説明

Fターム[2G088GG27]の内容

放射線の測定 (34,480) | 測定手段 (6,504) | 特殊な手段 (62) | ファラデーケージ、ファラデーカップ (19)

Fターム[2G088GG27]に分類される特許

1 - 19 / 19


【課題】改善された放射検出器を提供する。
【解決手段】放射検出器は放射を検出する。放射検出器は複数のファラデーカップを含む。各ファラデーカップにはカバーが設けられている。各カバーは、放射がファラデーカップへと通り抜けることができる窓構成を含む。各カバーの窓構成は各ファラデーカップに対して異なる。各ファラデーカップは、放射がターゲットに入射した場合に光電子を放出するように構成されたターゲットを収容する。 (もっと読む)


【課題】ファラデーカップと二次電子増倍管を備えるイオン検出器において、小型化・低価格化を可能とする。
【解決手段】イオンビームが通過する開口部12を有する筐体11と、開口部12を通るイオンビームの飛行方向延長線上に位置するファラデーカップ20と、飛行方向延長線からそれた方向にイオンビームの入射部32を有する二次電子増倍管30とを備えるイオン検出器10であって、ファラデーカップ20は、飛行方向延長線上に位置する底板部21と、底板部21の周囲に設けられた側板部22a,22bと、側板部22a,22bに囲まれた内部を複数の空間に区画する仕切り板部23とを有し、側板部22a,22bは、入射部32に近い側から遠い側に向かって高さが連続的または段階的に増大し、仕切り板部23は、入射部32から遠い側板部22bの高さよりも低く、かつ入射部32に近い側板部22aの高さよりも高く形成されている。 (もっと読む)


【課題】 リボン状のイオンビームのX方向およびY方向における発散角を簡単な方法で測定する測定方法を提供する。
【解決手段】 このイオンビーム測定方法は、イオンビーム2の一部を通過させる小孔62を有するマスク板60と、その下流側に設けられていて、前記小孔を通過したイオンビームを受けてそのビーム電流をそれぞれ検出する複数のビーム検出器12をX方向に有していて、Y方向に可動のビームモニタ10とを用いる。そして当該ビームモニタ10をY方向に移動させることによって、小孔62を通過したイオンビームのX方向およびY方向における中心位置x3 、y3 をそれぞれ測定し、その中心位置x3 、y3 とそれに対応する小孔62間のX方向およびY方向における距離L4 、L5 ならびにマスク板60とビームモニタ10間のZ方向における距離L3 に基づいて、小孔62を通過したイオンビームのX方向およびY方向における発散角αX 、αY をそれぞれ測定する。 (もっと読む)


【課題】エミッタンス測定およびリボンビームの強度分布均一化を簡易な手段で実施できるようにする。
【解決手段】イオンビームIBの軌道上に設けられて、そのビーム強度分布を測定するビームプロファイルモニタと、イオンビームIBを挟んでx方向に対向配置され、互いの間でイオンビームIBを通過させる開口を形成する一対のビーム遮蔽部材6とを利用する。そして、ビーム遮蔽部材6の少なくとも一方を、y方向には隙間なく、かつ、x方向には独立して進退可能に設けられた複数の可動遮蔽板61からなるものとしたうえで、可動遮蔽板61の位置を調整して、対向するビーム遮蔽部材6との間に微小開口Pを形成し、微小開口Pを通過したイオンビームIBについての強度分布測定結果から、イオンビームIBのエミッタンスを算出するように構成した。 (もっと読む)


少なくとも即発ガンマ線および中性子を発生させる入射ハドロンビーム(10)による上記標的(20)の衝突における、上記標的(20)の領域(25)が受ける局所線量をリアルタイム測定する方法であって、上記標的(20)から放出される粒子は、上記標的(20)の上記領域(25)をコリメートすることによって、かつ上記標的(20)における測定される上記領域(25)から距離Lの位置に検出器(45)を配置することによって、測定される方法。上記検出器(45)は、粒子エネルギーおよび粒子飛行時間を測定する上記手段を有しており、上記検出器(45)が受けた即発ガンマ線の数は、記録された事象を選択することにより決定され、即発ガンマ線についての空間情報を提供するために、上記標的(20)よりも前の入射ハドロンビーム(10)中に配置されている、二方向性荷電粒子検出システムが、入射ハドロン(10)の横断位置を取得するように用いられる。
(もっと読む)


【課題】 イオン源から引き出されたイオンビームの実際の進行方向を基板表面に投影した方向と実質的に等しい方向を、複雑な算出工程を用いずに測定する。
【解決手段】 上孔33を有する上板32および下孔35を有する下板34を備えていて少なくとも下孔35がスリット状をしている治具30と、治具30の上孔および下孔の両方を通過したイオンビーム12を受けてそのビーム電流を測定するビーム電流測定器60とを用いて、治具30およびビーム電流測定器60を、上孔33にイオン源10から引き出されたイオンビーム12が入射する場所に位置させた状態で、少なくとも下板34を軸38を中心に回転させて、イオン源10から引き出されたイオンビーム12を上孔33および下孔35の両方を通過させて、ビーム電流測定器60で測定するビーム電流が最大となるときの下孔の長さ方向51を測定する。 (もっと読む)


