説明

Fターム[2G052CA14]の内容

サンプリング、試料調製 (40,385) | 移送 (4,521) | 移送技術 (2,603) | 圧力によるもの (695) | 気送(気体を用いた移送) (82)

Fターム[2G052CA14]に分類される特許

61 - 80 / 82


第1容器中の水溶液中に浸された血管内医薬器具のような、酸化窒素を含有するプローブからの亜硝酸根(NO)および酸化窒素(NO)放出の一体化した測定方法であって、プローブから直接放出された酸化窒素を酸化窒素分析計へ運ぶ工程を有して成る方法。亜硝酸根が例えば、ヘッドスペース室を有して成る第1容器から取り出され、およびNOが酸化窒素(NO)に変換されるパージ容器に輸送され、酸化窒素は酸化窒素分析装置へと運ばれる。酸化窒素分析装置の上流側に配置された切換え弁が、直接放出された酸化窒素(NO)および亜硝酸根から誘導された酸化窒素(NO)の1つが選択的に装置に入ることができるように操作される。直接放出された酸化窒素は、第1容器から連続的に洗い流されてよい。
(もっと読む)


【課題】ガスサンプリング装置において、閉鎖循環系内の検体ガスを自動的かつ連続的に短時間にサンプリングすること、さらには装置の耐久性の向上およびサンプリングパターンを多様化できる装置を提供する。
【解決手段】閉鎖循環系1と、その閉鎖循環系1とバルブV1,V2を介して接続され、かつ、バルブV3によって仕切られた排気装置と接続されたサンプリング・ループ3と、そのサンプリング・ループ3とバルブV4,V5を介して接続されたキャリアガスライン5とを備え、その複数個のバルブを組み合わせバルブの開閉を制御することにより、前記サンプリング・ループにキャリアガスを導入してキャリアガスと閉鎖循環系内の検体ガス2を採取するガス自動サンプリング装置。 (もっと読む)


【課題】 計測準備にかかる時間を短縮して揮発ガス成分を効率良く測定できる小型容器及びそれを有する同時ガス分析システムを提供することを課題とする。
【解決手段】 小型容器10は、ガス発生源となる試料を収容するガス分析用容器本体12と、ガス分析用容器本体に着脱自在な密閉用の蓋14と、で構成される。蓋14には、ガス導入管及びカートリッジにそれぞれ接続する2つの接続部18が設けられている。この接続部18には、蓋14を貫通する貫通孔20と、貫通孔20を封止するように貫通孔内に形成され、ガス導入管の先端で突き破られ得る遮蔽板22と、が設けられている。 (もっと読む)


IMS(4,104)または他の装置用の蒸気発生装置(1,101)は、蒸気が生成されるチャンバ(9,109)を有する。ファンまたは他の流発生装置(6,106)は、前記蒸気チャンバ(9,109)の蒸気チャンバ流入口(8,108)に接続され、蒸気チャンバ流出口(13,113)は、カーボンからなるブロック(15)を貫通するボアによって形成されるような吸着通路(14,114)に接続される。前記ファン(6,106)がオンの場合、ガスは、前記蒸気チャンバ(9,109)および前記吸着通路(14,114)を通って、少量の蒸気が前記通路に吸着されて、前記IMS(4,104)または他の出口に流れる。前記ファンがオフの場合、前記通路(14,114)から逃げるいかなる気体分子も、実質的に全てが吸着され、逃げないような低い速度で、前記蒸気チャンバ(9,109)および前記吸着通路(14,114)を通る。
(もっと読む)


【課題】本発明は、高レベル放射性試料取扱いボックスに設置されている遠隔操作機器により、高レベル放射性試料の希釈操作を容易に行い得ると共に、高レベル放射性試料による汚染物の減容化が図れる、放射性試料の希釈操作用治具及び移送方法を提案することを目的とする。
【解決手段】高レベル放射性試料を希釈し、低レベル放射能の分析ボックスに試料を移送する時に用いる放射性試料の希釈操作用治具1において、希釈試料を導くチューブ3と、同チューブ3先端に装着するニードル4と、同ニードル4を装着するニードル部2とを具え、同ニードル部2が遠隔操作機器に保持可能な把持部5の孔5a内に挿脱着可能であるようにした。 (もっと読む)


【課題】柱体形状の被試験体のVOC測定に好適な測定チャンバーであって、被試験体から透過、放散されるVOCがチャンバー内の気体によって希釈される比率が小さくなり、気密性の要求が低く、また、クリーニングの時間と手間を省略可能な測定チャンバーを得ることにある。
【解決手段】被試験体であるチューブ1が放散する物質を測定するために用いる測定チャンバーであって、チューブ1の長さよりも短いものであって、チューブ1の一定の長さ部分をその内部に収容する筒状枠2と、筒状枠2の両端部の各々に位置し、筒状枠2の内表面とチューブ1の外表面を密封するための2個の密封ジョイント3と、筒状枠2の外部と内部を導通するキャリヤーガス流入口4と、筒状枠の内部と外部を導通するキャリヤーガス流出口5を有する測定チャンバー。 (もっと読む)


