説明

Fターム[3E172CA13]の内容

ガス貯蔵容器、ガスの充填、放出 (22,547) | 構造細部 (909) | ボンベ (494) | 鏡部 (25)

Fターム[3E172CA13]に分類される特許

1 - 20 / 25



【課題】 金属ライナと炭素繊維層の軸方向収縮差を吸収しつつ、耐高圧性、耐疲労性について向上させる上で好ましい補強繊維層を備えた高圧容器を提供する。
【解決手段】 胴部2とドーム部3a,3bとを有し、かつ、両側のドーム部間の全長が2m以上6m以下となるように形成された金属ライナ1の外周面に、熱硬化性樹脂が含浸された繊維を巻きつけた構造の長尺高圧容器Aであって、金属ライナに接する最も内側には非導電性繊維層11が絶縁層として形成され、この絶縁層の外側に炭素繊維のフープ巻き繊維層12,14,16と炭素繊維のヘリカル巻き繊維層13,15,17が交互に少なくとも3層ずつ順次積層されて炭素繊維層が合計6層以上形成され、絶縁層はいずれの炭素繊維層よりも薄く形成されるようにする。 (もっと読む)


【課題】ライナー外周に形成した繊維強化樹脂層の高Vf化を抑制可能な新たなタンク製造手法を提供する。
【解決手段】中空のライナー10の外周にFW法にて樹脂含浸カーボン繊維Wを巻回して繊維強化樹脂層20を形成し、中間生成品タンク12を得る。次いで、この中間生成品タンク12を回転させつつ誘導加熱コイル220により誘導加熱する際には、熱硬化炉200の炉内を陽圧装置250により加圧環境とする。 (もっと読む)


【課題】
本発明は、例えばLPガス(プロパンガス)などの液化ガスを充填しておく液化ガス容器に関し、従来型の容器との互換性を維持しつつ気化潜熱を高効率に取り込むことができる液化ガス容器を提供する。
【解決手段】
外装容器10の内部に内装容器60を配置し、その内装容器60の天鏡70に、内装容器60内の液化ガスの蒸発により生成されたガスを流出させる第1の流路71を形成し、内装容器60の地鏡80に、内装容器60の液化ガスを液体のまま流出させる第2の流路81を形成した。 (もっと読む)


【課題】胴部における繊維強化樹脂層を破断しにくくして、圧力容器の耐久性を高める。
【解決手段】圧力容器1は、樹脂成形品からなる内殻3と、内殻3の外周側を覆うFRPからなる補強層となる外殻5とを備える。外殻5は、繊維強化材を内殻3の胴部D及び鏡板部E,Fにらせん状に巻き付けるヘリカル層11と、繊維強化材を内殻3の胴部Dに円周方向に巻き付けるフープ層13とを備える。その際、ガス充填時での軸方向に発生する圧力容器1の軸方向発生ひずみを、この軸方向発生ひずみによってフープ層13の繊維強化材が繊維直角方向に破断するときの圧力容器1の破断ひずみより小さくする。 (もっと読む)


【課題】高圧ガス容器の耐圧性が確保される高圧ガス容器、及び高圧ガス容器の量産化が可能となる高圧ガス容器の製造方法を提供すること。
【解決手段】高圧のガスが充填される高圧ガス容器1であって、高圧のガスが充填されるライナ2と、このライナ2の外面を包囲する補強スリーブ4とを備え、ライナ2は、円筒状のライナ胴部21と、このライナ胴部21の端部を塞ぐライナ肩部23とを有し、補強スリーブ4は、ライナ胴部21に嵌合されるスリーブ胴部41と、このスリーブ胴部41から延びてライナ肩部23に接するスリーブ肩部42とを有する構成とする。 (もっと読む)


【課題】圧力容器の鏡板部におけるひずみを抑える。
【解決手段】圧力容器1は、樹脂成形品からなる内殻3と、内殻3の外周側を覆うFRPからなる補強層となる外殻5と、軸方向端部に位置する口金7及びボス9とを備えている。外殻5は、樹脂を含浸させたFRP繊維を巻き付けるフィラメントワインディング法により形成される。圧力容器1は、円筒形状の胴部Aと、胴部Aの軸方向両側の開口側に連続するドーム状の鏡板部B,Cとを有する。鏡板部B,Cは、口金7側、ボス9側の中心領域B1,C1を等張力曲面とし、中心領域B1,C1と胴部Aとの間の連続領域B2,C2を、等張力曲面で計算される曲率半径より大きい曲率半径の曲面とする。 (もっと読む)


