説明

樹脂製ライナーとこれを有する高圧ガスタンク

【課題】シリンダー部との接合部位のドーム部外周における補強用の繊維巻回の低減と強度確保の両立を図る。
【解決手段】高圧ガスタンク10は、樹脂製ライナー20を繊維強化樹脂層30で覆って補強する。樹脂製ライナー20は、円筒状のシリンダー部22の両側に球面形状のドーム部24を接合して備え、シリンダー部22との接合部位におけるドーム部24の拡径側にタンク軸回りに陥没した陥没部位25に、補強環状体26を嵌合装着させている。この補強環状体26は、ライナー形成に用いる樹脂より高強度とされ、シリンダー部との接合部位の強度を確保する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂製ライナーとライナー外周に繊維強化樹脂層を形成した高圧ガスタンクに関する。
【背景技術】
【0002】
近年になり、燃料ガスの燃焼エネルギーや、燃料ガスの電気化学反応によって発電された電気エネルギーによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、炭素繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で被覆するライナーを樹脂製ライナーとすることが検討されている。また、タンクへのガス充填当たりの車両航続距離を延ばすには、高圧でのガス充填とタンク容量増が必要であることから、樹脂製ライナーを薄肉とした上で繊維強化樹脂層による効果的な補強が求められている。
【0003】
一般に、繊維強化樹脂層は、熱硬化性樹脂を含浸した繊維をフィラメントワインディング法によりライナー外周に巻回させて形成され、樹脂製ライナーの円筒状のドーム部ではフープ巻きの軌跡で繊維巻回がなされ、ドーム部両端の球面形状のドーム部ではヘリカル巻きの軌跡で繊維巻回がなされる。このヘリカル巻きでは、シリンダー部との接合部位のドーム部外周で折り返してドーム部に巻かれる高角度のヘリカル巻きと、シリンダー部両端のドー部でそれぞれ折り返して巻かれる低角度のヘリカル巻きとが採用されている。そして、フープ巻きと高角度のヘリカル巻きの繊維がタンク周方向の補強の要をなし、低角度のヘリカル巻きの繊維がタンク軸方向の補強の要をなしている。
【0004】
高角度のヘリカル巻き繊維は、フープ巻きの繊維に比べてタンク周方向に働く力に対する抗力が下がるため、シリンダー部との接合部位のドーム部外周における高角度のヘリカル巻き繊維の巻回数を多くして強度向上を図る技術が提案されている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−307947号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
この特許文献では、アルミニウムといった軽金属製のライナーを用いた上で、シリンダー部との接合部位のドーム部外周にライナーと同種材料の巻き付け補助部材を設置して、ヘリカル巻き繊維の巻回数を多くしている。この手法を樹脂製ライナーに適用すると、上記したライナーの薄肉化の要請から、補強のための高角度のヘリカル巻き繊維の巻回数が格段に多くなる。ライナー外周への繊維の巻回数増大は、タンクの外郭拡大をもたらす。車両へのタンク搭載、或いはガス消費設備へのタンク設置を図る場合、タンク搭載スペースやタンク設置スペースの都合から、通常、タンク外郭はその大きさが規定されるので、補強用繊維の巻回数が多くなるほど、タンク内容積は小さくなり車両航続距離の低下やガス消費時間の低下を来す。
【0007】
本発明は、上述の課題を解決するためになされたものであり、シリンダー部との接合部位のドーム部外周における補強用の繊維巻回の低減と強度確保の両立を図ることを目的とする。
【課題を解決するための手段】
【0008】
上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。
【0009】
[適用1:樹脂製ライナー]
高圧ガスタンク用の樹脂製ライナーであって、
円筒状のシリンダー部の両側に球面形状のドーム部を接合して備え、
