説明

Fターム[2K002HA23]の内容

光偏向、復調、非線型光学、光学的論理素子 (16,723) | 動作原理 (2,398) | 非線形光学現象 (1,968) | 三次 (492) | 誘導散乱 (183)

Fターム[2K002HA23]の下位に属するFターム

Fターム[2K002HA23]に分類される特許

61 - 80 / 170


本明細書に記載される実施形態は、ピーク光信号パワーが、送信器から特定の距離において発生する順方向ラマン増幅に直面する光ファイバストレッチに関する。光信号パワーが増大する該光ファイバストレッチの部分において、より小さな有効面積の光ファイバが用いられ、一方、ピーク光信号パワーに直面する該光ファイバストレッチの遠位ストレッチにおいて、より大きな有効面積の光ファイバが用いられる。従って、より大きな有効面積のファイバが最大光信号密度を低減し、それによって信号品質に関する非線形性劣化を低減するため、該信号の品質は良好に保たれる。
(もっと読む)


【課題】 分布ラマン増幅器を小型化した光伝送システムを提供する。
【解決手段】 信号光を伝送させる伝送路は、信号光波長に対して正分散を持つ分布ラマン増幅を行う第1のラマン増幅媒体と、該信号光波長に対して負分散を持ち、該第1のラマン増幅媒体に対してモードフィールド径が小さく分布ラマン増幅を行う第2のラマン増幅媒体と、該第2のラマン増幅媒体よりもさらにモードフィールド径が小さく集中ラマン増幅を行う第3のラマン増幅媒体とで構成する。 (もっと読む)


【課題】光増幅における雑音指数、及び累積分散による伝送特性劣化の改善を可能とする、広い波長帯域に対応可能な光増幅伝送システム及び光増幅伝送システムの設計方法を提供する。
【解決手段】プリチャープ調整機能15を有する送信機11と、ラマン増幅用光ファイバ22を有する集中定数型ラマン増幅器13とを備える光増幅伝送システムにおいて、前記送信機11は、前記プリチャープ調整機能15におけるチャープパラメータを前記集中定数型ラマン増幅器13における前記ラマン増幅用光ファイバ22の分散に基づき決定した。 (もっと読む)


【課題】最小利得時に励起光源が安定して動作するとともに、ラマン増幅の利得範囲を拡大する光出力制御装置を提供する。
【解決手段】光出力制御装置は、励起光を出力する励起光源と、信号光を伝送する光増幅媒体に前記励起光を導入する励起光導入部と、励起光源と励起光導入部との間に位置する光伝送媒体を含み、光伝送媒体の曲率半径を変化させる損失付与部と、光増幅媒体を通過した光の強度を検出する光検出部と、光検出部から得られた光の強度が目標値となるように、励起光源と損失付与部とを制御し、励起光源の制御値が下限値となっても光の強度が目標値を上回る場合、損失付与部における光伝送媒体の曲率半径を制御し、励起光源の制御値が下限値を上回った場合、損失付与部における光伝送媒体の曲率半径を通常状態に維持する制御部とを備える。 (もっと読む)


【課題】本発明は、WDM−PONのコストを低減し、信号光の光強度の不足を補うことが可能な光伝送システムの提供を目的とする。
【解決手段】本発明に係るラマン光増幅を用いた光伝送システムは、局側装置11と各加入者側装置13−1・・・13−Nの間の信号光がWDM12で合分波されるWDM−PONトポロジで構成される。局側装置11は、局側装置11から光ファイバを経由して各加入者側装置13−1・・・13−Nに波長λu1・・・波長λuNの連続光を供給する。この連続光を上り信号用に利用する。さらに、局側装置11は、局側装置11から光ファイバに連続光の波長の光を励起する波長λのポンプ光を送出する。ラマン増幅により連続光の光強度を増幅することで、上り信号光の光強度の不足を補うことができる。 (もっと読む)


【目的】マルチ縦モードのレーザ光を出射することができる,新しい構造を持つ半導体レーザを提供する。
【構成】半導体基板11上の光軸方向に,発光領域10Aと反射領域10Bとが直列に形成されている。発光領域10Aには前記光軸方向に延びる活性層13aが形成されている。他方,反射領域10Bには,活性層13の延長上に,前記活性層13と同一材料からなる複数のブロック体13Aが互いに離間して周期的に形成されている。複数のブロック体13Aは,その周囲が前記ブロック体13Aの屈折率よりも低い屈折率を持つ上部クラッド層14,下部クラッド層12等によって取巻かれている。 (もっと読む)


【課題】ラマン利得効率を精度よく測定するための方法およびその方法を実行する装置を提供する。
【解決手段】ラマン利得効率測定装置100は、OTDR装置1と、波長フィルタ2と、WDM(波長多重)カプラ3,5と、励起光源4と、パワーメータ6と、制御装置7と、出力装置8とを備える。OTDR装置1と、波長フィルタ2と、WDMカプラ3と、励起光源4とは、テストファイバ10の一方端側に設けられ、WDMカプラ5と、パワーメータ6とはテストファイバ10の他方端側に設けられる。制御装置7は、このパワーメータ6による励起光の強度の検出結果をOTDR装置1による戻り光強度の測定およびラマン利得効率算出の少なくとも一方に反映させる反映処理を実行する。この処理の結果を踏まえてOTDR測定あるいはラマン利得効率の算出が行なわれる。 (もっと読む)


