説明

Fターム[3G092HE06]の内容

機関出力の制御及び特殊形式機関の制御 (141,499) | エンジン系 (10,420) | トルク、出力、馬力 (409)

Fターム[3G092HE06]の下位に属するFターム

変化率 (47)

Fターム[3G092HE06]に分類される特許

1 - 20 / 362




【課題】過渡条件の下での気筒内の既燃ガス部分を調節することができる内燃機関の制御方法を提供する。
【解決手段】内燃機関の制御方法は、内燃機関(1)用のトルク設定値Tspを取得する工程と、第1のアクチュエータ(8)用の位置設定値VVTintおよび第2のアクチュエータ(9)用の位置設定値VVTexhを内燃機関トルク設定値Tspに関係付ける、気筒充填モデル(MR)を有する既燃ガス流モデル(MEGB)を適用することによって、これらのアクチュエータの位置設定値を求める工程と、位置設定値VVTintおよびVVTexhを各可変タイミング手段(8、9)に適用することによって気筒内の既燃ガス部分を調節する工程とを有する。 (もっと読む)


【課題】 実際の吸入空気流量の変化をより高精度に推定することにより、吸入空気流量制御と点火時期制御の協調制御をより適切に実行し、機関出力トルクの制御精度を向上させることができる内燃機関の制御装置を提供する。
【解決手段】 要求トルクに余裕トルクを加算することにより吸気制御目標トルクTRQGAが算出され、吸気制御目標トルクTRQGAに応じて目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDが算出される。弁作動位相VTC及びスロットル弁開度THが、目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDと一致するように制御され、推定弁作動位相HVTC及び推定スロットル弁開度HTHに応じて推定吸気制御トルクHTRQGAが算出され、要求トルクTRQEと推定吸気制御トルクHTRQGAとの比率を用いて点火時期IGLOGの算出が行われる。 (もっと読む)


【課題】燃焼室内でのEGRガスの旋回性を向上させて耐ノッキング性能を向上させるとともに、高回転時での出力確保を可能とする。
【解決手段】1つの気筒に2つの吸気バルブ3、4、及び2つの排気バルブ5、6を備え、燃焼室8の中央部に点火プラグ9が配置されるとともに、排気の一部を吸気通路に導入するEGR装置22を備えたエンジン1であって、2つの吸気バルブ3、4及び2つの排気バルブ5、6の全てを開閉する通常開閉モードと、第1の吸気バルブ3及び第2の排気バルブ6を開閉して、燃焼室8内で吸気にスワールを発生させる部分開閉モードと、に切り換え可能であり、EGR装置22は、燃焼室8の外周部に向けてスワールの旋回方向に沿うように、EGRガスの排出方向が設定されている。そして、所定の低回転時には部分開閉モードが選択され、所定の高回転時には通常開閉モードが選択される。 (もっと読む)


【課題】僅かな含水素ガス添加量で熱効率の向上やスート排出量の低減などの効果が得られるディーゼル内燃機関及びその制御装置を提供すること。
【解決手段】ディーゼルエンジン1は、気筒11に連通する複数の吸気ポート12,13と、吸気に含水素ガスを添加する水素インジェクタ33と、気筒11内に含軽油燃料を噴射する燃料インジェクタと、を備える。複数の吸気ポート12,13は、ヘリカルポートであるセカンダリ吸気ポート13とタンジェンシャルポートであるプライマリ吸気ポート12を含み、上記水素インジェクタ33は、これら吸気ポート12,13のうち、セカンダリ吸気ポート13を介して気筒11に導入される吸気にのみ含水素ガスを添加する。 (もっと読む)


【課題】エンジンの負荷、エンジン回転数に対してエンジン性能(燃料消費率)が最適となる最適掃気圧力になるようにパワータービン側へ抽出される排気ガス量を調整して、エンジンの最適運転状態を常に確保できる排気エネルギー回収方法を提供することを目的とする。
【解決手段】エンジンの負荷、エンジンの回転数、およびエンジンの掃気圧力を検出する工程S1と、前記検出したエンジンの負荷、およびエンジンの回転数からエンジンの燃料消費率が最も少なくなるエンジンの最適掃気圧力を算出する工程S2と、前記検出したエンジンの掃気圧力と前記算出したエンジンの最適掃気圧力との差を求めた後に、該差に基づいて前記排気ガスバイパス制御弁の開度修正量を算出する工程S3と、前記算出された排気ガスバイパス制御弁の開度修正量から前記排気ガスバイパス制御弁の開度指令値を決定する工程S4と、を備えたことを特徴とする。 (もっと読む)