前記ドーム部は、前記シリンダー部との接合部位を含む領域を前記球面形状の外表より内側に位置する内壁で区画し、該区画した区画部位に、ライナー形成に用いる樹脂より高強度の材料を用いた補強環状体を有する
ことを要旨とする。
【0010】
上記構成を備える樹脂製ライナーでは、シリンダー部との接合部位を含む領域の区画部位に有する自体で、接合部位の強度を確保するので、その分、当該接合部位の補強のためにライナー外周に巻回される補強用繊維の巻回数を低減できる。よって、高圧ガスタンクのタンク外郭がその搭載スペース或いは設置スペースの都合から規制されても、補強用繊維の巻回数が少ない分だけ、樹脂製ライナーの外郭を大きくできる。ところで、樹脂製ライナーは、ドーム部において、補強環状体を球面形状の外表より内側に位置する内壁で区画した区画部位に有する分、ドーム部の内容積を低減させるが、区画部位以外のドーム部およびシリンダー部においてはライナー外郭を大きくした上でライナーの薄肉化を図ることができるので、ライナー全体の内容積、即ちタンク内容積の維持もしくは拡大を図ることができる。
【0011】
上記した樹脂製ライナーは、次のような態様とすることができる。例えば、前記補強環状体のタンク外側に当たる外郭形状を前記球面形状とした上で、補強環状体を前記区画部位に配設するようにできる。こうすれば、高圧ガスタンク製造過程において補強用繊維を補強環状体に巻回するに当たり、当該補強環状体の外郭形状が球面形状であるため、補強用繊維の巻回に支障を来さないようにでき、見栄えを損なうことも抑制できる。
【0012】
この場合、前記区画部位を前記接合部位における前記ドーム部の拡径側をタンク軸回りに陥没する陥没部位とした上で、前記補強環状体を前記ドーム部の縮径側から前記区画部位、即ち陥没部位に嵌め込むようにでき、こうすれば、簡便である。
【0013】
また、前記補強環状体を、ライナー形成時のインサート成形を経て樹脂製の前記ドーム部の前記区画部位に埋設設置することもでき、こうすれば、ライナー製造が簡便となるばかりか、ドーム部外郭形状を球面形状に容易に維持でき、繊維巻回についても支障を来さないようにできる。
【0014】
[適用2:高圧ガスタンク]
高圧ガスタンクであって、
上記したいずれかの樹脂製ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層をフィラメントワインディング法による繊維巻回を経て備える
ことを要旨とする。
【0015】
この高圧ガスタンクでは、シリンダー部との接合部位のドーム部接合部位における繊維巻回を控えた上で、高強度と容積拡大を図ることができる。しかも、ドーム部接合部位においては、補強環状体にてダンク周方向の力に抗することができることから、従来巻回されていた高角度のヘリカル巻きを省略して低角度のヘリカル巻きで強度確保を図ることも可能となる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施例としての高圧ガスタンク10の構成を概略的に断面視して示す説明図である。
【図2】高圧ガスタンク10の要部を拡大して示す説明図である。
【図3】タンク製造過程を示す製造手順図である。
【図4】環状体セットの様子を示す説明図である。
【図5】FW法による繊維巻回の様子を示す説明図である。
【図6】得られた高圧ガスタンク10の利点を説明するための説明図である。
【図7】図2相当図であり他の実施例の高圧ガスタンク10Aの要部を拡大して示す説明図である。
【図8】図2相当図でありまた別の実施例の高圧ガスタンク10Bの要部を拡大して示す説明図である。
【図9】図2相当図であり変形例の高圧ガスタンク10Cの要部を拡大して示す説明図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態を実施例に基づいて説明する。図1は本発明の実施例としての高圧ガスタンク10の構成を概略的に断面視して示す説明図、図2は高圧ガスタンク10の要部を拡大して示す説明図である。
【0018】
