出力する画像合成部44と、画像合成部44からの画像データの画像サイズを縮小する画像縮小部46と、画像縮小部46が出力する画像データに基づいて被検査物W中の異物の有無を判定する判定部48と、を備えた。 (もっと読む)


【課題】簡易な構成で重元素に対する組成分析を行う。
【解決手段】レーザーコンプトン光100が試料200に照射される。このレーザーコンプトン光100及びこのレーザーコンプトン光100が試料200を透過した後の透過光110がX線検出器120で検出され、その検出信号がデータ処理部130で処理される。このレーザーコンプトン光発生装置20は、準単色あるいは単色のX線をレーザーコンプトン光100として出力する。ここでは、周回軌道で加速された高エネルギー電子21とレーザー光22とが衝突部23で衝突する設定とされる。レーザー光源29から発せられたレーザー光22は、交差角調整部30でその交差角が制御され、衝突部23に導入され、高エネルギー電子21と衝突する。交差角調整部30によってこの交差角を制御することによって、レーザーコンプトン光100のエネルギーを制御することができる。 (もっと読む)


【課題】試料の内部構造を破壊することなく分析する。
【解決手段】干渉性X線が発せられるX線源と、前記X線源からのX線をコリメートするX線コリメータと、X線を吸収又は反射する材料により形成されており、前記X線の可干渉となる位置に設けられた参照穴及びX線透過窓とを有し、前記コリメートされたX線が照射されるX線吸収部と、前記X線透過窓を透過したX線が照射される位置に設置される試料と、前記試料により生じる散乱X線と、前記参照穴を通過したX線との干渉により生じたホログラムを検出する検出器と、前記検出器により得られた前記ホログラムに基づき前記試料の内部構造のイメージ画像を得るためフーリエ変換を行う処理部と、を有し、前記試料は、前記X線吸収部に対し相対的に移動させることができるものであることを特徴とするX線分析装置により上記課題を解決する。 (もっと読む)


【課題】一般的なX線源を用いて、高精度なXAFS測定を行う。
【解決手段】X線源2は、少なくとも所定のエネルギ帯域の成分を含むX線を放射する。集光素子3は、X線源2から放射されたX線を集光する。試料台4は、集光素子3によるX線の集光位置Fに対して、サンプル10を進入退避可能に載置する。分光結晶5は、集光位置Fから発散するX線を斜入射することにより、そのX線を分光する。検出装置6は、分光結晶5により分光されたX線の強度分布を検出する。演算装置7は、検出装置6によって検出された強度分布に基づいて、サンプル10のX線吸収スペクトルを演算により求める。 (もっと読む)


【課題】 異物起因のコントラストのみを明確に判別して過検出及び誤検出を防ぐことができるX線透過検査装置及びX線透過検査方法を提供すること。
【解決手段】 測定対象の元素のX線吸収端より低いエネルギーの第1の特性X線を試料Sに照射する第1のX線管球11と、元素のX線吸収端より高いエネルギーの第2の特性X線を試料Sに照射する第2のX線管球12と、第1の特性X線が試料Sを透過した際の第1の透過X線を受けてその強度を検出する第1のX線検出器13と、第2の特性X線が試料Sを透過した際の第2の透過X線を受けてその強度を検出する第2のX線検出器14と、検出された第1の透過X線の強度の分布を示す第1の透過像と検出された第2の透過X線の強度の分布を示す第2の透過像とを作成し、第1の透過像と第2の透過像との差分からコントラスト像を得る演算部15と、を備えている。 (もっと読む)


【課題】 XAFSを用いて、結晶性アルミノシリケート中のFeの分散性を評価する新たな方法を提供する。
【解決手段】 Feを含有する結晶性アルミノシリケートのFeのXAFSスペクトルを測定し、FeのK−吸収端よりも3〜7eV低エネルギー側の吸光度から、Feを含有する結晶性アルミノシリケート中のFeの分散性を評価する方法。 (もっと読む)


