説明

Fターム[2G088LL01]の内容

放射線の測定 (34,480) | 補正、補償、校正 (2,903) | 数え落とし補正 (18)

Fターム[2G088LL01]に分類される特許

1 - 18 / 18


【課題】現状のピクセル型半導体素子をより良く有効に用いること。
【解決手段】複数の半導体素子により各画素を形成する半導体検出器を備えた放射線イメージング装置において、各半導体素子からそれぞれ出力されるガンマ線のエネルギ強度分布を示すエネルギスペクトラムデータとしての各エネルギ信号を解析する解析部と、解析部によるエネルギスペクトラムデータの解析結果に基づいて各半導体素子の性能を3つに分類する分類部と、3つの分類結果のうち各半導体素子の性能が低いと分類される2つの分類の各画素の値をそれぞれ補間処理する補正部とを具備する半導体検出器の補間装置である。 (もっと読む)


【課題】検出器リングの外部に放射線が発生している場合であっても、正確に数え落とし補正を行うことができる放射線断層撮影装置を提供する。
【解決手段】本発明の構成によれば、同時イベント計数値に対して数え落とし補正を行うようになっている。この数え落とし補正の強度は偶発同時イベントを計数することにより決定されるが、検出器リング12の外部から発した放射線が補正の強度を不正確なものとしてしまう。本発明によれば、検出器リング12の各部分について個別に取得された偶発同時イベント計数値と、検出器リング12全体で取得された偶発同時イベント計数値とを基に、補正部23が用いる補正値を検出器リング12の各部分について取得する構成となっている。この2つの計数値を組み合わせて補正の強度(補正値R)を決定すれば、値の過不足が相殺されて正確な数え落とし補正ができる。 (もっと読む)


【課題】簡素な構成で広い測定レンジの上限まで、精度良く放射線量を測定できる放射線測定装置を得る。
【解決手段】入射された放射線のエネルギーに依存する波高値のアナログパルス信号を出力する放射線検出器と、アナログパルス信号に対して所定の波高条件を満たすものを計数して計数率mを測定する計数率測定手段と、放射線検出器から出力されたアナログパルス信号の波高スペクトルを測定する波高スペクトル測定手段と、測定した波高スペクトルに基づき放射線量dを求める放射線量変換手段と、測定した計数率mに基づき放射線量dを補正する放射線量補正手段とを備え、放射線量補正手段は、数え落としがないときの計数率をn、分解時間をτとした場合、m=n・exp(−nτ)から作成したmに対するnの
補正テーブルを具備し、放射線量dに前記補正テーブルで求めたn/mを掛け算して、補正放射線量d・n/mを求めて出力する。 (もっと読む)


【課題】検出される放射線の線量が増加しても直接放射線のみを用いて薬剤分布を正確に知ることができる放射線断層撮影装置を提供する。
【解決手段】本発明によれば、検出されたエミッションデータをエネルギーの高い高エネルギーデータDHと、エネルギーの低い低エネルギーデータDLとに区別するを区別部21備え、高エネルギーデータDHの数え落とし補正と、低エネルギーデータDLの数え落とし補正とを別個に行う。高エネルギーデータDHと低エネルギーデータDLとは、消滅γ線対のエネルギーが異なるので、数え落としの特性が異なるのである。本発明によれば、この特性の違いを考慮して数え落としの補正を行うことができるので、より正確な補正を行うことができる。 (もっと読む)


本発明は、各チャネルiがEi〜Ei+ΔEiのエネルギー範囲に対応するチャネルの数Ncに応じて、X線放射の測定されたスペクトラム(Spmes)を補正する方法に関する。本方法は、エネルギーEi及びEjを有する2つの相互作用を分離する一時的な偏差Δtの間隔のサイズを決定する関数δti,j(k)を決定し、エネルギーのスタッキングが検出したエネルギー値Ekをもたらし、前記関数δti,j(k)から、チャネルkで計数されたイベントがそれぞれエネルギーE-i及びEjの2つの相互作用のスタックに対応する確率関数Pi,j(k)を決定し、前記確率関数Pi,j(k)から、単独で前記スタックにのみ対応する、測定されたスペクトラム(Spmes)の一部であるスタック・スペクトラム(Emp)を決定し、前記測定されたスペクトラム(Spmes)と前記スタック・スペクトラム(Emp)との間の差異によって少なくとも第1の補正したスペクトラム(Spcor)を計算又は推定する。 (もっと読む)


【課題】パルス系検出器の数え落としに対する補正を極力理想通りに行うことができて、高精度の放射線計測が可能な対数変換回路を提供する。
【解決手段】対数変換回路3は、放射線を検出するパルス系検出器1から出力されるパルス信号がパルス数に応じた電流値に変換された後に入力される信号を対数変換して出力するもので、演算増幅器30を備え、この演算増幅器30の入力信号が入力される一方の入力端側には第1のトランジスタ31が、演算増幅器30の出力端側には当該演算増幅器30の出力により直流電源からの電流量が制御される第2のトランジスタ32がそれぞれ接続されるとともに、両トランジスタ31,32に対しては両トランジスタからの出力電流が合流する抵抗33が共通に接続されている。 (もっと読む)