図示するように、高圧ガスタンク10は、樹脂製ライナー20と、繊維強化樹脂層30とを備える。樹脂製ライナー20は、タンク長手方向の中央で2分割されたライナーパーツをナイロン系樹脂等の適宜な樹脂にて型成型し、その型成型品のライナーパーツを接合して形成され、円筒状のシリンダー部22の両側に球面形状のドーム部24を接合して備える。この樹脂製ライナー20は、ドーム部24の頂上箇所に金属製のタンク金具12、14を備えるほか、シリンダー部22との接合部位におけるドーム部24の拡径側にタンク軸回りに陥没形成した陥没部位25に補強環状体26を備える。陥没部位25は、シリンダー部22との接合部位を含む領域をドーム部球面形状の外表より内側に位置する二つの内壁で区画された区画部位に相当する。なお、上記した両タンク金具は、後述の繊維巻回の際の回転軸挿入に用いられ、一方のタンク金具12は、配管接続用の図示しないベース接続用にも用いられる。
【0019】
補強環状体26は、樹脂製ライナー20とは別体であり、ドーム部24の球面形状である等張力曲面の一部をなす外郭形状となるように形成されている。本実施例では、補強環状体26を、ライナー形成に用いる樹脂(ナイロン系樹脂)より高強度の材料である樹脂複合材、或いはアルミや鉄等の金属材から樹脂製ライナー20とは別に予め形成し、後述のタンク製造過程において、樹脂製ライナー20の陥没部位25に嵌合装着する。補強環状体26は、金属製の環状材に旋削加工等の機械加工を経て形成でき、樹脂複合材とする場合には、短繊維状のガラス繊維や炭素繊維等がフィラーとして樹脂に混入するよう型成型することで、補強環状体26が得られる。こうして得られた補強環状体26は、樹脂(ナイロン系樹脂)を用いた樹脂製ライナー20より高強度となる。なお、樹脂製ライナー20をポリエチレン系樹脂から形成することもでき、この場合であっても、補強環状体26は、樹脂製ライナー20より高強度となる。
【0020】
繊維強化樹脂層30は、熱硬化性樹脂を含浸した繊維強化樹脂層をフィラメントワインディング法(以下、FW法)によりライナー外周に巻回させることで形成され、後述するように、フープ巻きによる繊維巻回とその後の低角度のヘリカル巻きによる繊維巻回を経て形成される。図2に示すよう、樹脂製ライナー20におけるシリンダー部22の外周では、最初にフープ巻きによる繊維巻回が行われることから、シリンダー外周範囲がフープ層範囲となり、ドーム部24の外表(等張力曲面表面)では、フープ巻きに続く低角度のヘリカル巻きによる繊維巻回が行われ、ドーム部外表範囲がヘリカル層範囲となる。この場合、シリンダー部22の外周では、フープ巻き後に行われる低角度のヘリカル巻きにおいてシリンダー部外周をタンク中心軸と交差するよう繊維が巻かれることから、フープ巻きの際の巻回繊維層の上に、ヘリカル巻きの際の巻回繊維が重なることになる。こうした繊維強化樹脂層30の形成には、熱硬化性樹脂としてエポキシ樹脂を用いることが一般的であるが、ポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂を用いることができる。また、FW法によりライナー外周に巻回させる補強用の繊維(スライバー繊維)としては、ガラス繊維やカーボン繊維、アラミド繊維等が用いられる他、複数種類(例えば、ガラス繊維とカーボン繊維)のFW法による巻回を順次行うことで、繊維強化樹脂層30を異なる繊維からなる樹脂層を積層させて形成することもできる。
【0021】
次に、高圧ガスタンク10の製造手法について説明する。図3はタンク製造過程を示す製造手順図、図4は環状体セットの様子を示す説明図、図5はFW法による繊維巻回の様子を示す説明図である。
【0022】
図3に示すように、まず、樹脂製ライナー20を準備する(ステップS100)。ライナー準備は、タンク製造ライン以外の型成型工程での金型によるライナー形成の他、予め形成済みの樹脂製ライナーのライン搬入等によりなされる。この場合、準備済みの樹脂製ライナー20は、シリンダー部22との接合部位におけるドーム部拡径側をタンク軸回りに陥没した陥没部位25を既に有するほか、タンク両端のタンク金具(図ではタンク金具12を示す)についても、ドーム部頂上に組み込み済みである。
【0023】