【課題】タンクタンクの製造方法について、熱硬化性樹脂全体をより短時間で硬化することのできる技術を提供することを目的とする。
【解決手段】流体を内部に貯蔵するためのタンクの製造方法であって、(a)当該タンクの内殻をなすタンク本体の内部に電解質溶液を封入する工程と、(b)熱硬化性樹脂を含浸した繊維である樹脂含浸繊維であって、導電性を有する樹脂含浸繊維をタンク本体に巻き付ける工程と、前記電解質溶液が封入され、前記導電性を有する樹脂含浸繊維が巻き付けられたタンク本体を誘導加熱により加熱し、熱硬化性樹脂を硬化させる工程と、を備えるタンクの製造方法。 (もっと読む)


【課題】 未処理ライナをアルゴンガス等の特殊ガス雰囲気下で簡易に加熱することができ、その際に使用する特殊ガスの量を少量とすることができる熱処理容器の提供。
【解決手段】蓋体41と、開口部42aを有する容器本体部42とを備え、蓋体41が開口部42aに取り付けられることにより、密閉された内部空間が形成され、内部空間に熱処理するための未処理物120が配置される熱処理容器40であって、蓋体41又は容器本体部42に設けられ、内部空間の圧力が外部の圧力より低いときには、内部空間と外部とを連通させる第一弁50と、蓋体41又は容器本体部42に設けられ、内部空間の圧力が外部の圧力より高いときには、内部空間と外部とを連通させる第二弁60とを備えることを特徴とする。 (もっと読む)


【課題】金属ライナーに樹脂含浸繊維を巻き付ける際に、ライナーの両端部のドーム部において、繊維の横すべりが生じにくく、理想的な軌道に近い軌道で巻き付けることができる新しい高圧タンクの製造方法を提供する。
【解決手段】樹脂含浸繊維を金属ライナー1の外面にフープ巻きとヘルカル巻きとを交互に繰り返しながら複数回巻き付ける巻き付け工程を含み、この巻き付け工程の過程で、金属ライナー1の外方に配置した外部加熱装置4により、巻き付けられる樹脂含浸繊維を順次加熱硬化させるようにし、金属ライナー1のドーム部1bに向けて配置した冷却装置5により、ドーム部1bの樹脂含浸繊維を冷却して樹脂の粘度低下を遅らせるようにし、樹脂含浸繊維の横すべりを抑えるようにした。 (もっと読む)


【課題】シリンダー部との接合部位のドーム部外周における補強用の繊維巻回の低減と強度確保の両立を図る。
【解決手段】高圧ガスタンク10は、樹脂製ライナー20を繊維強化樹脂層30で覆って補強する。樹脂製ライナー20は、円筒状のシリンダー部22の両側に球面形状のドーム部24を接合して備え、シリンダー部22との接合部位におけるドーム部24の拡径側にタンク軸回りに陥没した陥没部位25に、補強環状体26を嵌合装着させている。この補強環状体26は、ライナー形成に用いる樹脂より高強度とされ、シリンダー部との接合部位の強度を確保する。 (もっと読む)


【課題】高圧タンクにおいて、分子量の小さい気体がタンクの外に向かって透過することで生じ得るタンクの損傷を抑制することである。
【解決手段】高圧タンク10は、タンクの内形を形成するライナー部20と、ライナー部20の外側面に繊維補強材を巻き付けてタンクの外形を形成するシェル部30とを備え、シェル部30は、最内層32とシェル本体層34を含み、最内層32は、樹脂と繊維との間の接着強度がシェル本体層における樹脂と繊維との間の接着強度よりも低い繊維補強材によって構成され、シェル本体層34は、最内層の外側面に巻き付けられ、樹脂と繊維との間の接着強度が通常の繊維補強材で構成される。最内層32は、適当な外力によって、樹脂割れ、層間剥離を生じ、気体通路をライナー部20とシェル本体層34との間に形成することができる。 (もっと読む)


【課題】繊維強化樹脂層を樹脂製ライナーの外周に形成した高圧ガスタンクの形状維持に有益な新たな製造手法を提供する。
【解決手段】中間生成品タンク12は、樹脂容器製のライナー10の外周に熱硬化前のエポキシ樹脂を含浸した繊維強化樹脂層20を備える。繊維強化樹脂層20のエポキシ樹脂の熱硬化に際しては、タンク軸支シャフト112にて軸支した中間生成品タンク12にライナー軸方向に沿った超音波振動を付与しつつ、中間生成品タンク12を加熱してエポキシ樹脂を熱硬化させる。 (もっと読む)