実施形態に係る186Reの単離方法では、185Reと186Reを含む源化合物を気化する。気化した源化合物をイオン化して、185Reと186Reを含む負の電荷を帯びた分子にする。負の電荷を帯びた分子を分離して、186Reを含む負の電荷を帯びた分子を単離する。単離された186Reを含む負の電荷を帯びた分子を、正の電荷を帯びた収集器で収集する。その結果、単離された186Reを用いて、高い比放射能を持つ治療用及び/あるいは診断用の放射性医薬品を生成することができる。 (もっと読む)


【課題】 イオンビーム電流の計測誤差を小さくして計測精度を高めることができるイオンビーム計測装置を提供する。
【解決手段】 このイオンビーム計測装置20は、イオンビーム2を受け入れる入口24を有するファラデーカップ22と、ファラデーカップ22の入口24の上流側近傍に設けられていて接地電位を基準にして正のバイアス電圧が印加される抑制電極26と、ファラデーカップ22の外側に設けられていてファラデーカップ22内にイオンビーム2の入射方向と交差する方向の磁界Bを作る磁石30とを備えている。 (もっと読む)


ビーム密度測定システムは、シールドと、ビームセンサと、アクチュエータとを備える。ビームセンサは、シールドのビーム進行方向の下流に配置される。ビームセンサは、ビーム強度を感知し、長い方の寸法と短い方の寸法とを有する。アクチュエータは、ビームセンサに対してシールドを並進させる。シールドは、ビームセンサに対して並進されるに伴い、ビームセンサからのビームの少なくとも一部分を遮断する。ビームセンサに対するシールドの位置の変化に関連する強度の測定値は、ビームセンサの長い方の寸法により定められた第1の方向におけるビームのビーム密度分布を表す。 (もっと読む)


イオンビーム電流の均一性を監視するモニタ、イオン注入装置及び関連の方法を開示する。一実施形態では、イオンビーム電流均一性モニタ(15)は、複数のロケーションにおけるイオンビーム(12)の電流を測定する複数の測定デバイス(17)を有するイオンビーム電流測定器と、イオンビーム電流測定器によるイオンビームの電流の測定値に基づいてイオンビーム電流の均一性を維持する制御器(18)とを備える。 (もっと読む)


【課題】 複雑な演算処理を要することなく、多孔電極を有するイオン源のイオン引出し孔から出射される際のイオンビームが持つ特性を測定することができる装置および方法を提供する。
【解決手段】 このイオンビーム測定装置40aは、イオン源2の多孔電極6から引き出されたイオンビーム10の一部を通過させる開口14を有する遮蔽板12と、開口14を通過したイオンビーム10のビーム電流を検出する検出器18と、それをx方向に移動させる検出器駆動装置24とを備えている。かつ、多孔電極6と検出器18間の距離をL、遮蔽板12と検出器18間の距離をd、x方向に関して、多孔電極6の各イオン引出し孔8の寸法をa、その間隔をp、開口14の寸法をb、検出器18の寸法をwとすると、次式の関係を満たしている。
{w(L−d)+bL}/d<(p−a) (もっと読む)


【課題】荷電粒子ビームの軌道の調整作業を容易化して調整精度を向上させることができる軌道位置ずれ検出装置,組成分析装置及び荷電粒子ビームの軌道調整方法を提供すること。また,エネルギー分解能や散乱粒子の取得効率を容易に変更することができる組成分析装置を提供すること。
【解決手段】絞り部31と超音波モータ32と駆動軸33とを備えて構成された開口状態変更装置30により,基準ビーム軸上の所定の位置に配置され荷電粒子ビームを通過させる開口部31aの開口径(開口状態)を変更可能とする。
また,上記開口部31aを通過した或いは該開口部31aから外れた上記荷電粒子ビームの強度を測定し,該荷電粒子ビームの強度に基づいて上記荷電粒子ビームの軌道と上記基準ビーム軸との位置ずれの有無を検出する。 (もっと読む)


【課題】 特に重合、架橋、グラフト、殺菌、滅菌、印刷インキ定着等に利用される300keV程度以下の低エネルギー電子線等の荷電ビームの照射量を、発熱を防止しつつ、また高コスト化することなく、正確にかつ高速で測定することができる照射量モニタ及び照射量測定方法を提供する。
【解決手段】 シリコン基板2上に、高抵抗ダイヤモンド層1が形成されており、その電子線照射領域は基板2が除去されて、ダイヤモンド層1のみが単独で存在する。この電子線照射領域におけるダイヤモンド層1の表裏両面に電極3及び4が形成されている。各電極3,4には、夫々導線5、6が接続されており、導線5,6を介して電極3,4にバイアス電圧を印加するようになっている。 (もっと読む)


