説明

Fターム[2H079CA02]の内容

光の変調 (22,262) | 用途 (2,160) | 光情報処理 (284) | 空間変調器 (256)

Fターム[2H079CA02]に分類される特許

1 - 20 / 256




【課題】消費電力を抑えつつ、複数の電気信号を並行処理で光信号に変換する。
【解決手段】データ信号Da1,Da2,Da3、およびクロック信号CKaの数未満の数の発光ダイオード11aで構成された光源部11と、データ信号Da1,Da2,Da3、およびクロック信号CKaと一対一で対応して配設されたこれらの電気信号の数と同数の光シャッタ12a,12b,12c,12dとを備え、各光シャッタ12は、対応する電気信号の信号内容に応じて、光源部11から出射される光Lを透過する透過状態および光Lを遮光する遮光状態のうちの一方の状態から他方の状態、または他方の状態から一方の状態に移行することにより、上記の電気信号を光信号に並行処理で変換して出力する。 (もっと読む)


【課題】 レーザ光の集光制御を充分な自由度で好適に実現することが可能な光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置を提供する。
【解決手段】 空間光変調器を用いたレーザ光の集光照射の制御において、レーザ光の波長数、各波長の値、及びレーザ光の入射条件を取得し(ステップS101)、集光点数、及び各集光点での集光位置、波長、集光強度を設定し(S104)、各集光点について、レーザ光に付与する集光制御パターンを設定する(S107)。そして、集光制御パターンを考慮して空間光変調器に呈示する変調パターンを設計する(S108)。また、変調パターンの設計において、1画素での位相値の影響に着目した設計法を用いるとともに、集光点での集光状態を評価する際に、集光制御パターンの逆の位相パターンを加えた伝搬関数を用いる。 (もっと読む)


【課題】 レーザ光の集光制御での歪み補正を好適に実現することが可能な光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置を提供する。
【解決手段】 空間光変調器を用いたレーザ光の集光照射の制御において、レーザ光の波長数、各波長の値、及びレーザ光の入射条件を取得し(ステップS101)、集光点数、及び各集光点での集光位置、波長、集光強度を設定し(S104)、各集光点について、レーザ光に空間光変調器を含む光学系で付与される歪み位相パターンを導出する(S107)。そして、歪み位相パターンを考慮して空間光変調器に呈示する変調パターンを設計する(S108)。また、変調パターンの設計において、1画素での位相値の影響に着目した設計法を用いるとともに、集光点での集光状態を評価する際に、歪み位相パターンを加えた伝搬関数を用いる。 (もっと読む)


【課題】高スループットで高品質のレーザ加工をすることができて装置の小型化が可能であるレーザ加工装置等を提供する。
【解決手段】レーザ加工装置1は、レーザ光源10、位相変調型の空間光変調器20、駆動部21、制御部22、結像光学系30を備える。結像光学系30はテレセントリック光学系を含む。駆動部21に含まれる記憶部21Aは、複数の基本加工パターンそれぞれに対応する複数の基本ホログラムを記憶するとともに、フレネルレンズパターンに相当する集光用ホログラムを記憶する。制御部22は、記憶部21Aにより記憶された複数の基本ホログラムのうちから選択した2以上の基本ホログラムを並列配置し、その並列配置した各基本ホログラムに集光用ホログラムを重畳して全体ホログラムを構成し、その構成した全体ホログラムを空間光変調器20に呈示させる。 (もっと読む)


【課題】空間光変調器を通過する高強度の光源を必要とせずに、単一通過、高解像度、高速度の画像形成システムを提供する。
【解決手段】高エネルギ赤外レーザから均質光を発生させる均質光発生器110、2次元アレイ内に配列された光変調素子を含む空間光変調器120、およびアナモフィック光学システム130を含む画像形成システム。光変調素子は、各変調素子が関連均質光部分を受信するように配置され、「オン」変調状態と「オフ」変調状態との間で個々に調整可能であり、それによって「オン」変調状態において各変調素子は、関連変調光部分がアナモフィック光学システム130の中の対応する領域上へ向けられるように、受信した均質光部分を変調する。次いでアナモフィック光学システム130は、変調光部分をアナモフィックに集光して、スキャンライン画像を形成する。 (もっと読む)


【課題】複数の一次元スキャンライン画像を同時に生成するために使用が可能な高信頼かつ高速の画像形成システムを提供する。
【解決手段】複数行および複数列に配置される光変調素子を有する空間光変調器120を用いて二次元均質光場119Aを変調することにより、2つの略一次元スキャンライン画像SL1、SL2を同時発生させる。上側の変調素子グループは、第1のスキャンライン画像データグループを用いて構成され、かつ下側の変調素子グループは、第2のスキャンライン画像データグループを用いて構成される。次に、二次元均質光場を空間光変調器上へ方向づけるために、均質光源110がパルスされる。二次元変調光場119Bはアナモルフィック光学系130を介して方向づけられ、アナモルフィック光学系は、画像形成面上に2つの平行する一次元スキャンライン画像が同時に形成されるように、変調光を画像形成面上へ画像化し、かつ集中させる。 (もっと読む)