【課題】 基板搬送容器内空間の汚染状態を簡便に評価する方法を提供すること。
【解決手段】 容器本体と蓋体とを有し、該容器本体は一側面に開口部が形成され、また、該蓋体は該開口部を閉塞可能に、かつ該容器本体に開閉自在に取り付けられてなる基板搬送容器内空間の汚染状態の評価方法であって、該基板搬送容器に袋体を該開口部が該袋体で外気と遮断されるように装着した後、前記蓋体による該開口部の閉塞状態を解除して該容器本体内部空間と該袋体内部とを連通させ、該袋体に設けられたガス導入孔から不活性ガスを前記容器本体内に導入しながら、該袋体に設けられたガス排出口から排出される排出ガスを捕集し、該排出ガス中の汚染物質を分析することを特徴とする基板搬送容器内空間の汚染状態の評価方法 (もっと読む)


【課題】 分析精度を十分向上させることができる液体試料導入装置等を提供すること。
【解決手段】 本発明は、液体試料Sが収容された試料容器4を保持する保持部材5と、キャリアガスの導入によって、試料容器4から導入される液体試料Sを霧状化してICP質量分析部2に導入するネブライザ6と、試料容器4内の液体試料Sをネブライザ6に導入する液体試料導入管7と、保持部材5を上下に移動させる可動手段9と、試料容器4内の液体試料Sの液面位置L1を検知する検知手段26とを備え、液体試料導入管7の一端7aがネブライザ6に接続され、液体試料導入管7の他端7bが自由端である液体試料導入装置である。 (もっと読む)


【課題】 試料室等の内壁への微粒子の付着を抑えることができるレーザアブレーション用試料室、レーザアブレーション装置及び試料分析装置を提供すること。
【解決手段】 レーザアブレーション用試料室5は、試料4を収容するための試料室本体5aと、この試料室本体5aの上部に設けられ、試料4に照射されるレーザ光を透過させる窓部5bとを有している。試料室本体5aは導電性材料で形成されている。試料室本体5aは接地電極34と電気的に接続されている。このため、試料室5内に発生した静電気は、試料室5の外部に逃されることになる。これにより、試料室5の内壁への微粒子の静電的な付着が抑えられる。 (もっと読む)


【課題】 複数の試料を順次効率良くレーザアブレートすることができるレーザアブレーション装置、レーザアブレーション試料分析システム及び試料導入方法を提供する。
【解決手段】 レーザ光照射部4に搬送される次位の試料Sは、試料待機部5で待機させられた後、キャリアガスが充填されたレーザ光照射部4への大気の流入が防止されつつ、開閉扉43を介して試料待機部5からレーザ光照射部4に搬送手段44により搬送され、レーザ光照射部4でレーザアブレートされる。このように、試料待機部5からレーザ光照射部4への次位の試料Sの搬送に際してはレーザ光照射部4への大気の流入が防止されるため、レーザ光照射部4に次位の試料Sを導入する度にキャリアガスによってレーザ光照射部4のガスの置換を行うことが不要となる。従って、複数の試料Sを順次効率良くレーザアブレートすることができる。 (もっと読む)


【課題】 試料室及び接続チューブの内壁に付着した微粒子を効果的に除去することができる試料分析方法及び試料分析装置を提供する。
【解決手段】 試料4の分析を行う場合は、試料4にレーザ光を照射して、試料4の一部を微粒子化させると共に、試料室5内にキャリアガスを導入して、微粒子化された試料4をキャリアガスと共に接続チューブ22を介して分析ユニット3に移送する。そして、試料室5内に洗浄ガスを導入して、洗浄ガスによって試料室5及び接続部22の内壁に付着・堆積している微粒子を洗い流す。 (もっと読む)


【課題】 試料の表面状態の変化にかかわらず、試料の分析精度を向上させることを可能にするレーザーアブレーション装置及び方法、試料分析装置及び方法を提供する。
【解決手段】 試料分析装置1は、試料室5内の試料台6に支持される試料2にレーザー光を照射して、試料2の一部を微粒子化させるレーザーアブレーション・ユニット3と、試料室5内で微粒子化された試料2を導入し、試料2に含まれる構成元素を検出する元素検出ユニット4と、コントローラ37とを備えている。試料室5の上方には、試料2の表面形状を検出するためのレーザー変位計18が設けられている。コントローラ37は、レーザー変位計18の測定値に基づいて、試料2の表面に対してレーザー光のフォーカスを合わせるように試料台駆動部7を制御するレーザー制御部と、元素検出ユニット4の検出値を入力し、所定の分析処理を行う分析部とを有している。 (もっと読む)


