説明

Fターム[2G058GA06]の内容

自動分析、そのための試料等の取扱い (28,698) | 分析値測定 (2,087) | 光学的測定 (1,683) | 光学フローセルへ送液して測光 (224)

Fターム[2G058GA06]に分類される特許

61 - 80 / 224


【課題】光学測定手段の種類や性能に関わらず、高精度に流路中の試料等の測定を行うことができる流路基板を提供する。
【解決手段】基板内部に設けられた流路12に試料を通流させた状態で、前記流路内の試料を光学的手段によって検出する際に用いられ、前記流路に試料を導入する導入部13と、前記流路から試料を排出する排出部14と、を少なくとも備え、少なくとも片側の基板面に、前記流路までの距離の異なる二以上の検出部表面15a、15bが設けられた流路基板1aとする。 (もっと読む)


【課題】様々な種類の試料を分析する場合であっても、適切な分析条件を選択して精度良く分析することができる試料分析装置、試料分析方法及びコンピュータプログラムを提供する。
【解決手段】試料と試薬とを含む測定試料を調製し、調製された一の測定試料に含まれる所定の成分を検出する。検出された所定の成分を示す複数の分析用データを生成し、生成された複数の分析用データから一の分析用データを選択し、選択された一の分析用データに基づいて所定の成分を分析する。一の分析用データに基づく分析結果を、所定の成分の分析結果として出力する。 (もっと読む)


【課題】一の試料に対する測定時に、複数の検出条件により所定の成分を検出することにより、適切な検出条件を選択して精度良く分析することができる試料分析装置及び試料分析方法を提供する。
【解決手段】試料と試薬とを含む測定試料を調製し、調製された測定試料に含まれる所定の成分を検出する。検出する場合に用いる複数の検出条件ごとに、一の測定試料に含まれる所定の成分を検出するよう制御する。検出条件ごとの検出結果のうち少なくとも1つに基づいて所定の成分を分析する。 (もっと読む)


【課題】微量な試料液で測定ができ、容易に小型化できる攪拌機構を有する分析用デバイスを提供することを目的とする。
【解決手段】遠心力の働く方向に伸長して測定セル(40a)を形成したため、分析用デバイスの小型化を実現できる。さらに、測定セル(40a)の回転方向に位置する側壁に、外周位置から内周方向に伸長するように毛細管エリア(47a)を形成したため、回転を減速または停止させて測定セル(40a)の試料液を、毛細管エリア(47a)に吸い上げてから、回転を加速させて毛細管エリア(47a)の試料液を測定セル(40a)に戻すことによって、十分な攪拌効果を得ることができ、微量な試料液で測定ができる。 (もっと読む)


【課題】二つの流体を合流させる合流流路を有する流体デバイスにおいて、流体の界面位置が限定されず、かつ安定した界面を形成することができる流体の制御方法を提供する。
【解決手段】二つの流体を合流させる合流流路を有する流体デバイスを用いて、該合流流路で多層流を形成する流体の制御方法であって、前記合流流路に第一の流体を充填する第一の工程と、前記合流流路に前記第一の流体と第二の流体を導入して多層流を形成する第二の工程とを有し、前記第一の流体が前記第二の流体よりも合流流路の壁面での付着仕事が小さい流体の制御方法。 (もっと読む)


【課題】光路長の誤差の影響を受けることなく正確な希釈倍率を算出できる分析方法と、この方法を実現できる流路構成を搭載した分析用デバイスを提供することを目的とする。
【解決手段】混合室(29)に希釈液のみを保持した状態で検出光を透過させて希釈液のみの吸光度を測定する第1ステップ(工程2の一次測光)と、混合室(29)に希釈液体試料を保持した状態で検出光を透過させて希釈液体試料の吸光度を測定する第2ステップ(工程4の二次測光)と、測定セル(40a)における希釈液体試料の反応物にアクセスして読み取った結果を、第1,第2ステップで求めた吸光度に基づいて求まる希釈倍率によって補正して成分分析の結果を計算する第3ステップ(工程9)とからなる。 (もっと読む)


【課題】測定項目に応じた適切な量の非定量溶液部分を分離することにより、ごく少量の検体及び反応試薬で高精度の検査が可能な検体検査装置を提供する。
【解決手段】検体の検査すべき測定項目を選択すると、検体ポンプ15と第1試薬ポンプ14は、検体及び第1試薬の微細流路1への送液を開始する。微細流路1内で混合した検体と第1試薬との混合溶液のうち送液ポンプ14,15双方が定常動作に達する前に送液された溶液は混合比率が不確定であり、微細流路1から分離する必要がある。測定項目に対応した量の不確定溶液を吸引ポンプ16によって微細流路1から第1廃棄タンク6に効率的に分離することによって、ごく少量の検体によって高精度の検査が可能となる。 (もっと読む)