【課題】単一パス高解像度高速印刷用途に使用されることが可能な高信頼でしかも高出力である画像形成システムを提供する。
【解決手段】アナモルフィック光学系130Eは、画像形成面162Eから湿し溶液を気化するに足るエネルギーを有するライン画像を発生するために、1つまたは複数の円柱/非円柱レンズ134Eにより全屈折配置に形成される、または円柱/非円柱レンズおよびミラーの組合せによって形成される工程方向サブ光学系137Eを含む。また、本アナモルフィック光学系は、変調光場119Bを工程横断方向に画像化するために1つまたは複数の円柱/非円柱レンズ138Eおよび任意選択の円柱/非円柱視野レンズにより形成される工程横断方向サブ光学系133Eも含む。本アナモルフィック投影光学系は、ライン画像の複数のピクセル画像の同時的発生を容易にし、1200dpi以上での印刷を容易にする。 (もっと読む)


【課題】光変調しない画素有効領域外からの出射光を抑制して、コントラストを向上させた反射型の空間光変調器を提供する。
【解決手段】基板7上に2次元配列された画素4からなる空間光変調器の画素アレイ40は、各画素4の光変調素子同士を絶縁する素子間絶縁層5を、光の入射される側から順に低屈折率絶縁層52およびそれよりも屈折率の高い高屈折率絶縁層51の少なくとも2層を積層して備える。光が高屈折率絶縁層51の上下界面で多重反射して閉じ込められることにより減衰して、出射光が抑制される。 (もっと読む)


【課題】MgOを障壁層として磁化反転電流を低減したTMR素子構造を備える光変調素子を提供する。
【解決手段】光変調素子5は、磁化固定層11、MgOからなる障壁層12、磁化自由層13を積層してなるTMR素子構造1と、その上下に接続した上部電極3、下部電極2を備える。下部電極2は、組成がCu1-xCrx(0.07<x<0.42)である非晶質のCu−Cr合金からなり、磁化固定層11は非晶質の磁性体からなり、このような非晶質の層の上に、障壁層12としてMgO膜が形成されるため、MgO膜が強い(001)面配向を示して、TMR素子構造1の磁化反転電流を低減できる。 (もっと読む)


【課題】本発明は、光通信システム用の放射電力等化器に関する。
【解決手段】本発明は、光通信システム用の放射電力等化器を提供し、該等化器は、(a)1つ又はそれ以上の放射成分に分割する光デマルチプレクサ(300)、(b)前記1つ又はそれ以上の放射成分を選択的に伝送又は減衰する液晶セル・アレー(310)、(c)光マルチプレクサ(330)、(d)1つ又はそれ以上の対応する成分放射電力を示す信号を生成するPINダイオード検出器アレー(120)と結合した発信器エルビウムドープ・ファイバ増幅器(70)、及び、(e)制御モジュール(130)を含むことを特徴とする。 (もっと読む)


【課題】 光波長多重信号の偏光面を波長成分ごとに調整することができ,しかも各成分に時間的なずれが生じない,波長選択偏波制御器を提供する。
【解決手段】 この波長選択偏波制御器は,光波長多重信号が入射するテレセントリック光学系11と,テレセントリック光学系から出力された光の偏波面を調整する偏波制御器12と,偏波制御器からの出力を光路へと出力するための出力光学系13と,を有する。テレセントリック光学系11は,光波長多重信号が入射する第1の回折格子15と,回折格子15を経た光波長多重信号を集光する第1の集光レンズ16と,を有する偏波制御器12は,複数の位相変調器21,22,23を有する。 (もっと読む)


【課題】本発明は、マスクレス加工装置に関する。
【解決手段】本発明のマスクレス加工装置は、基板に照射される光を提供する照明光学系と、多数の光変換素子で構成され、前記照明光学系から照射された光を加工パターンに応じて選択的に反射または透過するように当該光変換素子を調節して光量を変換する空間光変調器と、前記多数の光変換素子が前記基板の一つのピクセルに対応して集光するように配列され、前記空間光変調器により変換された光が入射されると、当該ピクセルに前記多数の当該光変換素子によって提供された高エネルギーの光を投射する投射光学系と、前記加工パターンの入力を受け、入力された加工パターンに応じて、前記光源から照射された光を前記多数の光変換素子によって選択的に変換されるように前記空間光変調器を制御する制御部と、を含み、デジタルマスクを用いることにより、マスク使用によるコストが低減し、加工しようとする対象のスケール変形に対する能動的な対応が容易であるだけでなく、前記装置の活用度及び利用度が拡大される。 (もっと読む)