【課題】 その場分析で溶液中の微量物質の反応過程の解析が可能な溶液中の微量物質のin−situ XAFS分析装置を提供する。
【解決手段】 微量物質を含む溶液11を一様に攪拌するとともに溶液11中の特定の反応を進行させるヒータ付きスターラ1と、溶液11の流入口、流出口とともに前記流入口及び流出口の間に溶液11の貯留部3Aを有して溶液11の一様性を維持し得るとともにX線源から放射した入射X線12を貯留部3A内の溶液11に照射するための受光窓3Bを有する測定セル3と、X線を照射した溶液11が放射する蛍光X線13を受光窓3Bを介して受光することにより溶液11中の微量物質をその場で検出し得る7素子SDD8と、ヒータ付きスターラと測定セル3との間を連通する流路4,5と、流路4,5の途中に介在されてヒータ付きスターラと測定セル3との間で溶液11を循環させる送液ポンプ2とを具備する。 (もっと読む)


【課題】無機リン、特に樹脂中に含まれている赤リンを、簡便、かつ迅速に分析し、有機リンを識別する方法を提供する。
【解決手段】樹脂の試料を粉砕し、粉砕された試料に、放射光を照射して、X線吸収微細構造測定を行い、光子エネルギー2140eV〜2170eVの範囲での吸収の有無により、無機リンの含有の有無を判定し、有機リンとの識別をすることを特徴とする樹脂中の無機リンの分析方法。 (もっと読む)


本発明は、特に、空間および時間の両方において不連続なパケットとして事前に採取されて保管された一連の液体マイクロサンプルの少なくとも1つの液相を物理的に抽出するための連続自動抽出システムおよび方法に関する。本発明による抽出システム(10)は、複数のマイクロホルダ(12)を有する遠心分離器(13)を備えており、前記マイクロホルダの少なくとも1つが、該当のマイクロサンプルで満たされるとともに、分離用の下部(12b)によって延長された注入用の上部(12a)を備え、前記下部(12b)の断面は前記上部(12a)の断面よりも小さい。本発明によれば、このように満たされたホルダまたは各ホルダは、所与の瞬間に、1つのマイクロホルダに収容されたただ1つのマイクロサンプル又はマイクロホルダの一部あるいは全てに収容された複数のマイクロサンプルを、マイクロホルダが満たされるにつれて徐々に遠心分離によって抽出できるという方法によって、マイクロサンプルの質量の10倍を超える質量を有している。 (もっと読む)


【課題】固液界面の注目対象である特定元素(イオン)の構造もしくはその周辺の局所構造を容易に解析することができる評価方法と評価装置を提供する。
【解決手段】注目対象が含有される液体試料Sに対して、注目対象(X線の吸収原子)とは異なる材料からなる電極4を接触させる。この電極界面の液体試料SにX線エネルギーを変えながらX線を照射し、電極4近傍の注目対象にX線を吸収させて注目対象から電子を放出させ、その電子の放出に伴って電極4に生じる電気量を測定する。このX線エネルギーと電気量との関係から電極界面における注目対象またはその周囲の構造情報を解析する。 (もっと読む)


【課題】アルカリ金属またはアルカリ土類金属としてK,Ca,Rb,Sr,CsまたはBaを含む有機発光ダイオードの電子輸送層の化学的な結合状態をXAFS法で分析するために有機発光ダイオードを分解すると、大気中の酸素や水分により上記した金属が酸化してしまい、電子輸送層に含まれている化学的な結合状態が変化してしまうため、電子輸送層の化学的性質を分析することが困難であるという課題がある。
【解決手段】有機発光ダイオード11およびその周辺の構成を、XAFS法を用いて非破壊で分析できるよう各層の厚さおよび材質を選択した構造を用いる。有機発光ダイオード11およびその周辺の構成を非破壊で測定することで、電子輸送層24の化学的な結合状態を大気中の酸素や水分により変質させることなく分析することを可能とする有機発光ダイオード11の構成元素の化学状態評価方法を提供することができる。 (もっと読む)


