説明

Fターム[2G060DA27]の内容

電気的手段による材料の調査、分析 (24,887) | 電界効果トランジスタ(FET) (316) | 製造方法又は調整方法 (34)

Fターム[2G060DA27]の下位に属するFターム

Fターム[2G060DA27]に分類される特許

1 - 13 / 13


【課題】超薄膜プラチナ粒界ナノ空間に金属化合物が形成された薄膜をガスセンサの感応膜に適用し、プラチナとナノ化合物の構成金属や膜厚や占有比率や形成条件を変える事で、水素およびそれ以外の様々なガスのセンシングに対応でき、長期信頼性の高い超薄膜ガスセンサを実現するデバイスを提供する。
【解決手段】基板上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極とを具備し、ゲート電極は、酸素を含有する酸素ドープアモルファス金属と前記金属の酸化物結晶とが混合した金属酸化物混合膜と、前記金属酸化物混合膜上に設けられたプラチナ膜とを有し、プラチナ膜は、複数のプラチナ結晶粒と該プラチナ結晶粒間に存在する粒界領域から構成され、粒界領域は、金属酸化物混合物により埋められ、プラチナ結晶粒の周囲が金属酸化物混合物により囲まれた構造を有するガスセンサ。 (もっと読む)


【課題】 電気特性に対応した測定が可能な、CNT中の半導体型CNT含有率の測定方法を提供する。
【解決手段】 カーボンナノチューブ(CNT)により形成されたチャネルを有する電界効果トランジスタ(FET)のon/off比を、前記チャネル中のCNTの面積密度を変化させて測定する、on/off比測定工程と、
前記on/off比と、前記CNT面積密度、前記FETのon抵抗、前記FETのキャリア移動度または前記FETのon電流との相関に基づき、前記CNT中の半導体型CNT含有率を算出する、半導体型CNT含有率算出工程を含むことを特徴とする前記CNT中の半導体型CNT含有率の測定方法。 (もっと読む)


本明細書は生物的材料および電気的材料並びに該生物的材料と該電気的材料との間の界面を含む電子デバイスの製造方法を記載する。この方法は、電子デバイスを製造する際、所望の位置にタンパク質(11)の自己組織化を利用する。この明細書はまた、構造部としてタンパク質層を含む電子デバイスも記載する。ハイドロフォビンタンパク質を含む電子デバイスのタンパク質層もまた記載する。いくつかの実施形態では、電子デバイスはタンパク質(11)に接触したグラフェン(12)の層も含む。 (もっと読む)


本発明は、少なくとも1つの感受性の構成部材(3)を有し、上記感受性の構成部材(3)上に熱的に残らず分解可能な材料からなるマスキング層(31)を設け、上記感受性の構成部材(3)を上記マスキング層(31)によりほぼ完全に覆い、上記マスキング層(31)上に温度安定性の材料からなる保護層(33)を設け、上記マスキング層(31)を熱分解又は低温運転する酸素プラズマによって除去するセンサ素子(1)の製造方法に関する。本発明は、更に、少なくとも1つの感受性の構成部材(3)及び温度安定性の材料からなる保護層(33)を有し、上記感受性の構成部材(3)は上記温度安定性の材料からなる上記保護層(33)により覆われていて、上記感受性の構成部材(3)及び上記保護層(33)は互いに間隔を空けて配置されている、センサ素子に関する。
(もっと読む)


【課題】プラチナ膜をゲート電極に使用するSi−MOSFET型の水素ガスセンサにおいて、プラチナとゲート絶縁膜(酸化シリコン膜)との密着性を維持しつつ、高濃度の水素ガスにさらされても水素被毒を抑制できる特徴をもち、かつ、パラジウム膜をゲート電極に使用するSi−MOSFET型の水素ガスセンサと同程度以上の水素応答強度を実現するデバイス構造を提供する。
【解決手段】ゲート構造において、プラチナ微結晶5間の結晶粒界6(粒界近傍領域7を含む)に酸素をドープした非晶質のチタン、プラチナ−チタン拡散層からなるPt−Ti−O領域を形成した構造とする。さらに、結晶粒界6にPt−Ti−O領域を有するプラチナ微結晶5の下に、酸素ドープチタン膜3(酸素をドープした非晶質のチタン、非晶質酸化チタン、または、酸化チタン微結晶が混じり合った膜)を形成した構造とする。 (もっと読む)


【課題】電界効果トランジスタを含むセンサであって、ゲート電極の着脱による接触帯電を抑制し、試料溶液が溶液状態のままでも検出可能な、高精度かつ高感度なセンサを提供すること。
【解決手段】本発明のセンサは、バックゲート型の電界効果トランジスタを含むセンサであって、反応領域を囲むゲート電極が半導体基板の絶縁膜上に固定されていること、および反応領域の絶縁膜の厚さがその周囲の絶縁膜の厚さよりも薄いことを特徴とする。本発明のセンサは、ゲート電極の着脱による不安定性および検出誤差を低減することができるため、高感度にかつ安定して被検出物質を検出することができる。また、本発明のセンサは、試料溶液が溶液状態のままでも、被検出物質の吸着や反応などに伴う信号の変化をリアルタイムで検出することができるため、これら物理現象を理解することができる。 (もっと読む)