【課題】 フェムト秒台の高出力光パルスを発生させる手段を提供すること。
【解決手段】 本発明の高出力光パルスの発生装置は、信号光を生成するファイバー発振器10と、非線形位相遅れをもち信号光を受光して増幅するとともに圧縮するソリトン・ラマン圧縮器(SRC)を兼ねた増幅ファイバー11と、増幅された光パルスを周波数変換して高出力光パルスとする周波数変換器であるPPLN(周期性ポーリングLiNbO3)20とを有する。分散補償ファイバー18により分散が補償される。また、ファラデー回転鏡(FRM)19により光パルスが反射されてダブルパス形態を取っている。ポンプ16から注入されるポンプ光からのエネルギーを得て、信号光は増幅されるとともに圧縮され、PPLN周波数変換器20により周波数変換された波長で、フェムト秒台の高出力光パルスが得られる。 (もっと読む)


【課題】 スペクトルの広帯域化以前に周波数を指定し、単純な光共振器を参照するだけで、その絶対周波数を制御した所望の広帯域離散スペクトルを発生する。
【解決手段】 レーザー光源11から出射された二波長の励起レーザー光が入射される光共振器12を通過した励起レーザー光の光強度を検出し、その検出出力に基づいて、上記レーザー光源から出射される二波長の励起レーザー光の周波数を制御する制御部13により、上記二波長の励起レーザー光の周波数を光共振器12の共振周波数に周波数ロックし、上記二波長の励起レーザー光の差周波数を上記光共振器12のフリースペクトルレンジ(FSR:Free Spectal Range)の整数倍で、且つ、上記二波長の励起レーザー光の差周波数の整数倍とする制御を行い、広帯域離散スペクトル生成用セル14により、上記二波長の励起レーザー光の上記非線形媒質14Aにおける差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生する。 (もっと読む)


【課題】コヒーレント・ラマン顕微鏡の結像性能を客観的かつ定量的に評価できる解像度評価用チャートを提供する。
【解決手段】コヒーレント・ラマン顕微鏡の結像性能を評価するのに用いる解像度評価用チャート10であって、照明光に対して光学的に平滑で、かつ照明光励起に対して蛍光を発光しない基板11と、基板11上に二次元的に形成され、基板11とは異なる振動スペクトルを有し、かつ照明光励起に対して蛍光を発光しないラマン活性物質を含むラマン活性層12と、を有する。 (もっと読む)


【課題】ラマン増幅により発生する雑音光のパワーをリアルタイムで高速にモニタする。
【解決手段】本モニタ装置は、光通信システムの初期立ち上げ時に、伝送路1に励起光Lpを供給した状態で、伝送路1の入出力端に配置された各受光器42,44でモニタされる光パワーに基づいて、ラマン増幅により発生する雑音光のうちの前方向雑音光パワーおよび後ろ方向雑音光パワーの関係を求めておき、インサービス中には、伝送路1の入力端の受光器42でモニタされる後ろ方向雑音光パワーを、初期立ち上げ時に求めた関係に従って、演算処理部45で前方向雑音光パワーに換算する。 (もっと読む)


【課題】離散スペクトルのスペクトル位相を高速かつ高感度に測定する。
【解決手段】レーザー光L1,L2からビームスプリッター11により分離された一方の被測定光L1a,L2aを励起光として非線形媒質12Aを含む広帯域離散スペクトル生成用セル12により広帯域離散スペクトルを発生するとともに、上記ビームスプリッター11により分離された他方の被測定光L1b,L2bに光遅延器13により遅延量を与え、上記広帯域離散スペクトル生成用セル12により生成されるスペクトルと、上記光遅延器13により遅延された上記他方の被測定光L1b,L2bを混合して和周波数スペクトル発生器14の非線形光学結晶14Bを通過させることにより和周波スペクトルを発生し、制御部15により上記光遅延器13により上記他方の被測定光L1b,L2bに与える遅延量を可変制御して、各スペクトル線が互いに干渉する様子を観測装置16で観測する。 (もっと読む)


【課題】誘導ブリユアン散乱の発生を抑制すること。
【解決手段】LD110は、供給される駆動電力に応じた強度の光を出力する。変調器120は、入力される変調信号に応じて、LD110から出力された光を変調する。集中ラマン増幅器130は、変調器120によって変調された光を増幅する。駆動部140は、駆動電力を供給してLD110を駆動するとともに、集中ラマン増幅器130を通過する光の強度が、集中ラマン増幅器130において誘導ブリユアン散乱が発生する強度を超える前に変調器120へ変調信号を入力する。 (もっと読む)


