説明

Fターム[3G081BB10]の内容

特殊なサイクルを用いた機関設備 (5,398) | 蒸気機関の作動流体 (984) | その他の作動流体 (386)

Fターム[3G081BB10]に分類される特許

61 - 80 / 386


【課題】複合サイクル・パワー・プラント及びその運転方法を提供する。
【解決手段】複合サイクル・パワー・プラント(10)は、第1の圧縮機(16)と、第1の圧縮機の下流に位置する第2の圧縮機(46)と、第1及び第2の圧縮機の間に位置する再生式熱交換器(52)とを持つガスタービン(12)を含む。蒸気発生器(30)がガスタービンの下流に位置していて、ガスタービンからの排気を受け取る。再生式熱交換器及び蒸気発生器を通る閉ループ冷却システムが、再生式熱交換器から蒸気発生器へ熱を伝達する。また、複合サイクル・パワー・プラントを運転するための方法は、圧縮機(16)で作動流体を圧縮する段階と、該圧縮された作動流体を再生式熱交換器(52)で冷却して、圧縮され冷却された作動流体を生成する段階を含む。本方法は更に、再生式熱交換器から蒸気発生器(30)へ熱を伝達する段階を含む。 (もっと読む)


【課題】一軸型コンバインドサイクル発電プラントの調速制御を精度よく効率的に行う。
【解決手段】ガスタービン制御部30は、全回転速度領域の回転速度信号を取り込んで第1のディジタル回転速度信号に変換する第1のF/D変換器53と、狭域回転速度領域で回転速度信号を取り込んで第2のディジタル回転速度信号に変換する第2のF/D変換器54と、第1および第2のディジタル回転速度信号を第1および第2のアナログ回転速度信号に変換する第1および第2のD/A変換器55、56とを有する。蒸気タービン制御部31は、第1および第2のアナログ専用回線32、33を介して第1および第2のアナログ回転速度信号を受信する第1および第2のアナログ受信部61、62と、第1および第2のアナログ回転速度信号を切り替える切り替えスイッチ回路65と、を備えている。 (もっと読む)


【課題】ディーゼル機関から排熱回収して発電する排熱回収発電機を備えた発電プラント設備のコストを低減する。
【解決手段】本発明の発電プラント設備1は、蒸気タービン7の上流側の過熱蒸気管30に設けられた蒸気流量調整弁20を備えている。発電プラント設備1の制御部は、蒸気タービン7の起動時に、蒸気流量調整弁20を閉止状態から開度を増大させて蒸気タービン7および排熱回収発電機10の周波数を上昇させ、排熱回収発電機10の周波数が系統40の周波数に達した後に、排熱回収側遮断器26を接続して系統40に給電するとともに蒸気流量調整弁20の開度を略全開とし、系統40の周波数に依存させて蒸気タービン7を動作させる。 (もっと読む)


【課題】地熱を用いる発電システムは、地熱が得られる地域でないと使用できない。
【解決手段】圧縮機を備えるヒートポンプと、前記ヒートポンプにより加熱され気化された前記作動媒体の持つエネルギによって動力が与えられるタービンの動力により発電電力を供給する発電機と、タービンからの作動媒体を送出する循環手段と、制御部とを備え、圧縮機駆動用電力と循環手段駆動用電力と制御部用の制御部用電力との総和である総和電力としての電力が供給され、前記総和電力より前記発電電力が大きくなるように設定される真発生電力獲得条件で運転される。 (もっと読む)


【課題】原油を用いた火力発電システムにおいて、原油単位当たりのエネルギー効率の向上及び電力供給の早期の安定性確保を容易に実現するハイブリッド火力発電システム及びその建造方法を提供する。
【解決手段】原油を用いたハイブリッド火力発電システムであって、常圧蒸留塔3のみにより分離されたナフサ及び軽質油をそれぞれ異なるガスタービンに供給して発電を行うとともに排熱で生成された蒸気を用いて発電を行うコンバインドサイクル発電システム6と、常圧蒸留塔3のみにより分離された重質油を燃焼させて発電を行うコンベンショナル発電システム7と、を備えて構成する。これにより、運転効率を著しく損なうことなく両システムを併用できるので、システム全体の熱効率を向上させることができる。また、コンバインドサイクル発電システム6の余剰燃料を、コンベンショナル発電システム7のボイラ12へ供給することにより、システム全体の熱効率を一層向上させることができる。 (もっと読む)