【課題】簡単な動作で検体や試薬等を流路毎に個別に正確に定量しながら分割もでき、流路の配置の自由度も高く、検体や試薬等の無駄も少ないマイクロ検査チップ、マイクロ検査チップの液体定量方法および検査装置を提供すること。
【解決手段】液体貯留部に貯留された液体を、複数の分岐流路を介して複数の液体定量部に送液し、複数の液体定量部に満充填された液体を下流に送液することで、簡単な動作で検体や試薬等を流路毎に個別に正確に定量しながら分割もでき、流路の配置の自由度も高く、検体や試薬等の無駄も少ないマイクロ検査チップ、マイクロ検査チップの液体定量方法および検査装置を提供することができる。 (もっと読む)


【課題】流体回路を構成する第2の基板の溝全体が確実に表面処理されているマイクロチップおよび、塵や埃を発生させることなく、また、基板間の接合性が十分に高い、第2の基板の溝全体が確実に表面処理されたマイクロチップの製造方法を提供する。
【解決手段】第1の基板と、基板の両面に設けられた溝を備える第2の基板と、第3の基板とをこの順で貼り合わせてなるマイクロチップであって、該第2の基板が有する溝の側壁面および底面は、表面処理剤を含有する塗膜によって被覆されているマイクロチップおよびその製造方法である。 (もっと読む)


【課題】体液サンプルを分析するための分析システムであって、制御可能な検査エレメントを有し、コンパクトかつ簡便な構造で利便性の高い分析システムを提供する。
【解決手段】サンプル供給口12及び測定ゾーン19を含むサンプル分析チャンネル16を有する検査エレメント3、及び検査エレメント3内に液体を投入するための投入ステーション9を内部に配置する分析機器2を含む分析システム。体液サンプルとサンプル分析チャンネル16に存在する試薬系との反応が測定ゾーン19における分析結果に特有な測定変量の変化をもたらすように構成される。検査エレメント3は、フラッシング液供給口13、及びフラッシング液回収チャンバー31を含み、これらを流体連通するフラッシング液チャンネル32及びサンプル分析チャンネル16は、フラッシング液が測定ゾーン19に到達しないように離れていることを特徴とする。 (もっと読む)


【課題】200μl未満の少量サンプルにおける標的分析対象の有無を、高い信頼度で効率的に検出すること可能とする、手動デバイスおよび方法を開発すること。
【解決手段】本発明は、液体サンプルにおいて標的分析対象の有無を定量的に検出するためのデバイスおよび方法に関し、該デバイスは、該分析対象を捕捉することが可能な固定基質を含む、200μl未満の容量を持つ反応チェンバーを含み、前記固定基質は、好ましくは、少なくとも2峰性であるサイズ分布を持つ磁気材料を含む。 (もっと読む)


本発明は、少なくとも一つの封止要素(16; 26; 36; 46)と二つの透明要素(11, 12; 21, 22; 41, 42)を有し、透明要素が相互にある距離を置いて配置されるとともに、サンプルチャネル(15; 25; 45)の向かい合った限界面(limiting surfaces)を画定し、封止要素がサンプルチャネルの側壁を画定し、したがって、サンプルチャネルが、長手方向で閉じられた、入口開口部(10a)及び出口開口部(10b)を有するチャネルとして形成されるキュベット(10; 20; 30; 40; 50)に関する。透明要素を相互にある距離を置いて保つ、少なくとも一つの離隔片(distancing piece)(13; 23; 33; 43; 53)が設けられる。二つの透明要素の少なくとも一方は、サンプルチャネルの高さ(h5)が少なくとも一つの離隔片の高さ(h6)より短くなるように、他方の透明要素の方向に延在するとともにサンプルチャネルの限界面を形成する肩部(11a, 12a; 21a, 22a; 41a, 42a)を有する。 (もっと読む)


【課題】 指示物質を含む希釈用水溶液を生物学的試料と混合し、混合前と混合後の前記指示物質の吸光度を比較することにより、生物学的試料の希釈度を導出する方法において、指示物質が生物学的試料の影響により光吸収特性が変化することから、高精度に希釈度を導出することができなかった。
【解決手段】 あらかじめ希釈用水溶液中に、生物学的試料による指示物質の変化に近い、または一致する光吸収特性変化を及ぼす物質を含有させることにより、生物学的試料による希釈用水溶液中の指示物質の変化を低減、または無くすることで、高精度に生物学的試料に希釈度を導出することができる。 (もっと読む)


【課題】半導体製造工程において使用される薬品中に含有される金属をリアルタイムで検出することができる新規な検出方法、および装置を提供する。
【解決手段】薬品から一定時間毎にサンプルを採取するとともに、当該サンプルを中和させてから発色試薬を用いて吸光度測定を行う。この方法によれば、全ての工程をインラインで行うことが出来るため、フローインジェクション分析法を適応することができ、リアルタイムで金属の存在を確認することができる。 (もっと読む)


