説明

Fターム[2G043KA09]の内容

Fターム[2G043KA09]に分類される特許

1,701 - 1,720 / 1,911


【課題】小さい容積素子に観察される応答を空間的に限定して標本を分析する方法および装置を提供する。
【解決手段】放射を発生する放射部12と、第1の光制限部14と、指向(対物)光学系16と(これらは集合的に照射光学系という)を含み、光制限部を通過して形成されたビームが試料18を照射する。収集光学系20は照射された試料18からの放射を収集し検出し、これが第2の光制限部22を通る。制限部26を含み、照射および収集光学系またはその一部に連結されて、照射が指向される位置を調節し、選択された容積素子からの応答を収集する。 (もっと読む)


単分子の存在を分析する装置は、試料を上に配置する試料プレート(30’)を備える。一実施形態では、この装置は、試料中で蛍光を励起するのに適した2つの異なる波長の照明光を提供する2つのレーザ(46’、46”)と、バンドパスフィルタ(50’、55”)、発散レンズ(54’、54”)、視野絞り(62’)、および内部全反射対物レンズ(74’)を介して試料上に照明光を方向づける収束レンズ(66’)を含むコリメータと、照明光に応答して前記試料によって生成される蛍光像を検出する手段(34’、34”)とを備える。一実施形態では、この装置は、レーザ(38’)と、ビームスプリッタキューブ(86’)と、収束レンズ(90’)と、オートフォーカス用ダイクロイック(94’)とを含むオートフォーカスモジュールをさらに備え、それによって、試料に対する対物レンズの合焦を維持する。
(もっと読む)


本発明は、流体を検査する光学的装置(D)であって、検査されるべき流体のための強制通路(5)を含む測定空間(4)と、選択された光を光学照明手段(21-25)へ提供する少なくとも1つの光源(7)とを備え、この光学照明手段は、強制通路(5)を通過した光の少なくとも一部分を集光して、それを手段(20)へ提供し、該手段は、集光を分析して、それにより保持されたデータを表わす信号を与えるように働く。光学照明手段(8-12)は、光源(7)とは反対側に一端(9)を有し、これが、光源(7)から導出された光を、選択された幾何学的形状に基づいて提供して、実質的に均一に且つ実質的に一定の強度で強制通路(5)を照明するように構成された第1光ガイド手段(8)を備えている。 (もっと読む)


本発明は、複数の標的分子がマイクロアレイの捕獲分子へ結合する間の、標的分子のリアルタイム定量化をモニターするための方法と装置に関する。本方法は、以下の工程を含む:支持体の特異的局在領域(21)中に固定された少なくとも5種の捕獲分子(20)を含むマイクロアレイが表面に固着した、前記支持体(15)を、反応槽(14)中に設置する工程;ラベルされた標的分子(13)溶液を槽(14)中へ導入する工程;前記標的と捕獲分子の間の結合を可能にする安定な制御された温度条件下で、前記ラベルされた標的分子をインキュベーションする工程;発光源(1)からの励起光(2)をマイクロアレイの表面上へ向ける工程;結合した標的分子からの、前記励起光に応じた電磁光放射(7)を、標的分子を含む溶液の存在下で測定する工程であって、各局在領域の放射表面は約0.1μm2〜10mm2を含み、また少なくとも4つの局在領域の各々を経時的にモニターし、各局在領域(21)につき少なくとも2回の測定を行う工程;および 種々の測定値を処理し記憶し、各前記標的に対して少なくとも1つの測定値を用いて、溶液中に存在する少なくとも4種の異なる標的分子を定量する工程。 (もっと読む)


ミクロスフェアを撮影するために位置決めする様々な方法およびシステムが提供される。一システムは、開口部を含む濾材を含む。これら開口部は、濾材の幅方向に実質的に等距離に間隔を置かれる。このシステムはまた、濾材に連結された流れサブシステムを含む。流れサブシステムは、ミクロスフェアが開口部の上に配置されるように、ミクロスフェアに力を作用させるように構成される。ミクロスフェアを撮影するために位置決めする方法は、ミクロスフェアが濾材の開口部の上に配置されるように、濾材を介してミクロスフェアに力を作用させるステップを含む。各開口部は、上述のように間隔を置かれる。
(もっと読む)


【課題】対物レンズと撮像素子との間にPDT用レーザカットフィルタを設けることなく、PDD及びPDTによる診断・治療が可能である内視鏡システムを、提供する。
【解決手段】光源プロセッサ装置20のロータリーシャッタ32及びPDD用光源30は、タイミングコントローラ21からの同期信号に従って交互に、白色光及びPDD用レーザ光を電子内視鏡10のライトガイドファイババンドル16に導入する。PDT装置40は、タイミングコントローラ21からの同期信号に従って、PDD用レーザ光がライトガイドファイババンドル16に導入されていない間のみ、PDT用レーザ光を、レーザプローブ41に導入する。撮像素子13は、被写体にPDD用レーザ光が照射されている期間毎に、対物光学系及び励起光カットフィルタを通じて被写体を撮像することによってPDD画像信号を出力する。 (もっと読む)