【課題】発電効率の高い発電プラント設備を提供することを目的とする。
【解決手段】本発明の発電プラント設備1は、ディーゼル機関5と、ディーゼル機関5から排出された排ガスから排熱を回収して蒸気を生成する蒸気発生装置6と、蒸気発生装置6によって生成された蒸気によって駆動される蒸気タービン7と、蒸気タービン7からの回転出力を減速し、ディーゼル機関5の回転軸3に伝達する減速機10と、ディーゼル機関5の回転軸3に接続され、ディーゼル機関5および蒸気タービン7から得た駆動力によって発電する共用発電機11とを備えている。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】金属球水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率等にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78W)太陽熱重力飛行機(39A)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78A)太陽熱重力ヘリコプター(39C)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78B)太陽熱重力飛行機(39A)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78W)太陽熱重力飛行機(39A)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】金属球水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率等にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78V)太陽熱重力飛行機(39A)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78B)太陽熱重力ヘリコプター(39C)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78W)太陽熱重力ヘリコプター(39C)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78A)太陽熱重力飛行機(39A)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】既存航空機類は大気中飛行で空気抵抗が非常に大きくCO2排出量が膨大、CO2排気0の宇宙飛行全盛として一日に地球を16周する等CO2排気を僅少にする。
【解決手段】水銀重力タービン駆動にして、大気圧同速度同容積仕事率を既存蒸気タービンの2.3万倍前後水銀仕事率にし、多数の熱ボンブで太陽光加熱空気を圧縮して太陽光加熱空気を加熱圧縮熱回収する熱製造として、過熱蒸気温熱製造+圧縮空気冷熱製造分割保存して複数タービンの回転出力にし、既存蒸気タービンの2.3万倍前後仕事率利用の噴射推進狙いによる合体機関噴射部(78V)太陽熱重力飛行機(39A)駆動既存航空機類最高飛行高度付近からの理論最良ロケット噴射宇宙到達費用を1/100以下として、太陽系脱出速度ロケット狙いにし、空気抵抗0の宇宙飛行全盛にして、地球上何処でも日帰り旅行や宇宙旅行全盛にします。 (もっと読む)


【課題】圧縮機の圧縮熱を回収して、所望温度の温水を得る。
【解決手段】エアクーラ5は、圧縮機4から吐出される圧縮空気とその冷却水との熱交換器である。オイルクーラ6は、圧縮機4の潤滑油とその冷却水との熱交換器である。エアクーラ5およびオイルクーラ6を通過後の冷却水の温度に基づき、熱交給水ポンプ17をインバータ制御して、エアクーラ5およびオイルクーラ6への給水量を調整することで、所望温度の温水を得ることができる。 (もっと読む)


【課題】太陽熱を利用した蒸気タービンプラントを提供する。
【解決手段】蒸気タービンプラントは、水を蒸気に変化させ、高圧蒸気と、高圧蒸気より低圧である低圧蒸気とを製造する少なくとも1つの加熱器110と、1つまたは互いに直列に接続された複数のタービンから成り、高圧蒸気を流入させる第1の入口と、第1の入口より下流に位置し、低圧蒸気を流入させる第2の入口と、第2の入口より下流に位置する排気口とを有し、第1及び第2の入口から流入した蒸気により駆動される高圧タービン101と、排気口から排気された蒸気を加熱する再熱器109と、再熱器からの蒸気により駆動される再熱タービン113とを具備する。 (もっと読む)


【課題】熱回収効率を向上できる動力回収装置を提供する。
【解決手段】高圧蒸気の作動流体を生成する蒸発器11と、蒸発器11の下流に配して作動流体を膨張させる膨張機12と、膨張機12の下流に配した第1容器21及び第2容器22を有する容器列27と、第1、第2容器21、22内にそれぞれ設けられて第1、第2容器21、22の冷却及び加熱を択一的に行う冷却部31、32及び加熱部41、42とを備え、上流から順に冷却部31で冷却する第1容器21と加熱部42で加熱する第2容器22が交互に並び、容器列27の両端を開いて第1容器21と第2容器22との間を閉じた第1運転状態と、上流から順に加熱部41で加熱する第1容器21と冷却部32で冷却する第2容器22が交互に並び、容器列27の両端を閉じて第1容器21と第2容器22との間を開いた第2運転状態とを繰り返した。 (もっと読む)


【課題】廃棄物処理廃熱と太陽熱とを複合利用して発電する際に、太陽熱の受熱量の変動に対応して発電量を安定化することができる廃棄物処理廃熱と太陽熱の複合利用発電装置を提供する。
【解決手段】発電装置1は、廃棄物を処理する廃棄物処理炉3と、廃棄物処理炉3の排ガスから熱回収する廃熱ボイラ4と、太陽光を受光して太陽熱を集熱する集熱装置7と、太陽熱により蒸気を発生する太陽熱利用蒸気発生装置8と、廃熱ボイラ4で発生した蒸気と太陽熱利用蒸気発生装置8で発生した蒸気とにより発電する蒸気タービン5と、太陽位置情報に基づいて太陽熱熱量を予測する太陽熱熱量予測部9と、予測された太陽熱熱量に基づいて廃熱ボイラ4の目標蒸発量を補正し、該目標蒸発量に基づいて廃熱ボイラ4の蒸発量を制御する廃熱蒸発量制御部10とを備えている。 (もっと読む)


【課題】集熱された太陽熱を受け表面温度が500℃を超える受熱部に熱媒体を供給しても支障なく太陽熱から熱交換でき、過熱蒸気を生成して発電することができる太陽熱利用発電装置を提供することを課題とする。
【解決手段】太陽熱利用発電装置において、固体粒子を気相に分散させた混相熱媒体を蒸気過熱のための熱媒体として供給する混相熱媒体供給装置4と、太陽熱集熱装置5から太陽熱を受熱すると共に、混相熱媒体供給装置4から混相熱媒体の供給を受け、受熱した太陽熱により該混相熱媒体を加熱する太陽熱受熱装置6と、太陽熱受熱装置6から供給された混相熱媒体との熱交換により、ボイラ1からの蒸気を飽和蒸気温度より高い温度に加熱して過熱蒸気を生成する過熱蒸気生成及びボイラからの過熱蒸気をさらに加熱する過熱蒸気加熱のうち少なくとも一方を行い、過熱蒸気を蒸気タービン発電機3へ供給する蒸気過熱熱交換器2と、を有する。 (もっと読む)


61 - 80 / 386