【課題】ラマン増幅を用いた光伝送システムについて、ノード間の伝送距離が長くなってもラマン励起光の出力制御を安全に行うことのできる制御技術を提供する。
【解決手段】本光伝送システムは、上り回線側の光伝送路1に与える後方ラマン励起光PUMPを変調することにより、光伝送路の接続確認のためのパイロット信号PILを上流側のノードAに送信する。ノードAでパイロット信号PILを受信すると、下り回線側の光伝送路1’に与える後方ラマン励起光PUMP’を変調することによりレスポンス信号RES’をノードBに送信する。そして、ノードBでレスポンス信号RES’の受信を確認することにより、光伝送路1への後方ラマン励起光を低出力状態から高出力状態に切り替える。 (もっと読む)


【課題】光信号に含まれる雑音成分のパワーを精度よく高速に算出すること。
【解決手段】ラマン増幅器111は、光信号が通過する光ファイバ(伝送路101)に励起光を入力して光信号を増幅する。受光部114は、ラマン増幅器111の後段に設けられ、ラマン増幅器111によって増幅された光信号のパワーをモニタする。算出部116は、受光部114によってモニタされた光信号のパワーに基づいてラマン増幅利得を定め、その値から光信号に含まれる雑音成分のパワーを算出する。算出部116は、条件に応じて複雑に変化する雑音成分のパワーをリアルタイムに算出し、その情報はmsオーダー周期で他装置に通知される。 (もっと読む)


【課題】ラマン利得の導出を従来技術よりも高精度化する。
【解決手段】励起光供給部21と、主信号波長光レベル取得部と、監視信号波長光レベル取得部と、励起光供給部21で供給する励起光パワーに対する、該監視信号波長光についてのラマン増幅による雑音量および利得を導出する関数についての情報を関数情報としてそれぞれ保持する関数情報保持部と、該主信号波長光レベル取得部および該監視信号波長光レベル取得部で取得した情報と該関数情報保持部が保持する前記各関数情報とに基づいて、光伝送路3での伝送特性を導出する伝送特性導出部25と、をそなえる。 (もっと読む)


【課題】分布ラマン増幅を用いたWDM光通信システムについて、伝送路の種類の違い等に起因した伝送特性劣化を簡略な構成かつ容易な制御により低減できるようにする。
【解決手段】本WDM光通信システムは、主信号光Lsの運用開始前に、該主信号光Lsとは波長の異なる複数の光(例えば、ラマン増幅用励起光Lpなど)を伝送路1の両端に接続された第1および第2の光伝送装置2A,2B間で送受信して各光の伝送路入出力パワーをモニタし、該モニタ結果を用いて各々の波長での伝送路損失を計算し、該計算結果より推定可能な損失波長特性を基に伝送路の種類を特定する。そして、当該伝送路の種類に応じて、伝送路1に与える励起光パワーを最適化する。 (もっと読む)


本発明は増幅ファイバを有する光学ラマン・ファイバ増幅器(20)に関し、その少なくとも1つのセクションは、ファイバ動作温度及び1064nmの真空波長において0.001より大きい、ラマン利得係数gのブリルアン利得係数gに対する比g/gを有する。本発明は、更に、対応する光源、ファイバの使用及び光を増幅する方法に関する。 (もっと読む)


【課題】所望の信号波長の信号光を増幅するためのラマン増幅器において、増幅特性及び雑音指数を好適とするラマン増幅用光ファイバの設計方法並びにラマン増幅用光ファイバ及びラマン増幅器を提供する。
【解決手段】システムパラメータを設定し、ラマン増幅用光ファイバの屈折率分布又は構造パラメータを設定し、所望の信号波長におけるラマン利得率、損失係数、実効断面積及びレイリー散乱係数、並びに、励起波長における損失係数及び実効断面積を求め、前記ラマン増幅用光ファイバの所望の信号波長におけるネットゲイン及び雑音指数を算出することにより、所望の信号波長における性能指数を求めてラマン増幅用光ファイバを設計する。 (もっと読む)


試料(2)を蛍光顕微鏡法で測定するために、試料(2)の蛍光色素が、所定の波長の光(8)を用いて、ある状態から別の状態へ移行され、その際、光ファイバ(13)の選定、および、この光ファイバ(13)へ入射される前記別の波長を有する光(10)の強度の選定が行われる際、前記入射された波長を有する線の他に少なくとも1つの赤方偏移したストークス線(19から28)を前記光スペクトル(17)が有することができる程度に前記光ファイバ(13)内でラマン散乱が誘導され、前記ストークス線の強度半値幅が、光スペクトル(17)の、青色方向に隣接する線(18から28)までの間隔の半分よりも小さくなるように前記選定が行われて、このような強度でこの種の光ファイバに別の波長の光が入射され、かつ、1つの波長が、赤方偏移したストークス線(19から28)の1つから選定され、さらに、試料(2)からの蛍光(6)が、空間分解して測定される。
(もっと読む)


61 - 80 / 170