【課題】 イオンビームのy方向の角度偏差、発散角及びビーム寸法の内の少なくとも一つを簡単な構成によって計測する。
【解決手段】 前段シャッター駆動装置36によって前段ビーム制限シャッター32をy方向に駆動しつつ、シャッター32の一辺34の外側を通過して前段多点ファラデー24に入射するイオンビーム4のビーム電流の変化を計測して、シャッター32の位置でのイオンビーム4のy方向のビーム電流密度分布を計測する。後段シャッター駆動装置46によって後段ビーム制限シャッター42をy方向に駆動しつつ、シャッター42の一辺44の外側を通過して後段多点ファラデー28に入射するイオンビーム4のビーム電流の変化を計測して、シャッター42の位置でのイオンビーム4のy方向のビーム電流密度分布を計測する。これらの計測結果を用いて、イオンビーム4のy方向の角度偏差、発散角及びビーム寸法の内の少なくとも一つを計測する。 (もっと読む)


加工物の表面に対するイオンビーム(110)の2つの入射角度を特定するためのシステム、装置、及び方法が提供される。第1センサ(202)及び第2センサ(204)を有する測定装置(104)は、移動機構(140)に結合されており、第1センサは移動方向に直交する第1方向に延在し、第2センサは第1センサに対して傾斜角を有して延在する。第1及び第2センサは、それぞれ対応する第1時刻及び第2時刻においてイオンビームを通過するときに、イオンビームの1つ又は複数の特性を検知する。コントローラ(106)は、第1時刻及び第2時刻に第1センサ及び第2センサにより検知されたイオンビームの1つ又は複数の特性に少なくとも部分的に基いて、イオンビームの入射に関する第1ビーム角度及び第2ビーム角度を特定するように動作可能である。
(もっと読む)


【課題】 X線検出素子を大気に晒すことなく冷凍機を交換することができるエネルギー分散型X線検出器を提供する。
【解決手段】 冷凍機31を交換するとき、作業者はボルト28を外して、開閉蓋26を真空容器7から取り外す。次に作業者は、低温端35を低温端固定部17aに固定しているボルト36を外す。そして作業者は、ボルト34を外して、冷凍機31をフランジ13から取り外す。このとき、真空室42は真空ベローズ(16,18)により冷凍機室(19,20)から真空的に分離されているため、X線検出素子40のまわりの雰囲気は大気に開放されることなく高真空に維持される。次に作業者は、新しい冷凍機をフランジ13に固定する。そして作業者は、その新しい冷凍機の低温端を低温端固定部17aにボルト36で固定してから、開閉蓋26を真空容器7にボルト28で固定する。 (もっと読む)


【課題】 電子ビームの軌道の調整作業を容易化して調整精度を向上させると共に,装置の稼動中における電子ビームのずれを容易に検出すること。
【解決手段】 加速器Y1から出射されたイオンビームLのビーム電流を測定する分割電極10或いはファラデーカップ20等のビーム電流測定手段を試料分析装置の測定室73aに設け,このビーム電流測定手段によるビーム電流の測定値に基づいてイオンビームLの軌道位置を検出する。これにより,測定されたビーム電流を電流計測器等でモニタリングしながらイオンビームLの軌道調整を行うことが可能となる。 (もっと読む)


【課題】 ナイフエッジ部材のエッジ部に理想応答からのずれが生じている場合においても、荷電粒子ビームの正確な評価を行う。
【解決手段】 荷電粒子ビーム1を、ナイフエッジ部材4のエッジ部4bを横切るように走査し、この走査に伴って検出された荷電粒子ビーム1の信号波形と、エッジ応答関数に基づいてモデル化された評価関数とのカーブフィッティングを行い、この結果に基づいて荷電粒子ビーム1の特徴量を測定する際に、当該評価関数は、エッジ位置の異なる2つのエッジ応答の和からなるエッジ応答関数に基づいてモデル化されている。よって、ナイフエッジ部材4のエッジ部4bに理想応答からのずれが生じている場合においても、荷電粒子ビーム1の正確な評価を行うことができる。 (もっと読む)


ガスクラスタイオンビーム処理のためのシステム(350)と方法は改良ビームと対象物中和機器(122)を利用することで達成される。大きなGCIB電流運搬はGCIBの空間荷電の低エネルギー電子中和によって提供される。電流が大きくなるほどGCIBのガス量は増大する。高ガス運搬量にも拘わらず通気型ファラデーカップビーム測定システム(302)はビーム量測定精度を維持する。
(もっと読む)


1 - 19 / 19