こうして準備された樹脂製ライナー20に、図4に示すように、ライナーとは別に形成済みの補強環状体26を嵌合装着する(ステップS110)。つまり、補強環状体26をドーム部24の縮径側(頂上側)から陥没部位25に嵌め込み装着する。この嵌合装着により、ドーム部24の外表と補強環状体26の外表とで、ドーム部24では、シリンダー部22との接合部位からタンク金具装着箇所(頂上側)まで繋がって連続した等張力曲面が形成されることになる。本実施例では、陥没部位25がシリンダー部22とドーム部24との接合部位を含んでタンク軸方向にシリンダー側に若干延びるようにされていることから、補強環状体26は、上記接合部を含んでシリンダー側にオーバーハングするようになる。
【0024】
補強環状体26の装着に続いては、FW法による繊維巻回を実施して繊維強化樹脂層30を形成する(ステップS120)。つまり、タンク両側のタンク金具12とタンク金具14を図示しないFW装置の回転軸に係合させ、樹脂製ライナー20をタンク中心軸AXの回りに回転するよう軸支する。そして、樹脂製ライナー20をタンク中心軸AXの回りに回転させながら、図5に示すように、FW法による繊維巻回を行う。このFW法では、カーボン繊維31を巻き取ったリール35から当該繊維を送り出す際にエポキシ樹脂などの熱硬化性樹脂をカーボン繊維31に予め含浸させ、その上で、リール35をタンク軸方向に移動させるリール移動と上記したライナー回転とを行い、カーボン繊維31をリール35から送り出しつつライナー外周に巻回する。本実施例では、まず、リール移動速度とライナー回転速度とを調整することで、シリンダー部22の外周範囲に亘ってFW法によりフープ巻きによる繊維巻回を繰り返し実行し(図5(A)参照)、図2に示すようにシリンダー部22の外周にフープ層を形成する。この場合の上記した速度調整は、シリンダー部22のタンク中心軸AXと巻き付け繊維のなす角度がほぼ垂直な巻き角度となるよう、調整される。なお、上記した「巻き角度」は、カーボン繊維31の巻き付け方向(リール35の移動方向)に対するカーボン繊維31の繊維方向の角度を意味する。
【0025】
次いで、改めてリール移動速度とライナー回転速度とを調整することで、シリンダー部22の両端のドーム部24にカーボン繊維31を掛け渡すようFW法により低角度のヘリカル巻きによる繊維巻回を繰り返し実行し(図5(B)参照)、図2に示すようにドーム部24の外表にフープ層を形成する。この場合の上記した速度調整は、シリンダー部22において、巻き角度α0(0<α0<90°)を一定に保持しつつ、タンク中心軸AX方向に沿った巻き付け方向で螺旋状にカーボン繊維31が巻き付けられ、ドーム部24の外表において、巻き付け方向を折り返し、再び、巻き角度α0でシリンダー部22にカーボン繊維31が螺旋状に巻き付けられるよう、調整される。本実施例では、この巻き角度α0は、シリンダー部22においてカーボン繊維31が1周する前にドーム部24において巻き付け方向を折り返すこととなる程度の比較的小さい巻き角度とされている。シリンダー部22の外周では、このようにフープ巻きによる繊維巻回層と低角度のヘリカル巻きによる繊維巻回層とが重なった多層的な繊維巻回層が形成され、低角度のヘリカル巻きの際には、繊維巻回の繰り返しにより、カーボン繊維31が網目状に張り渡された繊維層が形成されることになる。
【0026】
こうして繊維強化樹脂層30が形成されると、熱硬化性樹脂の硬化を図るために、FW法実施済みの樹脂製ライナー20が養生に付され(ステップS130)、養生後に、高圧ガスタンク10が得られることになる。
【0027】
以上説明した本実施例では、高圧ガスタンク10を構成する樹脂製ライナー20を、シリンダー部22との接合部位においてドーム部24の陥没部位25に嵌合装着した補強環状体26を有するものとした。そして、この補強環状体26を、樹脂複合材製或いは金属製とすることで、補強環状体26を高強度とし、この補強環状体26自体で、接合部位の強度を確保する。このため、本実施例では、シリンダー部22とドーム部24の接合部位補強のために通常なされるFW法での高角度のヘリカル巻きの繊維巻回を省略したので、繊維強化樹脂層30の形成のためのカーボン繊維31の巻回数を低減できる。よって、高圧ガスタンク10のタンク外郭がその搭載スペース或いは設置スペースの都合から規制されても、カーボン繊維31の巻回数が少ない分だけ、樹脂製ライナー20の外郭を大きくできる。ところで、樹脂製ライナー20は、補強環状体26の装着のための陥没部位25をドーム部の拡径側に有する分、ドーム部24の内容積を低減させるが、陥没部位25以外のドーム部24およびシリンダー部22においてはライナー外郭を大きくした上でライナーの薄肉化を図ることができるので、ライナー全体の内容積、即ち高圧ガスタンク10のタンク内容積の維持もしくは拡大を図ることができる。