【課題】放射線計測時におけるパイルアップの判定精度を向上させることにより、放射線の誤計測を無くし、且つそのエネルギーを正確に測定する放射線計測用パルスプロセッサを提供する。
【解決手段】イベント信号に基づいたタイミング信号を出力する時定数の異なる複数のイベント検出回路15a、15b、15cの後段にその出力を遮断するディスエーブル手段16と、各イベント検出回路15a、15b、15cがイベント信号を入力した時からそのイベント信号に基づくタイミング信号がパイルアップ検出回路19に入力されるまでの期間を一定にするように、タイミング信号を遅延させる遅延手段17を設け、このタイミング信号を用いてパイルアップ判定とベースライン補正を行う。また、イベント信号に基づいたパルス信号を遅延させる遅延回路20を設ける。 (もっと読む)


【課題】ファントムによらない計数率の補正方法により、定量性の高い陽電子放出型断層撮影装置を提供することを目的とする。
【解決手段】陽電子放出型断層撮影装置1Aは、γ線の検出に応じてγ線検出信号を出力する複数の検出器21を有し、γ線検出信号にもとづいて検出時刻情報とγ線検出器を識別する検出器IDと検出γ線エネルギ値を含む検出γ線情報を生成する複数のユニット基板20と、検出γ線情報にもとづいて同時計測部12bにおいて同時計測処理をし、画像再構成部12hにおいて断層画像を生成するデータ処理装置12Aと、を備えている。データ処理装置12Aは、同時計測処理において、入力されるシングルイベントの計数率を取得するシングルイベント計測部12dと、取得されたシングルイベントの計数率にもとづいて補正係数を算出する補正計数算出部12eと、を有し、算出された補正計数にもとづいて断層画像を補正することを特徴とする。 (もっと読む)


【課題】本願発明の課題は、これまで困難であった分析装置にセットされた検出器系の不感時間(デッドタイム)をオンラインで容易に測定することを可能とし、これに基づき高精度な光子又は粒子の計測を行うことである。
【解決手段】本願発明においては、検出システムで観測されたスペクトルの中で測定対象エネルギー領域を定め、単位時間に検出器に入射する該測定対象エネルギー領域部分に対応する光子(又は粒子)数は、一定値に保ち(変動させずに)、検出器に同時に入射する単位時間当たりの全光子(又は全粒子)数を変動させることにより、全検出器系の実効上の検出効率を変動させたデータを採取し、このデータを利用して不感時間を算出し、この不感時間をもとに正しい光子(粒子)計数値を高精度でもとめる方法を提供するものである。 (もっと読む)


【課題】データの数え落としの減少により感度向上を図ることができる核医学診断装置を提供する。
【解決手段】検出器ユニット2のFPGA31は第1データソート部51と第1散乱線処理部53を有しており、検出器ユニット2内からのパケットデータを第1データソート部51で検出時刻順に並べ替え、第1散乱線処理部53において散乱線処理をする。また、複数の検出器ユニット2をブロック化し、パケットデータを、データ収集ユニット3に集める。データ収集ユニット3は第2データソート部57と第2散乱線処理部59を有しており、複数の検出器ユニット2のFPGA31からのパケットデータを第2データソート部57で検出時刻順に並べ替え、第2散乱線処理部59において散乱線処理をする。第2散乱線処理部59を出たパケットデータはデータ処理装置12へ送信され、そこで同時計数処理がなされる。 (もっと読む)


【課題】放射性物質を使用することなく、光パルス発光手段を用いることにより、長期間にわたって放射線検出器の動作の健全性を確認することができ、さらに、その際、この動作健全性確認手段が放射線の測定そのものに影響を与えない放射線検出器を提供する。
【解決手段】光にも有感な放射線を検出する放射線検出部と信号増幅部と波高弁別部とカウンタ部とからなる放射線検出手段と、この放射線検出手段の動作健全性の確認のための光パルス発光部と前記光パルス発光部の動作を制御する発光制御部と前記光パルス発光部から前記放射線検出部近傍まで光を導く光路からなり、前記発光制御部に前記光パルス発光部の発光時間特性を調整する機構を設ける。 (もっと読む)


コンピュータ断層撮影システムは、少なくとも第1及び第2のエネルギー又はエネルギー範囲内で検出された放射線を表す出力(D、D)を提供する放射線感知検出器素子(100)を含む。さらに、これら検出器信号は、エネルギー分解式光子カウンタ(26)によって、これら信号それぞれのエネルギーに従って分類される。分類された信号は補正器(24)によって補正され、結合器(30)によって或る結合関数に従って結合され、それにより、少なくとも第1及び第2のエネルギー又はエネルギー範囲で検出された放射線を表す出力(E、E)が生成される。
(もっと読む)