【課題】体積効率を向上させることができるディーゼルエンジンの制御装置を提供する。
【解決手段】ディーゼルエンジンの制御装置(100)は、筒内に吸気を導く吸気通路(14)を開閉する吸気弁(16)の閉弁の時期を変更可能な可変動弁機構(20)を備えるディーゼルエンジン(10)の吸気行程の下死点より後において筒内に存在する吸気が吸気通路に逆流しない時期に、吸気弁が閉弁するように可変動弁機構を制御する制御部を備えることを特徴とする。 (もっと読む)


【課題】 簡単かつ低コストな構成でありながら、ディーゼルエンジン及び電動発電機が搭載されたハイブリッド車両において、アトキンソンサイクルを採用することで、燃費を改善して環境保護に貢献することができるハイブリッド車両を提供する。
【解決手段】 本発明は、ディーゼルエンジンと電動機とを駆動源として備えたハイブリッド車両であって、ディーゼルエンジン1をアトキンソンサイクルにて運転することを特徴とする。また、ディーゼルエンジン1、メカニカルクラッチ機構2、電動発電機3、変速機4が、出力伝達方向下流側に向けて、この順番で配設されたことを特徴とすることができる。 (もっと読む)


【課題】排気再循環を実行しているときに加速要求がなされた場合に、排気再循環を実行していないときに比べて加速感が悪化してしまうことを抑制することのできるハイブリッド車両の制御装置を提供する。
【解決手段】パワーマネジメントコントロールコンピュータ500は、等パワー曲線と燃費動作線との交点となるエンジン動作点に基づいて目標エンジン回転数と目標エンジントルクとを設定して排気再循環機構115を備えたエンジン110を制御する。パワーマネジメントコントロールコンピュータ500は、排気再循環が実行されているか否かに応じて燃費動作線を変更し、排気再循環が実行されているときには目標エンジン回転数が高くなるようにする。パワーマネジメントコントロールコンピュータ500は、排気再循環が実行されているときは、排気再循環が実行されていないときよりもエンジン動作点の単位時間当たりの変化量を小さくする。 (もっと読む)


【課題】内燃機関の特性変動があっても早期に弁動作遅れを低減できる内燃機関の動弁試験装置を提供する。
【解決手段】内燃機関の動弁試験装置は、内燃機関の特性が所定のしきい値を越えて変動する場合、内燃機関の特性変動に応じて補償波形を補正し、弁駆動ピストンを駆動しようとする目標リフト波形に、補正された前記補償波形を加えて補償目標リフト波形を作成し、補償目標リフト波形によりドライブ波を生成し弁駆動装置を制御する。 (もっと読む)


【課題】排気浄化触媒の暖機に際して、内燃機関の冷間始動直後から、燃焼の安定性を確保しつつ、PM排出量を効果的に低減することのできる内燃機関の制御装置、及び内燃機関の制御方法を提供する。
【解決手段】エンジン10は、燃焼室22内に燃料を直接噴射するインジェクタ21と、点火プラグ36と、吸気バルブ31の開閉タイミングを可変とする可変バルブタイミング機構33と、排気管35に設けられた三元触媒38と、を備えている。ECU50は、エンジン10が冷間始動された場合に、可変バルブタイミング機構33により吸気バルブ31と排気バルブ32との開弁期間のオーバーラップ量を増大させるとともに、インジェクタ21によりエンジン10の吸気行程及び圧縮行程に燃料を噴射させ且つ圧縮行程での燃料噴射量を吸気行程での燃料噴射量よりも多くし、点火プラグ36による点火時期を遅角させる制御を実行する。 (もっと読む)


【課題】引きショック感を含めた、コースト中のダウンシフトによる変速ショックを緩和し得る装置を提供する。
【解決手段】複数の締結要素を有する有段自動変速機(2)であってエンジン(1)が燃料カット状態となるコースト中にダウンシフトを開放側と締結側の一対の締結要素の掛け替えにより行う有段自動変速機(2)において、前記ダウンシフトを行う操作にトルクフェーズ制御とイナーシャフェーズ制御とを含み、このイナーシャフェーズ制御期間で燃料カット状態からのリカバーを行う燃料カットリカバー実行手段(S1〜S6)と、この燃料カット状態からのリカバーを行う気筒数を制限する気筒数制限手段(S6)とを備える。 (もっと読む)