【0028】
上記した高角度のヘリカル巻きを省略したシリンダー部22とドーム部24の接合部位のシリンダー側周辺には、フープ巻きを行うことが可能であることから、こうして巻いたフープ巻き繊維(カーボン繊維31)により強度確保ができる。
【0029】
また、本実施例では、ドーム部24の陥没部位25に嵌合装着する補強環状体26を、タンク外側に当たる外郭形状がドーム部24の外表の等張力曲面に連続するようにした。このため、FW法によりカーボン繊維31をドーム部24の外表に巻回する際、カーボン繊維31を低角度のヘリカル巻きの軌跡で高い実効性で巻回できると共に、巻き付けズレによる見栄えを損なうことない。しかも、補強環状体26をドーム部24の陥没部位25にドーム部頂上側(縮径側)から嵌め込めば済むので、簡便である。
【0030】
上記した効果に加え、本実施例において高圧ガスタンク10を得るために採用した製造手法によれば、高角度のヘリカル巻きを省略しても強度を確保できることから、繊維強化樹脂層30をカーボン繊維31以外の繊維、例えば、カーボン繊維と同等程度の強度や剛性を有する繊維の他、カーボン繊維よりもやや強度や剛性に劣る低グレードの繊維を用いることもできる。しかも、使用圧力や、タンク径Dとタンク長Lの比で規定されるタンク形状に拘わらず、上記した製造手法を適用できる。
【0031】
また、次のような利点がある。図6は得られた高圧ガスタンク10の利点を説明するための説明図である。図6(A)に示すように、ドーム部24とシリンダー部22とでは、シリンダー部22にフープ巻き軌跡の繊維とヘリカル巻き軌跡の繊維が重なることから、繊維強化樹脂層30の厚みtは相違する。このため、ドーム部24とシリンダー部22では発生応力に差ができ、ドーム部24とシリンダー部22の接合部位では、そのシリンダー側において、変位を共有しようとする2次応力が発生し、図中の太線で示すように剪断力と曲げ応力が発生する。なお、図におけるRはタンク半径、Pは使用圧力、σは強度に関与する材料固有の定数である。
【0032】
図6(B)に示すように、ストレートのシリンダー部と湾曲したドーム部は、接するようにすることが理想的である。ところが、FW法によるカーボン繊維31の実際の巻回積層では、ヘリカル巻き繊維の巻き角度α0に相当する図中のヘリカル積層角度αが0度とならない。このことは、ヘリカル巻きにてドーム部24からシリンダー部22に掛けて巻かれる際の接合部位の接線が連続しないことと同義であり、このため、接合部位近傍では既述したような大きな応力の乱れが起き得る。本実施例の高圧ガスタンク10によれば、こうした応力に補強環状体26にて抗することができるので、タンク強度確保の実効性を高めることができる。
【0033】
以上、本発明の実施例について説明したが、本発明は、上記した実施の形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。図7は図2相当図であり他の実施例の高圧ガスタンク10Aの要部を拡大して示す説明図、図8は図2相当図でありまた別の実施例の高圧ガスタンク10Bの要部を拡大して示す説明図である。
【0034】
図7に示すように、補強環状体26Aを、ドーム部24とシリンダー部22との接合部位を含むもののシリンダー側にはオーバーハングせず、ストレート状とすることもできる。この高圧ガスタンク10Aでは、陥没部位25Aをシリンダー部22との接合部位を含む領域をドーム部球面形状の外表より内側に位置して直交する二つの内壁で区画して形成し、この陥没部位25Aに補強環状体26Aを嵌合装着して備える。また、図8に示すように、ドーム部24とシリンダー部22との接合部位を含んでドーム部24の側に曲面形状で延びる補強環状体26Bとすることもできる。この高圧ガスタンク10Bでは、陥没部位25Aをシリンダー部22との接合部位を含む領域をドーム部球面形状の外表より内側に位置する湾曲内壁で区画して形成し、この陥没部位25Bに補強環状体26Bを嵌合装着して備える。