【課題】低濃度VOCを含むガスを容易に調製して校正を実施できる大気圧化学イオン化質量分析装置を提供する。
【解決手段】大気圧化学イオン化質量分析計と、前記大気圧化学イオン化質量分析計へのガス導入路と、前記ガス導入路に接続された校正装置とを備え、前記校正装置は、有機化合物を分離する分離カラムと、前記分離カラムに校正用の有機溶液を注入するための溶液注入口と、前記分離カラムへ搬送ガスを導入するための搬送ガス流入口とを有し、前記分離カラムの流出部が前記ガス導入路に設けられた接続口に接続されていることを特徴とする大気圧化学イオン化質量分析装置。 (もっと読む)


本発明は、汚染モニタリング設備の分野に関し、特に、多数の場所からサンプリングされた空気内の粒子を検出する吸引粒子検出器システムに関する。本発明は、吸引粒子検出器システムにおける流れを決定するための方法及び装置を提供する。上記システムは、粒子検出器を有する流体経路における複数の搬送路と、少なくとも一つの搬送路における流量を検出する手段と、第1及び第2の信号トランシーバー(44a〜44d、42)間で伝送される信号を検出することを備え、上記第1トランシーバー(42)は、搬送路の少なくとも2つにて信号を送受信するように適合される。好ましい実施形態では、本発明は、吸引煙検出器システム内での流れ検出の超音波手段の使用に関する。
(もっと読む)


【課題】 電気泳動法により試料が展開されたゲルから目的部分を摘出して容器に移載する際に、試料の採取部にゲルが残留することに起因する目的成分の損失を抑止できる試料摘出装置を提供する。
【解決手段】 本発明による試料摘出装置は、目的部分の位置を選定する位置選定手段と、液が収容される液保持手段25と、先端部32dが略筒状を成しており、気体の給排部4に接続され、液及び先端部32dにより位置が選定された目的部分が先端部32dの内部に保持され、且つ、その保持された液及び目的部分が容器26中に吐出されるように駆動される試料採取手段32と、試料採取手段32を所定の方向に移動させる移動手段とを備えるものである。 (もっと読む)


【課題】シールボックスを使用することなく、かつ簡易でありながら小口及び裏面からの放散を無くした状態で汚染物質の放散量を測定する。
【解決手段】2つの捕集管をコネクターで接続し、上流側の捕集管内に、試験体1をアルミ箔又は銅箔で完全に囲繞した後、試験体表面側の金属箔を所定の寸法で切り取り、表面側のみを暴露状態とすることによって作製した試験体を収容して揮発兼用の一次捕集管7とし、下流側の捕集管に捕集剤10を充填して二次捕集管8とし、所定温度のキャリアガスを所定流量及び所定時間で供給し、前記試験体から放散される揮発性有機化合物を前記一次捕集管7及び二次捕集管8とで捕集した後、この2つの捕集管7,8をそれぞれ熱脱着型ガスクロマトグラフ質量分析計(GC/MS)の加熱脱着部にセットし、揮発性有機化合物の全放散量を算出する。 (もっと読む)


【課題】容器の口部をより確実にシールすることができるサンプリング具を提供する。
【解決手段】口部を有する容器から液体を抽出するように構成されたサンプリング具100は、容器50の口部55に押し付けられるサンプリングヘッド10と、口部55をシールするようにサンプリングヘッド10の下面に配置されたシリコーンゴム製パッキン20と、サンプリングヘッド10を貫通するようにサンプリングヘッド20に取り付けられたサンプリングチューブ30と、容器50内にガスを供給するガスチューブ40とを備える。 (もっと読む)


【課題】 マイクロ波加熱時の有害物質脱着機構の解明に貢献する分析装置を提供する。
【解決手段】 CaO・6Al固化体からなる試料ホルダー10と、試料ホルダー10にマイクロ波を照射するマイクロ波照射装置20と、試料ホルダー10に配置された試料の温度を測定する温度測定機器30と、試料ホルダー10に配置された試料から発生したガスの成分を分析する分析装置50とを有する分析装置である。 (もっと読む)


本発明は、生物学的粒子を収集するための方法、チップ、装置、及びシステムに関係している。本方法は、帯電した電極に対する生物学的粒子の静電吸着を利用しており、好ましくは、気体サンプルに関して機能する。この方法、チップ、装置、及びシステムは、例えば、空気サンプルからの細菌胞子やウイルスなどの病原粒子の収集に有用であり、この結果、収集された生物学的粒子を分析可能である。
(もっと読む)


試料液体(17)を計量し、希釈液(20)と混合する方法は、試料液体(17)を筐体内に規定されたチャンネル(33、102)内へ導入する工程を含む。筐体は、チャンネル(33、102)に対して開かれ、かつ定量の試料液体(17)を集め、
チャンネル(33、102)が空にされると集められた量を毛管力によって保持する大きさに作られたポケット(13、26、28、29、34、35、38)を規定する。次いで試料液体(17)は、集められた定量の試料液体(17)のポケット(13、26、28、29、34、35、38)内における保持を可能にする状態で、チャンネル(33、102)から取り除かれる。清浄工程に続いて、多量の希釈液(20)がチャンネル(33、102)内へ導入されて、希釈液(20)の拡散および試料液体(17)との混合を生じて、混合物(21)を形成する。
(もっと読む)


61 - 80 / 82