【課題】安定した繊維幅を有するプリプレグ繊維を連続して送り出す。
【解決手段】複数のプリプレグ繊維を並行するように搬送させ(S100)、次いで、送り出されたプリプレグ繊維の繊維幅を検知し(S102)、該繊維幅が予め定められた範囲内にあるか否かを判定し(S104)、必要であれば繊維幅を拡幅または収束するように調整し(S106)、ライナに向けて送り出す。圧力容器を作製する場合には、所定の繊維幅に調整されたプリプレグ繊維を、ライナに巻き付け(S108)、その後、樹脂を硬化させる(S110)。 (もっと読む)


【課題】フィラメント・ワインディング法によって製造される高圧ガスタンクの強度を向上することができる技術を提供する。
【解決手段】フィラメント・ワインディング法におけるヘリカル巻きによってタンク容器の外周に繊維巻層が形成される高圧ガスタンクの強度の解析方法であって、
(a)タンク容器のドーム部における繊維の巻き付け方向の折り返し位置を予め設定する工程と、
(b)繊維の巻き角度を、予め設定された折り返し位置に応じて決定する工程と、
(c)折り返し位置と決定された巻き角度とで特定される繊維巻層を有する高圧ガスタンクについて、複数の微小領域である要素に分割した有限要素モデルを作成し、その有限要素モデルを用いて有限要素法により高圧ガスタンクの強度を解析する工程と、を備える、解析方法。 (もっと読む)


【課題】密閉体が破損した場合ならびに圧力容器の内容物にアクセスするためにオペレータが容器閉塞体の締付具を緩めてそれらを移動させる時の操作の間の圧力容器からの高圧の流体の危険な漏出を防止する問題を解決する方法および圧力容器を提供する。
【解決手段】カバー(30)は、移動可能な圧力容器蓋体(22)のために設けられる。カバーは、蓋体締付具(36)を解放する時に漏出する圧力流体をオペレータから離れる方向へ案内するために、前記蓋体と圧力容器との中間面を覆うように延びる周縁フランジ(32)を有する。他の実施形態において、周縁フランジ(58)は、前記蓋体(50)上に設けられる。 (もっと読む)


【課題】ガスタンクを重量化することなく、ガスタンクの強度を確保する。
【解決手段】高圧ガスタンク2は、円筒状の胴部2aと、胴部2aの両側に接続され先端側が縮径するドーム部2bを有し、外周面に複数層からなるFRP層21が形成されている。胴部2aとドーム部2bとの境界部Rには、FRP層21を貫通するピン30が設けられている。ピン30は、境界部RのFRP層21の表面を覆う弾性体の台座31に固定されている。 (もっと読む)


【課題】ライナに巻装した繊維の端部における繊維の滑りの防止、複合容器の高耐圧化及び製造時間の短縮化が可能な複合容器及び複合容器の製造方法を提供する。
【解決手段】複合容器は、端面5cが胴部2の両端部の外周縁に位置し、かつドーム部3を覆うようにして設けられ、端面5cにおける外径D5が胴部2の外径D2よりも大きい補強部5を有する。胴部2の外周面上であってかつ各補強部5の端面5cに挟まれた領域2aに、繊維6がフープ巻きによって補強部5の外径D5と同一の巻厚になるまで巻装されている。領域2aに巻装された繊維6上及び補強部5の外周面5a上に、繊維7がさらにヘリカル巻きによって巻装されている。 (もっと読む)


【課題】FRP積層構造を有する耐破裂性に優れ、軽量な高圧容器を提供することを目的とする。
【解決手段】樹脂を含浸したガラス繊維またはカーボン繊維をライナーに巻付けて形成したFRP積層構造を有する圧力容器であって、前記FRP積層構造の外面側の層として、ライナー胴部の軸方向に対して、45〜60°の配向角を有する高角度ヘリカル巻き層としたことを特徴とするFRP圧力容器。 (もっと読む)


【課題】DME燃料タンクの最大充填量を越えてDME燃料を充填しないように正確且つ安定して作動し得るDME燃料タンク用過充填防止装置を提案する。
【解決手段】ダイヤフラム式の過充填防止装置2であって、DME燃料タンク内へDME燃料を流出する主流出口16の背方に配設されて、主流出口16側と密閉状に区画される可変閉鎖域21を形成するダイヤフラム7が、合成ゴム製プレート31と金属製プレート33とを板厚方向に積層してなり、該金属製プレート33を可変閉鎖域21側として配設された構成とする。これにより、DME燃料の充填と消費とを繰り返し行っても、ダイヤフラム7が正確かつ安定して作動し、DME燃料を充填する機能と過充填を防止する機能とが比較的長期に亘って安定して発揮され得る。 (もっと読む)


1 - 20 / 25