微粒子ベースの分析方法、システムおよび用途を提供する。具体的には、粒子のアイデンティティと存在の一方または両方を測定し、場合により、1つもしくはそれ以上の特定の標的分析物の濃度を測定するための分析方法として、共鳴光散乱を利用することについて説明する。生物学的アッセイおよび化学的アッセイにおける、これらの微粒子ベースの方法の用途についても開示する。
(もっと読む)


【課題】積分球を使用することにより測定時間の短縮および測定精度の向上を図り、かつ測定装置全体の絶対感度校正において不確かな仮定を排除した校正方法を用いることにより、より簡便で高精度な発光材料のPL量子収率測定方法および装置を提供する。
【解決手段】ポート1P1〜ポート4P4、バッフル7、アタッチメント6を備えた積分球5と、励起光源1と、発光スペクトル検出部8と、励起光照射に伴う試料3からの透過光および反射光を検出する光パワーメータ9a、9bと、制御用コンピュータ10とを備える。有機EL材料薄膜からなる測定試料3を積分球5の略中央位置にアタッチメント6を用いて設置する。制御用コンピュータ10は、光検出器8bおよび各光パワーメータ9a、9bの各測定器と接続されており、これら各測定器の設定を制御するとともに、これら各測定器で得られた測定データを演算解析する機能を備えている。 (もっと読む)


【課題】 検出すべき光が遮光されてしまうのを極力抑えることができ、検出精度の低下を防止することができる分光装置の提供。
【解決手段】 入射スリットから入射した光を入射光学系の反射ミラーで平行光にして回折格子に入射させ、回折格子からの回折光を出射光学系の反射ミラーで集光して光り検出器45の受光面に入射させる。受光面の前方には光検出セル400の配列方向に沿って移動可能な遮光板404が設けられている。遮光板404はスライダ403上に立設されており、送りネジ401に螺合しているスライダ403は、ステッピングモータ402により送りネジ401を回転駆動することにより、受光面前方においてスライド移動する。受光面に入射する励起レーザ光は遮光板404によって遮光され、光検出セル400への入射が防止される。 (もっと読む)


【課題】従来の複数の電極から構成される液体流通路で結ばれた液体搬送基板では,駆動条件からスループットが低下してしまうという問題があった。
【解決手段】導入部から測定部までの液体流通路と測定部から排出部までの液体流通路が重ならないように,導入部と排出部を結んだ液体流通路の途中に測定部を配置し,導入から排出までの操作を基板上で一方向に処理する。
【効果】本発明によれば,多数の分析を行う場合でも,一方向に順次搬送することにより短時間で測定を終えることが可能となる。 (もっと読む)


【課題】例えば、微生物の検出及び同定のために、試料を分析する方法及びシステムを提供する。
【解決手段】試料を分析するためのシステム100は、ターゲット検体を含む、第1屈折率を有する試料116と、第2屈折率を有する上部層136及び第3屈折率を有する基板116とを備え、第2屈折率及び第3屈折率は前記第1屈折率より大きくされ、更に、光を試料内に指向させて試料内に反共振誘導光学モードを生成するための光源104と、試料内に伝搬する光とターゲット検体との相互作用(干渉)を検出するための分析システム140、144と、を備えている。 (もっと読む)


光センサは、複数の光ファイバおよび複数の個別の液密の長手方向に延在するダクトを備える少なくとも1つのバンドルと、前記ダクトの少なくとも一部に選択的に流体を導入するための流体コネクタと、を備える。テストセルは、(a)バンドルの端部に適用されるか、または2つのバンドルの端部の間に挟まれる孔または凹部のパターンを有するアレイ部材によって形成されるか、または(b)ダクトがファイバの光視野と重なる場合にはファイバ内部に形成される。一般に、ダクトの他方はテストセルから流体を除去する働きをする。
(もっと読む)


異質物からラマン信号を発生するための平面状光プラットフォームは、プラズモンバンド構造領域に光学的に結合した、光放射を受け取り取り出すための入力領域と出力領域とを備えている。プラズモンバンド構造領域は、第2の屈折率を有する第2の材料の小領域のアレイでパターニングされた、第1の屈折率を有する第1の材料の層を備え、それぞれの小領域の側壁は金属誘電体層でコーティングされている。小領域のアレイは、プラズモンバンド構造を生じ、使用時に、それぞれの小領域は、プラズモンバンド構造領域内に結合された光放射によって励起されたプラズモン共鳴を閉じ込め、プラズモン共鳴は、プラズモンバンド構造領域に近接して位置している異質物からラマン信号を生じる。プラットフォームは、分光測定システムに組み込まれてもよく、分析物分子の表面増強ラマン分光法に特に有用である。 (もっと読む)