この他、シリンダー部22との接合部位を含む領域をドーム部球面形状の外表より内側に位置し球面形状の弦に沿った直線状の内壁で区画した区画部位に、補強環状体を接着するようにすることもできる。また、シリンダー部22との接合部位を含む領域をドーム部球面形状の外表より内側に凹となった凹状の内壁で区画し区画部位に、補強環状体を嵌合装着して備えるようにすることもできる。この場合には、補強環状体を2分割、或いは3分割に分割可能な分割体として、凹状の区画部位にその外側から装着すればよい。
【0035】
図9は図2相当図であり変形例の高圧ガスタンク10Cの要部を拡大して示す説明図である。図示するように、この高圧ガスタンク10Cでは、ドーム部24の陥没部位25Cにおいて補強環状体26Cを取り囲むように備え、ドーム部24の等張力曲面については、これを全てドーム部24の外表で形成することとした。こうした構成の樹脂製ライナー20、延いては高圧ガスタンク10Cを得るには、タンク長手方向の中央で2分割されたライナーパーツ(図1参照)の形成の際に、予め補強環状体26Cを型内にセットして樹脂注入を行うインサート成形を採用すればよい。そして、このインサート成形を経て形成したライナーパーツを接合して、樹脂製ライナー20とできる。この変形例の高圧ガスタンク10Cによれば、補強環状体26Bを埋設して取り囲んだ樹脂製ライナー20を容易に製造できるばかりか、ドーム部24の外郭形状を等張力曲面に容易に維持できる。よって、FW法によるカーボン繊維31の巻回(フープ巻きおよび低角度のヘリカル巻き)を支障なく実行できる。
【0036】
上記した実施例では、高圧ガスタンク10の製造に際して、高角度のヘリカル巻きを省略した場合を例に挙げて説明したが、高角度のヘリカル巻きをフープ巻きの後に実行し、さらに低角度のヘリカル巻きを行うようにすることもできる。この場合であって、高角度のヘリカル巻き繊維の巻回数を従来の巻回数より減らすことができる。
【符号の説明】
【0037】
10、10A〜10C…高圧ガスタンク
12…タンク金具
14…タンク金具
20…樹脂製ライナー
22…シリンダー部
24…ドーム部
25、25A〜25C…陥没部位
26、26A〜26C…補強環状体
30…繊維強化樹脂層
31…カーボン繊維
35…リール
AX…タンク中心軸

【特許請求の範囲】
【請求項1】
高圧ガスタンク用の樹脂製ライナーであって、
円筒状のシリンダー部の両側に球面形状のドーム部を接合して備え、
前記ドーム部は、前記シリンダー部との接合部位を含む領域を前記球面形状の外表より内側に位置する内壁で区画し、該区画した区画部位に、ライナー形成に用いる樹脂より高強度の材料を用いた補強環状体を有する
樹脂製ライナー。
【請求項2】
前記補強環状体は、タンク外側に当たる外郭形状を前記球面形状とした上で、前記区画部位に配設されている請求項1に記載の樹脂製ライナー。
【請求項3】
前記補強環状体は、前記接合部位における前記ドーム部の拡径側をタンク軸回りに陥没する陥没部位とされた前記区画部位に、前記ドーム部の縮径側から嵌め込まれている請求項2に記載の樹脂製ライナー。
【請求項4】
前記補強環状体は、ライナー形成時のインサート成形を経て樹脂製の前記ドーム部の前記区画部位に埋設設置されている請求項1に記載の樹脂製ライナー。
【請求項5】
高圧ガスタンクであって、
請求項1ないし請求項4のいずれかに記載の樹脂製ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層をフィラメントワインディング法による繊維巻回を経て備える
高圧ガスタンク。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−163354(P2011−163354A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2010−23050(P2010−23050)
【出願日】平成22年2月4日(2010.2.4)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】