【課題】流路内に含まれる検体を検出するさいにおける検出感度を調整する方法を提供する。
【解決手段】検体の光学的な検出を行う検出方法であって、いずれかの層に検体を含有する流体の多層流を形成する工程と、前記多層流のいずれかの層に光を導入する工程と、前記導入された光に応じて前記多層流から発せられる信号を検出することにより検体の検出を行う工程、を有する検出方法。前記検体が化学物質、分子、細胞、粒子またはそれらの混合物である。前記多層流を形成する流体のうち少なくとも1つの流体は他の流体と異なる屈折率を有する。 (もっと読む)


【課題】温度制御ユニット内の空気循環を最適化して素早く設定温度にもっていく生体サンプル分析装置を提供することを目的とする。
【解決手段】生体サンプルを分析するための生体サンプルプレートを回転可能に支持する回転駆動部と、前記生体サンプルプレートの周囲を取り囲み且つ一端が開口するように形成された筐体と、前記筐体に取り付けられ温度制御された空気を前記筐体に送るための温度制御ユニットと、を備えた生体サンプル分析装置において、前記筐体の前記生体サンプルプレートの下面に対向する面が前記生体サンプルプレートの下面に対して異なる傾斜角を持つ複数の傾斜面からなる生体サンプル分析装置。 (もっと読む)


【課題】検体毎の分析残余時間を確認するとともに、全検体の分析が終了するまでの全分析残余時間を確認することができ、検体単位及び全検体での分析の時間管理を容易に行うことができる検体分析装置を提供する。
【解決手段】検体を分析するための分析オーダを受け付けるオーダ受付手段と、前記オーダ受付手段によって受け付けられた分析オーダにしたがって検体の分析を行う分析部と、検体の指定を受け付ける検体指定手段と、前記検体指定手段が指定を受け付けた検体の分析が終了するまでに要する分析残余時間又は前記検体の分析が終了する分析終了時刻を取得する第1取得手段と、前記分析部による全検体の分析が終了するまでに要する全分析残余時間又は全検体の分析が終了する全分析終了時刻を取得する第2取得手段と、表示部と、前記第1取得手段によって取得された分析残余時間又は分析終了時刻と、前記第2取得手段によって取得された全分析残余時間又は全分析終了時刻とを前記表示部に表示させる表示制御手段とを備えた検体分析装置。
(もっと読む)


【課題】検体分析装置において、測定部にエラーが発生した場合にユーザーがエラーの発生箇所を正確に認識した状態で復旧作業を行えるようにする。
【解決手段】検体分析装置1は、検体の分析を行う測定ユニット2と、エラーを含む測定ユニット2の状態を検出する検出手段と、測定ユニット2のエラーを復旧させるための復旧情報と、測定ユニット2のエラー発生箇所を示すエラー発生箇所画像とを互いに関連づけて記憶する記憶部と、表示部400bと、検出手段によって測定ユニット2のエラーが検出された場合に、そのエラーに対応する復旧情報及びエラー発生箇所画像を記憶部から読み出して表示部400bに表示させる表示制御手段とを備える。 (もっと読む)


【課題】マイクロチップの回転角度位置を自動で変更することが可能な遠心力付与装置及び検体液分析装置を提供する。
【解決手段】検体液分析装置100を構成する遠心力付与装置2を、回転アーム20と、アーム回転軸21と、アーム回転軸21を回転駆動するアーム回転機構22と、回転アーム20の両端に設けられた回転台回転軸24と、回転台回転軸24の上端部に接合されたチップ回転台23と、チップ保持部26と、回転台回転軸24を回転駆動する回転台回転機構25と、回転台回転機構25に動力を伝達する回転台駆動力伝達機構27と、アクチュエータの動力によって、チップ回転台23及びチップ保持部26を遠心力の付与方向にスライドさせると共にその位置を保持する偏心機構と、チップ回転台23及びチップ保持部26の位置を、ずらした後の位置からずらす前の位置へと復帰させる復帰機構とを含んだ構成とした。 (もっと読む)


【課題】マイクロチップの回転角度位置を自動で変更することが可能な検体液分析装置を提供する。
【解決手段】検体液分析装置100を構成する光学式分析装置3を、光情報測定部30と、第1スライドレール32と、第2スライドレール33と、第1スライダ34と、第2スライダ35と、スライド補助部材36とを含んだ構成とし、光情報測定部30を、略ユ字形状のレーザ光照射部30aとレーザ光受光部30fとを垂直方向に隙間を空けて対向させ、該隙間内に挟まれるマイクロチップ200の測定部200aの3つの測定ポイントの位置に合わせて、各ユ字形状の上辺左側端部に縦方向に一直線状に3つのレーザヘッド及び受光ヘッドをそれぞれ設け、各ユ字形状の下辺左側に縦方向と直交する方向に一直線状に3つのレーザヘッド及び受光ヘッドをそれぞれ設けた構成とした。 (もっと読む)


61 - 80 / 224