本発明は、内視鏡検査又は蛍光顕微鏡検査に使用するための、検体(10)のファイバ式マルチフォトン式イメージング装置に関する。この装置は:マルチフォトン励起レーザ輻射を生成するべくフェムト秒でパルスされるパルスレーザ(1、2)と、複数の光ファイバで構成され表面下の平面内での点から点への走査により検体を照射することの可能なイメージガイド(8)と、イメージガイド(8)内での励起パルスの分散効果を補償するための予備補償手段(4)と(前記手段はパルスレーザとイメージガイド(8)との間に配置されている)、励起レーザビームをイメージガイドのファイバ内へ交わる交わる差し向けるための走査手段と、特に、イメージガイドから出る励起レーザビームを検体(10)内へ集束させるための光学ヘッド(9)とを備えている。 (もっと読む)


【課題】試料の二次元的なラマンスペクトルイメージを高速に検出する。
【解決手段】ラマン分光装置10は、レーザ光源20から発したレーザ光Lをシリンドリカルレンズ22及びスリット板23の通過により直線状に変形して試料Sへ照射する。試料Sから発生した直線状の散乱光Kはノッチフィルタ27でラマン散乱光Rのみが通過し、透過型グレーティング29でラマン散乱光RはY方向へ分光されCCD31でラマン散乱光Rの部位別にラマンスペクトルを検出する。試料Sへのレーザ光Lの照射箇所は反射ミラーの角度変更によりY方向へ移動し、CCD31は照射箇所の移動に同期して検出を行い二次元のラマンスペクトルイメージを得る。 (もっと読む)


開示される方法および装置は、金属被覆ナノ結晶多孔質シリコン基体を使用したラマン分光分析に関する。希フッ化水素酸中での陽極エッチングによって、多孔質シリコン基体を形成することができる。多孔質シリコンには、陰極エレクトロマイグレーションまたは任意の公知の方法で、ラマン活性金属、たとえば金または銀の薄い皮膜をコーティングすることができる。金属被覆基体は、SERS、SERBS、ハイパーラマンおよび/またはCARSラマン分光分析を実施するにあたっての広範な金属リッチ環境を提供するものである。特定の別の手段では、金属ナノ粒子を金属被覆基体に加えて、ラマン信号をさらに増強することができる。開示された方法および装置を使用することにより、ラマン分光分析を使用して、多岐にわたる各種の分析対象物質を検出、同定、および/または定量することができる。
(もっと読む)


染色されたミクロスフェアを形成させるための各種の方法が提供される。一つの方法には、熱または光を用いて染料にカップリングさせた化学構造を活性化させて、ミクロスフェアの存在下に反応中間体を形成させることを含む。その反応中間体は、ミクロスフェアのポリマーに共有結合的に付加し、それによって、染料をポリマーにカップリングさせて、染色されたミクロスフェアを形成させる。さらなる方法では、分子にカップリングさせた染色されたミクロスフェアを形成させることを提供する。これらの方法には、染色されたミクロスフェアの外側表面上に分子を合成することに加えて、上述のようにミクロスフェアを染色することが含まれる。染色されたミクロスフェアの集合体も提供される。その集合体の染色ミクロスフェアのそれぞれには、化学的な構造によって、染色されたミクロスフェアのそれぞれのポリマーに付加された染料が含まれる。染料が原因の、染色されたミクロスフェアの集合体の染色特性における変動係数は、約10%未満である。
(もっと読む)


【課題】
本発明の目的は、末端検出方式において、複数のキャピラリ端を高精度に配置することに関する。
【解決手段】
本発明は、末端検出方式において、複数のキャピラリ端を保持する保持部材に設けられた基準面を用い、検出光学系と位置合わせすることに関する。基準面を検出光学系に位置合わせすることにより、複数のキャピラリ端を検出光学系に高精度に位置合わせできる。本発明により、複数のキャピラリ端を高精度に配置でき、高精度な電気泳動分析を実現できる。 (もっと読む)


【課題】計測の微量化とキュベット化のニーズに応えるため、また、微量化に伴う問題点を解決するために極微量な分光システムと分光法を提案すること。
【解決手段】疎水性の基板上に液滴を生成し、この液滴の移動をガイドする親水性のラインを設けて、ライン上を順次液滴を搬送する。親水性のラインと交差する形で検出システムを構成し、液滴が検出システムを横切るときに吸光度や蛍光強度を測定する。親水性のライン上の液滴に白色光あるいは励起光を照射し、透過してくる光を分光あるいは蛍光を検出する。 (もっと読む)


アナライト濃度、特にグルコース濃度を生体内または生体外で検出するためのデバイスが開示されている。検出素子は光導管の遠位端に取り付けられ、少なくとも1つのターゲットアナライトと結合するように適合された少なくとも1つの結合蛋白質を備える。検出素子は、アナライト濃度の変化と共に発光変化を受ける少なくとも1つのリポータグループをさらに備える。任意選択として、光導管と検出素子はカニューレ状ベベル内に格納することができる。
(もっと読む)


1,701 - 1,720 / 1,911