サンプルを高エネルギー放射線に露光させるための、例えば、X線吸収端近傍解析(XANES)を実施するためにサンプルをX線に露光させるためのコンパクトで電力消費が少ないシステム及び方法である。このシステム及び方法は、X線管のような電力消費量が少ない放射源と、解析中にサンプルに放射エネルギーを向けて照射し、これを変化させるための同調可能な1つ以上の結晶光学系と、サンプルによって放射された放射線を検出するために、X線検出器のような放射線検出デバイスとを備えている。同調可能な1つ以上の結晶光学系は二重湾曲光学系でよい。システムの構成部品は同一直線上に配置してもよい。開示されるシステム及び方法は、特に例えば、生物学的工程におけるクロム又はその他の遷移金属の化学的状態のXANES解析のようなXANES解析に利用可能である。
(もっと読む)


【課題】液体試料だけでなくスラリー試料であっても、さらに液体中に浸漬した状態の固体粉末試料であっても、電磁波吸収測定により適切なデータが得られる試料測定用セル、及び電磁波吸収測定方法を提供すること。
【解決手段】電磁波透過性の材料で形成された2つの窓を相対する位置に有し、2つの窓の間に試料を存在させることが可能な電磁波通過部位と、電磁波通過部位の下方に設けられた、内部の液体を撹拌可能な攪拌手段を有する撹拌手段設置部位と、を有するセル構造を為しており、(1)セル構造内の電磁波通過部位の上方に、少なくとも1つの空孔を有する仕切り板を有する、又は(2)セル構造内の電磁波通過部位に、固体粉末試料を所定の電磁波通過長となるように配置可能でかつ固体粉末試料中に液体が浸透可能な試料容器を有する、試料測定用セル。 (もっと読む)


【課題】 高温高圧に耐えることができ、毒性がなく安全で、酸化雰囲気で酸化されにくく、回折X線の影響が少なくXAFS測定を高い信頼性で行うことができ、X線透過性に優れ、平坦な形状とすることができ、しかも安価なX線透過窓を用いた高性能なX線吸収微細構造測定用セルを提供する。
【解決手段】 X線吸収微細構造測定用セルのX線透過窓2、4に、立方晶窒化ホウ素を主成分とし、X線吸収微細構造測定に支障を生じる不純物を実質的に含まない多結晶体からなるものを用いる。この多結晶体は、最も好ましくは、立方晶窒化ホウ素を主成分とし、窒化ホウ素以外の不純物を含まない多結晶体である。X線透過窓2、4に、ポリベンズイミダゾールからなるものを用いてもよい。 (もっと読む)


【課題】パラメトリックX線発生装置において、1つの高エネルギー電子ビームから複数のX線を取り出す。
【解決手段】高エネルギー電子線加速器1で、高エネルギー電子ビームを発生する。高エネルギー電子ビームを当ててパラメトリックX線を発生するための複数個のX線発生用の薄板単結晶2、4、6、8を、高エネルギー電子ビームの方向に沿って直線状に並べる。1つのX線発生用単結晶から、1つまたは複数のパラメトリックX線を発生する。それぞれのパラメトリックX線を、X線選択用の反射単結晶3、5、7、9、10で選択的に反射させて取り出す。このようにして、小型でX線エネルギーを変えることができるとともに、単色でコヒーレントなX線を発生できるパラメトリックX線発生装置において、1つの高エネルギー電子ビーム1から複数のX線を取り出せる。 (もっと読む)


複数の個別のコンポーネントを有するプリント配線アセンブリにおいてマイクロ蛍光X線分光分析法を用いて有害物質を識別する方法に関する。検出分析計としてマイクロ蛍光X線分光分析法(μ−XRF)及びX線吸収微細構造(XAFS)分光を用いて、電子デバイスにおいて問題の材料を識別する。検査されるデバイス又はアセンブリは、参照データベースにおける情報に応じて、プローブ下、そのデバイス又はアセンブリをX,Y,Z方向へ移動させ、アセンブリ上の選択された位置の元素組成を決定することによって分析される。プローブは分析のための各選択位置から最適な分析距離に位置する。各選択位置の決定された元素組成は参照データベースと関連付けられ、検出された元素はアセンブリにおける様々なコンポーネントに対し割り当てられる。
(もっと読む)


1 - 20 / 23