【課題】EGRバルブの前後の差圧を検出することなく、過渡時におけるEGR制御を効果的に行う。
【解決手段】EGR通路が接続された位置の吸気圧を吸入空気量に基づいて推定し(S11)、EGR通路が接続された位置の排気圧を吸入空気量に基づいて推定する(S12)。S12で算出した第1推定排気圧に、応答遅れを考慮した所定の遅れ処理を行って第2推定排気圧を算出する(S16)。そして、過渡時には、推定吸気圧と第1推定排気圧との差圧と、推定吸気圧と第2推定排気圧との差圧と、差もしくは比率からバルブ面積補正値を算出し(S17)、このバルブ面積補正値でEGR制御弁の基準バルブ面積を補正する(S18)。 (もっと読む)


【課題】クランクシャフトにより駆動される機械式のオイルポンプでは、機関回転数の増加に応じてオイル吐出量が単調増加となるために、高回転域でオイル吐出量が過剰となる。
【解決手段】制御軸18の回転位置に応じて機関圧縮比を可変とする可変圧縮比機構と、クランクシャフトにより駆動される歯車式のオイルポンプと、を備える。制御軸18に、径方向外方へ突出する通路遮蔽部36を一体的に設ける。制御軸18の回転位置に応じて、通路遮蔽部36がオイル供給通路34の一部を遮蔽することで、オイル通路34の通路断面積を増減させて、オイルポンプのオイル吐出量を調整することができる。 (もっと読む)


【課題】波動歯車減速機構の故障を検知する。
【解決手段】内燃機関を運転している状態で、機関圧縮比を一定に保つときに(S11)、駆動モータの駆動電流を電流センサで検出し(S12)、この電流値が波動歯車減速機構の内部の摩耗がない状態のときに機関圧縮比を一定に保つのに必要な駆動モータの駆動電流以上であれば(S13)、波動歯車減速機構において内歯と外歯の噛み合い率が低下しており、内部の摩耗による故障が波動歯車減速機構に発生していると判定する。 (もっと読む)


【課題】EGR装置を備えたエンジンにおいて、EGRガスによる減速時及び再加速時の失火を防止できるようにする。
【解決手段】筒内流入EGRガス量(筒内に流入するEGRガス量)を推定して、この筒内流入EGRガス量に基づいて正常燃焼可能な吸入空気量の下限値である正常燃焼下限値を算出し、吸入空気量が正常燃焼下限値を下回らないようにスロットル開度を制御して失火を回避する失火回避制御を実行すると共に、この失火回避制御によるトルク変化を吸収するように負荷トルク(例えばオルタネータ48の負荷トルク)を制御する。更に、エンジン11の減速時に燃料噴射を停止する燃料カット制御中にスロットル開度を開き側(例えば全開)に制御してEGRガスの掃気を促進するEGRガス掃気制御を実行すると共に、このEGRガス掃気制御によるトルク変化を吸収するように負荷トルクを制御する。 (もっと読む)


【課題】低圧EGR及び高圧EGRの併用領域において、燃焼室22に供給される外部EGR量の調節精度の低下を回避すること。
【解決手段】高圧合流後通路12aにおけるEGR率(以下、EGR率)の目標値と、低圧合流後通路12bにおけるEGR率(以下、低圧EGR率)の目標値を設定する。そして、都度のEGR率をEGR率の目標値にフィードバック制御すべく高圧EGRアクチュエータ48aを通電操作するとともに、都度の低圧EGR率を低圧EGR率の目標値にフィードバック制御すべく低圧EGRアクチュエータ52aを通電操作する高低圧協調EGR制御を行う。 (もっと読む)


【課題】内燃機関の休止気筒数を変更することで目標車速に合わせる制御を行う場合に、車両の快適性および目標車速への収束性をより改善することを可能にする。
【解決手段】自車両の車速を目標車速に合わせるために必要な最終トルクカット率を逐次算出し、その最終トルクカット率に応じて、エンジン1の休止気筒数を増加させるとともに、休止気筒数を増加させる場合に、逐次算出される最終トルクカット率に応じてエンジン1の点火時期を基準点火時期から逐次遅角させた上で休止気筒数を増加させる。 (もっと読む)


【課題】内燃機関の減速運転中、良好な減速性能および減速感を確保しながら、燃焼の安定性を確保することができる内燃機関の制御装置を提供する。
【解決手段】内燃機関3の制御装置1は、ECU2を備える。ECU2は、減速条件が成立しているときには、目標吸気閉弁タイミングIVC_CMDの保持制御処理およびリミット処理を実行することにより、排気還流率REGRが安定限界値REGR_STABを下回るように制御する(ステップ10〜25)とともに、要求トルクTRQが所定値TRQREFよりも小さく、所定の低負荷域にあるときには、可変動弁機構11の動作モードを休止モードに制御する(ステップ30〜37)。 (もっと読む)


1 - 20 / 362