【課題】スピン注入型磁化反転素子を用いた光変調素子の光変調度を向上することを目的とする。
【解決手段】磁化固定層11と、非磁性中間層12と、磁化自由層13とをこの順で積層したスピン注入型磁化反転素子構造と、このスピン注入型磁化反転素子構造の上下に設けられた一対の電極2,3とを備え、当該一対の電極2,3を介して電流を供給されることにより磁化自由層13の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子10において、一対の電極2,3のうち、磁化固定層11側に設けられた電極である下部電極3は、少なくとも上層部がAgからなるように構成した。 (もっと読む)


【課題】中間色、特に視感度が高い赤色と緑色の組み合わせで表示される中間色の色相ズレを低減することができるようにする。
【解決手段】赤色、緑色および青色の各色レーザ光をそれぞれ出力する赤色、緑色および青色の各レーザ光源装置と、これらの各レーザ光源装置から時分割で順次出力されるレーザ光を映像信号に基づいて変調する空間光変調素子と、1フレームを構成する複数の点灯区間ごとにレーザ光源装置の点灯を制御するとともに、空間光変調素子での各色レーザ光の出力を制御する制御部と、を備え、緑色レーザ光源装置は、CIExy色度図上において標準緑色よりも高いy値を有する緑色レーザ光を出力し、制御部は、隣接する2つのフレームに跨って緑色および赤色の順序で点灯するGR点灯パターンを含む点灯順序でレーザ光源装置を点灯させる構成とする。 (もっと読む)


【課題】周辺部分に非表示部分がある空間光変調器を複数並べた電子ホログラフィ表示装置で、隣の空間光変調器との境界部分で画像が途切れがちであるが、これがないようにする。
【解決手段】空間光変調器と拡大光学系を備える表示ユニットの複数を横に並べた面と、閲覧者との間に、光学系を配置して、上記の画像が途切れることを解決する。つまり、空間光変調器から出射した光を、拡大光学系を用いてそれぞれの表示ユニット毎に上記光学系で拡大し、複数の表示ユニットからの光を連結させて、表示面全体に広がる一連の画像にする。その際に、上記非表示部分からの光を遮光板で遮蔽する。次に、その一連の画像を縮小光学系で縮小する。これにより、その個々の空間光変調器の画素数や分解能などの表示特性を損なうことなく、上記の非表示部分の影響を除外でき、その部分で画像が途切れないようにする。 (もっと読む)


【課題】空間光変調器を用いた波長選択スイッチにおいて、所望の位相シフト関数を再現すること。
【解決手段】本実施例の波長選択スイッチでは、入射信号光及び回折信号光と空間位相変調器であるLCOSとの位置関係は、LCOSのピクセル面の直交する2方向のうちの一方の方向は、LCOSへ入射する入力信号光の波長分散方向に一致するように配置され、他方の方向のみが回折信号光の回折方向となっている。この場合、チャネル帯域は、線分散と無関係となるため、帯域の制限から決まるスポットサイズの上限は制限されないことになる。一方で式(20)で表されるスポットサイズの下限は、スポットサイズに対して位相変調関数が粗すぎて、空間位相変調器上に集光されたガウシアンビームが高い周波数成分をもった変調関数を感じてしまうことに起因しており、線分散とは無関係に生じるため本実施例においても適用される。 (もっと読む)


【課題】スピン注入型磁化反転素子の中間層におけるMgOの(001)面配向性を向上する。
【解決手段】光変調素子(スピン注入型磁化反転素子)5は、垂直磁気異方性を示す磁化固定層51と、MgOからなる中間層52と、垂直磁気異方性を示す磁化自由層53とをこの順で積層したトンネル磁気抵抗型のスピン注入型磁化反転素子構造を備え、スピン注入型磁化反転素子構造の上下に設けられた一対の電極2、3を介して電流を供給されることにより磁化自由層53の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する。ここで、磁化自由層53は、遷移金属または遷移金属を含む合金からなる界面層53bと、Ta膜またはRu膜からなる緩衝層53cと、磁化方向が反転される磁性層である主層53aとをこの順で積層して構成した。 (もっと読む)


【課題】空間光変調器を用いた分散補償器において、所望の位相シフト関数を再現すること。
【解決手段】複数波長の信号光が多重された波長多重信号光は、光ファイバを通じて、光サーキュレータ10の第1のポート11から入力されて第2のポート12から出力され、スラブ導波路を1つだけ有するアレイ導波路回折格子20へ入力される。アレイ導波路回折格子20において、波長多重信号光はそれぞれの波長毎に空間分離され、アレイ導波路回折格子20の集光レンズ30の側に取り付けられたレンズ(図示せず)によりコリメートされた後、集光レンズ30で空間位相変調器40上に集光される。異なる波長の信号光は、それぞれ空間位相変調器40上の異なる領域にスポットサイズwで集光される。スポットサイズwは、空間位相変調器40が有する位相付与素子の幅X、チャネル帯域B0等との関係で所定の不等式を満たすように制限されている。 (もっと読む)


1 - 20 / 256