【課題】ガスセンサにおいて、ドレイン電流のピークが小さくなり過ぎる。
【解決手段】1.Aの有機電界効果トランジスタ100は、導電性基板10表面に絶縁膜20を形成し、その上にチャネル形成層である有機半導体層30を形成する。導電性基板10裏面にはゲート電極40gを形成し、有機半導体表面には、チャネル長を空けてソース電極40sとドレイン電極40dが形成される。1.Aの有機電界効果トランジスタ100を極性分子のガスセンサとして用いる場合に、ソース電極の電位とドレイン電極の電位を一定に保ったまま、ゲート電極に、チャネルを形成すべき電位と、チャネルを開放すべき電位の2つの電位を交互に連続的に印加し、ドレイン電流のピークを連続的に検出する。チャネルを開放すべき電位としては、測定時のゲートに印加する負電位よりも絶対値の小さい正電位か、接地電位を印加する。 (もっと読む)


【課題】酸化物半導体素子の製造方法において、酸化物半導体膜の低抵抗化を容易かつ低コストにする。
【解決手段】 基板10上に、ゲート絶縁膜30を挟んで酸化物半導体膜40とゲート電極20を形成し、酸化物半導体膜40に、ソース電極62およびドレイン電極63とそれぞれ電気的に接続されるソース領域42およびドレイン領域43を形成する。その後、シート抵抗値が10Ω/□以上の酸化物半導体膜40に、部分的に紫外光Lを照射して、そのソース領域42およびドレイン領域43におけるシート抵抗値を10Ω/□未満にまで低減させる。 (もっと読む)


【課題】カーボンナノチューブ電界効果トランジスタのチャネル作製の歩留まりを向上させること。
【解決手段】基板のソース電極およびドレイン電極の形成予定部位に、ゾルゲル状態のアミノアルキルアルコキシシランの層を形成する。基板上にカーボンナノチューブの分散液を提供して、カーボンナノチューブを基板上に形成されたゾルゲル状態のアミノアルキルアルコキシシランの層に選択的に結合させる。窒素ガスを吹き付けてゾルゲル状態のアミノアルキルアルコキシシランの層を押し流し、ソース電極形成予定部位とドレイン電極形成予定部位との間にカーボンナノチューブを架橋させる。基板のソース電極形成予定部位にソース電極を形成し、基板のドレイン電極形成予定部位にドレイン電極を形成する。 (もっと読む)


【課題】櫛歯電極型の湿度センサ素子を有する容量式湿度センサおよびその製造方法であって、一対の櫛歯状電極を覆う感湿膜を一定膜厚で均一に形成することができ、安定した正確な湿度測定が可能で、製造コストを抑制した安価な容量式湿度センサおよびその製造方法を提供する。
【解決手段】湿度センサ素子11が、一対の櫛歯状電極11a,11bと、絶縁膜3を介して櫛歯状電極11a,11bを覆って形成され、湿度に応じて誘電率が変化する感湿膜4rとを有してなり、櫛歯状電極11a,11bを取り囲む所定の閉じた経路A上における絶縁膜3の表面高さh2が、櫛歯状電極11a,11b上における絶縁膜3の表面高さh1に較べて、高く設定されてなり、感湿膜4rが、閉じた経路A上における絶縁膜3の表面高さh2以下の高さで、閉じた経路Aの内側に形成されてなる容量式湿度センサ101とする。 (もっと読む)


タンパク質−タンパク質結合を検知するために、カーボンナノチューブを導電性チャネルとして組み込んだナノスケールの電界効果トランジスタデバイスが使用される。ナノチューブデバイスに電子供与性ポリマーの被膜を施し、ポリマーにレセプター化合物を結合させる。レセプター化合物は、特定の生体分子(1個以上の生体分子)に結合するように構成されている。ポリマー被膜とレセプター化合物で被覆されたデバイスは、p型の電界効果トランスデューサとして作動させることができる。たとえば、レセプターによって結びつけられた生体分子にさらすと、負電圧におけるコンダクタンスが著しく低下し、これによって電子信号による応答が確実に発生する。
(もっと読む)


電解析出により製造されたカーボンナノチューブに基づくデバイス及びその応用が提供される。デバイスは少なくとも1つのマイクロエレクトロニクス基板に堆積されたアクティブなカーボンナノチューブ接合アレイを少なくとも1つ有する。デバイスは基板、基板に配置され電源に接続された少なくとも1対の電極、及び少なくとも1対の電極間に配置された、半導電性カーボンナノチューブから本質的に構成されたカーボンナノチューブの束を有する。半導電性デバイスは2つの電極間でのカーボンナノチューブの電着により形成されてもよい。また、半導電性デバイスを形成する方法は、カーボンナノチューブロープにバイアス電圧を印加することによる。複数の金属性単層カーボンナノチューブは半導電性デバイスの形成に十分な量だけ(例えば、バイアス電圧の印加により)除去される。デバイスは、化学的又は生物学的センサ、カーボンナノチューブ電界効果トランジスタ(CNFET)、トンネル接合、ショットキー接合、及び多次元ナノチューブアレイを含む。
(もっと読む)


ドレイン電極84およびソース電極82を接続する少なくとも1つの有機分子87を含む分子単電子トランジスタ(MSET)検出デバイス14を記載する。使用中、前記少なくとも1つの有機分子87は量子閉じ込め領域を形成する。対象の分子(検体)を結合する少なくとも1つの検体レセプタ部位90、92が前記少なくとも1つの有機分子87近傍に設けられる。MSET検出器、前濃縮装置4、および流体ゲート構造体6を備えた流体分析器2も記載する。流体ゲート構造体6は前濃縮装置4から検出器14および排出口12のいずれか一方に選択的に流体を送るように配置される。前濃縮装置4、流体ゲート構造体6および検出器14は各々実質的に平坦な層として形成され、積層体または立方体として配置される。
(もっと読む)


1 - 13 / 13