【課題】パイルアップの影響を抑えて最適な検出下限となるように、入射線の強度を決定して測定を行うことが可能なエネルギー分散型放射線検出システム及び対象元素の含有量測定方法を提供する。
【解決手段】エネルギー分散型放射線検出システム1は、試料Mに所定の強度で入射線Pを照射する入射系2と、入射線Pが照射されることで試料Mから放出される放射線Qを検出する検出系3とを備え、検出された放射線Qのスペクトルに基づいて試料Mの対象元素の含有量を特定するもので、検出された放射線Qのスペクトルに基づいて、対象元素の検出下限が最小となる入射線Pの最適強度を決定して、入射線Pを最適強度で照射させることが可能な制御部10を備える。 (もっと読む)


【課題】データの数え落としの減少により感度向上を図ることができる核医学診断装置を提供する。
【解決手段】データ収集ユニット3内のデータソート部50は、複数の補助データ収集ユニット2からのデータパケットを、検出時刻データ順に並べ替えて出力する。同時判定部51は、ペア確認部52と、ペア生成部53とを具備している。ペア確認部52は、検出時刻順に並べ替えられたデータパケットについて、その前後関係を参照して、同時計数にかかるペアを判別する。そして、ペア生成部53は、この判別結果に基づき、ペアとなるデータパケットを併合し、収集ワークステーション5へ出力する。 (もっと読む)


【課題】陽電子撮影装置におけるガンマ線検出位置及び検出時間データから、対象とする空間内の陽電子放出核種の分布密度を推定計算する。
【解決手段】陽電子札家装置において同時計数ラインデータを用いて、同一位置に陽電子放出核種から出たガンマ線による同時計数ラインは互いに近接したねじれの位置または互いに交わる位置にあるという事実を利用する。互いに隣接したねじれの位置または互いに交わる位置にある2つの同時計数ラインのペアーを収集データのコンピュータ処理により計算する。この計算結果で検出されるペアーの数は当該位置にある陽電子放出核種の密度に比例することを利用し対象とする空間内の陽電子放出核種の密度分布を推定計算する。 (もっと読む)


【課題】 装置毎に特性のバラツキを補償するための調整をする必要がなく、温度特性のバラツキも自動補償することができ、信頼性の高い放射線測定装置を提供する。
【解決手段】 放射線検出器1に結合コンデンサ2を介してベースラインレストアラ回路3とパルス計数回路4とを接続し、上記放射線検出器1から出力される信号パルスを上記パルス計数回路4で計数して放射線のレベルを測定する放射線測定装置において、上記ベースラインレストアラ回路3は、上記結合コンデンサ2に中和電流を分流させ、上記結合コンデンサ2の電荷を中和する中和電流発生回路15、16と、上記中和電流の上記結合コンデンサ2への分流量を制御する制御増幅器17、18と、上記パルス計数回路4の入力電圧を監視して上記制御増幅器の動作基準点を設定し、上記分流量を調整し得るようにされた演算増幅器22とで構成される。 (もっと読む)


【課題】真のX線強度を推定することなく,きわめて短時間で,かつ,高精度にパルス型のX線検出器の不感時間を測定する。
【解決手段】X線検出器14の入射X線強度を変えるために第1条件と第2条件を利用する。第1条件は受光スリット20のスリット幅Wであり,少なくとも3種類のスリット幅を選ぶ。第2条件は吸収板18の有無である。吸収板18を挿入した状態で,3種類以上のスリット幅Wで,第1記録X線強度を記録する。次に,吸収板18を外した状態で,同様に,第2記録X線強度を記録する。第1記録X線強度と,第2記録X線強度と,第1記録X線と第2記録X線強度の比率k(吸収板18によるX線強度の減衰に基づく)と,X線検出器の不感時間τとの間で,所定の関係式が成立するので,その関係式に基づいて,最小二乗法によるフィッティングにより,不感時間τを精密に決定する。 (もっと読む)


本発明は、持続時間DとエネルギーEからなるメインインパルスの連鎖を含んだ信号の処理を含む測定方法を提案するものであり、該メインインパルスが時間的に互いに間隔を開けられ、それぞれが、持続時間Diと、エネルギーが加算性の特性を有している変数Eiによって評価される基本インパルスのパイルアップで構成され得るものであり、前記基本インパルスが強度λの均質なポワソン過程に従った出現時間Tiを有している測定方法であって、前記信号をディジタル化することからなる過程と、各メインインパルスそれぞれの持続時間DとエネルギーEを測定することで持続時間−エネルギーのペア(D、E)を作成するようにすることからなる過程と、作成されたペア(D、E)から基本インパルスのエネルギーのペア(Di、Ei)を判定することからなる過程と、判定されたペア(Di、Ei)から、各基本インパルスそれぞれのエネルギーEiを演繹することからなる過程を含んでいることを特徴とする測定方法である。 (もっと読む)


1 - 18 / 18